Studies of Zinc Oxide Nanoparticle Synthesis Methods and Effect on its Structure, Characteristics and Morphology : A Review

Authors

  • Dr. B. S. Surung  Department of Physics, Lalbahadur Shashtri Sr. College, Partur, Maharashtra, India
  • Dr. R. M. Lokhande  Department of Physics, DNCVPS Shirish Madhukarrao Chaudhari College, Jalgaon, Maharashtra, India
  • Mrs. M. R. Thokare  Department of Physics, J. E. S. College, Jalna, Maharashtra, India

DOI:

https://doi.org/10.32628/IJSRST2310182

Keywords:

Zinc oxide nanoparticles, Nanostructure nanoparticles, Morphology, Nanomaterials, Hydrothermal, Solvothermal, Sol-gel methods.

Abstract

Now a day’s more interesting and attracting point in research area is the synthesis of nanomaterials with specific properties. Nanotechnology allocate with the production and usage of material with nanoscale dimension to provide nanoparticles are large surface area to volume ratio, this is very important properties of the nanoparticles (NPs). So this review done on ZnO nanoparticles because of it recently studies of various authors due to change in its properties at small scale range and unique properties of zinc oxide (NPs) nanoparticles more attention in research areas. Zinc oxide nanoparticles (ZnO NPs) had been in recent studies due to its large bandwidth and high excitation binding energy. Zinc oxide nonmaterial has number of application depending upon the size and shape of produced nonmaterial such as LED, sensors, photo-detector, anti bacterial, anti fungal etc. The chemical synthesis of nanomaterials via Solvothermal, Hydrothermal and Sol-gel method’s are effective because of high quality crystalline structure are produced, as a result of this morphology of the synthesized nonomaterials are excellent. We go through the various research papers and discuss the synthesis of ZnO particles with different methods by the various authors.

References

  1. S. Tabrez, J. Musarrat, A. A. Al-khedhairy, Colloids and surfaces B: biointerfaces countering drug resistance, infectious diseases, and sepsis using metal and metal oxides nanoparticles: current status, Colloids Surf. B Biointerfaces 146 (2016) 70–83.
  2.  Jiang, J.; Pi, J.; Cai, J. The advancing of zinc oxide nanoparticles for biomedical applications. Bioinor. Chem. Appls 2018, 1-18.
  3. Chaudhary, S.; Umar, A.; Bhasin, K.K.; Baskoutas, S. Chemical sensing applications of ZnO nanomaterials. Mater. 2018, 11, 1-38.
  4. Sarmah, K.; Pratihar, S. Synthesis, characterization and photocatalytic application of iron oxalate capped Fe, Fe-Cu, FeCo, and Fe-Mn oxide nanomaterial. ACS Sustain. Chem. Eng. 2017, 5, 310-324.
  5. Das, P.; Sarmah, K.; Hussain, N.; Pratihar, S.; Das, S.; Bhattacharyya, P.; Patil, S.A.; Kim, H.S.; Iqbal, M.; Khazie, A.; Bhattacharyya, S.S. Novel synthesis of an iron oxalate capped iron oxide nanomaterial; a unique soil conditioner and slow release eco-friendly source of iron sustenance in plants. RSC Adv. 2016, 6, 103012- 25.
  6. Alshamsi, H.A.H.; Hussein, B.S. Hydrothermal preparation of silver doping zinc oxide nanoparticles: synthesis, characterization and photocatalytic activities. Orient. J. Chem. 2018, 34, 1898-1907.
  7. Jin S-E.; Jin, H-E. Synthesis, characterization, and three-dimensional structure generation of zinc oxidebased nanomedicine for biomedical applications. Pharma. 2019, 11, 575, 1-26.
  8. M.D. Rao, P. Gautam, Synthesis and characterization of ZnO nanoflowers using chlamydomonas reinhardtii: a green approach, Environ. Prog. Sustain. Energy (2016) 1–7.
  9. Zhu, L.; Li, Y.; Zeng, W. Hydrothermal synthesis of hierarchical flower-like ZnO nanostructure and its enhanced ethanol gas-sensing properties. Appl. Surf. Sci 2018, 427, 281-287, https://doi.org/10.1016/j.apsusc.2017.08.229.
  10. Brahma, S.; Shivashankar, S.A. Microwave irradiation assisted rapid growth of ZnO nanorods over metal coated/electrically conducting substrate. Mater. Lett 2020, 264, 127370.
  11. Dwivedi, S.; Wahab, R.; Khan, F.; Mishra, Y.K.; Musarrat, J.; Al-Khedhairy, A.A. Reactive oxygen species mediated bacterial biofilm inhibition via zinc oxide nanoparticles and their statistical determination. PLOS ONE 2014, 9, e111289.
  12. Sahu, K.; Kuriakose, S.; Singh, J.; Satpati, B.; Mohapatra, S. Facile synthesis of ZnO nanoplates and nanoparticle aggregates for highly efficient photocatalytic degradation of organic dyes. J. Phys. Chem. Sol. 2018, 121, 186-195.
  13. Ghorbani, H.R.; Mehr, F.P.; Pazoki, H.; Rahmani, B.M. Synthesis of ZnO nanoparticles by precipitation method. Orient. J. Chem. 2015, 31, 1219-1221.
  14. Gopal, V.R.V.; Kamila, S. Effect of temperature on the morphology of ZnO nanoparticles: a comparative study. Appl. Nanosci. 2017, 7, 75–82.
  15. Mahdavi, R.; Talesh, S.S.A. The effect of ultrasonic irradiation on the structure, morphology and photocatalytic performance of ZnO nanoparticles by sol-gel method. Ultrason. Sonochem. 2017, 39, 504- 510.
  16. J.N. Hasnidawani1,a*, H.N. Azlina1,b, H. Norita1,c, N.N. Bonnia2,d, S. Ratim2,e and E.S. Ali2. Synthesis of ZnO Nanostructures Using Sol-Gel Method; Procedia Chemistry, 19 (2016), 211-216.
  17. Wojnarowicz, J.; Chudoba, T.; Lojkowski, W. A Review of microwave synthesis of zinc oxide nanomaterials: reactants, process parameters and morphologies. Nanomater. 2020, 10, 1086, 1-140.
  18. Habeeb Alshamsi H A and Hussein B S 2018 Hydrothermal preparation of silver doping zinc oxide nanoparticles: studys, characterization and photocatalytic activities Orient. J. Chem. 34 1, 898-907.
  19. Zhou Y, Xu L, Wu Z, Li P and He J 2017 Optical and photocatalytic properties of nanocrystalline ZnO powders synthesized by a lowtemperature hydrothermal method Optik, 130, 673-80.
  20. Raji R and Gopchandran K G 2017 ZnO nanostructures with tunable visible luminescence; effects of kinetics of chemical reduction and annealing 2, 5-8.
  21. Quadri T W, Lukman O, Fayemi O E, Solomon M M and Ebenso E E 2017 Zinc oxide nanocomposites of selected polymers; synthesis, characterization and corrosion inhibition studies on mild steel in HCL solution ACS Omega 2, 8421–37.
  22. Somia Yassin Hussain Abdalkarim . Hou-Yong Yu . Chuang Wang . Lin-Xi Huang . Juming Yao. Green synthesis of sheet-like cellulose nanocrystal–zinc oxide nanohybrids with multifunctional performance through one-step hydrothermal method. Cellulose, https://doi.org/10.1007/s10570-018-2011-0.
  23. Sonima Mohan1,2 , Mini Vellakkat1,∗ , Arun Aravind3 and Reka U1. Hydrothermal synthesis and characterization of Zinc Oxide nanoparticles of various shapes under different reaction conditions. Nano Express 1 (2020) 030028.
  24. Ming, O.U.; Lin, M.A.; Limei, X.U.; Haizhen, L.I.; Zhuomei, Y.; Zhifeng, L.A.N. Microwave-assisted synthesis of hierarchical ZnO nanostructures and their photocatalytic properties. MATEC Web of Conferences 2016, 67, 1-7.
  25. Raluca Somoghi1 , Violeta Purcar1,* , Elvira Alexandrescu1 , Ioana Catalina Gifu1. Synthesis of Zinc Oxide Nanomaterials via Sol-Gel Process with Anti-Corrosive Effect for Cu, Al and Zn Metallic Substrates, Coatings 2021, 11, 444. https:// doi.org/10.3390/coatings11040444.
  26. Y. L. Zhang Æ Y. Yang Æ J. H. Zhao Æ R. Q. Tan Æ P. Cui Æ W. J. Song. Preparation of ZnO nanoparticles by a surfactant-assisted complex sol–gel method using zinc nitrate. J Sol-Gel Sci. Technol (2009) 51; 198-203.
  27. Aditya Vishwakarma1 , Dr. Satya Pal Singh. Synthesis of Zinc Oxide Nanoparticle by Sol-Gel Method and Study its Characterization; (IJRASET) ISSN: 2321-9653; IC Value: 45.98. 1625-1627.
  28. T. V. Kolekar, H.M. Yadav, S. S. Bandgar and P. Y. Deshmukh; Synthesis by Sole-gel Method and Characterization of ZnO nanoparticles. Indian research jornal, ISIN 2230-7850 Vom 1. Issue 1, Feb. 211, 1-3.
  29. Byzynski, G.; Pereira, A.P. Volanti, D.P.; Ribeiro, C.; Longo, E. High-performance ultraviolet-visible driven ZnO morphologies photocatalyst obtained by microwave-assisted hydrothermal method. J. Photochem. & Photobio. A: Chem. 2018, 353, 358-367, https://doi.org/10.1016/j.jphotochem.2017.11.032.
  30. Sadhukhan, P.; Kundu, M.; Rana, S.; Kumar, R.; Das, J.; Sil, P.C. Microwave induced synthesis of ZnO nanorods and their efficacy as a drug carrier with profound anticancer and antibacterial properties. Toxicol Reports 2019, 6, 176-185, https://doi.org/10.1016/j.toxrep.2019.01.006.
  31. Markovic, S.; Simatovic, I.S.; Ahmetovic, S.; Veselinovic, L.; Stojadinovic, S.; Rac, V.; Skapin, S.D.; Bogdanovic, D.B.; Castvan, I.J.; Uskokovic, D. Surfactant-assisted microwave processing of ZnO particles: a simple way for designing the surface-to-bulk defect ratio and improving photo(electro)catalytic properties. RSC Adv. 2019, 9, 17165-17178, https://doi.org/10.1039/C9RA02553G.
  32. Sun, H.; Sun, L.; Sugiura, T.; White, M.S.; Stadler, P.; Sariciftci, N.S.; Masuhara, A.; Yoshida, T. Microwaveassisted hydrothermal synthesis of structure-controlled ZnO nanocrystals and their properties in dyesensitized solar cells. Electrochem. 2017, 85, 253–261, https://doi.org/10.5796/electrochemistry.85.253.
  33. Marzouqi, F.A.; Adawi, H.A.; Qi, K.; Liu, S-y.; Kim, Y.; Selvaraj, R. A green approach to the microwaveassisted synthesis of flower-like ZnO nanostructures for reduction of Cr(VI). Toxicol. Environ. Chem. 2019, 101, 1–12, https://doi.org/10.1080/02772248.2019.1635602.
  34. Bayrami, A.; Ghorbani, E.; Pouran, S.R.; Habibi-Yangjeh, A.; Khataee, A.; Bayrami, M. Enriched zinc oxide nanoparticles by Nasturtium officinale leaf extract: Joint ultrasound-microwave-facilitated synthesis, characterization, and implementation for diabetes control and bacterial inhibition. Ultrasonics-Sonochemistry 2019, 58, 104613, 1-8, https://doi.org/10.1016/j.ultsonch.2019.104613.
  35. Bayrami, A.; Parvinroo, S.; Habibi-Yangjeh, A.; Pouran, S.R. Bio-extract-mediated ZnO nanoparticles: microwave-assisted synthesis, characterization and antidiabetic activity evaluation. Artificial Cells, Nanomed. & Biotechnol. 2018, 46, 730–739, https://doi.org/10.1080/21691401.2017.1337025.
  36. Goswami, S.R.; Singh, M. Microwave-mediated synthesis of zinc oxide nanoparticles: a therapeutic approach against Malassezia species. The Institution of Engineering and Technology Biotechnology 2018, 1-6, https://doi.org/10.1049/iet-nbt.2018.0007.
  37. Sooksaen, P.; Chuankrerkkul, N. Morphology-design and semiconducting characteristics of zinc oxide nanostructures under microwave irradiation. Integrated Ferroelectrics 2017, 91-102, https://doi.org/10.1080/10584587.2017.1285194.
  38. Pimentel, A.; Ferreira, S.H.; Nunes, D.; Calmeiro, T.; Martins, R.; Fortunato, E. Microwave synthesized ZnO nanorod arrays for UV sensors: A seed layer annealing temperature study. Mater. 2016, 9, 299, 1-15, https://doi.org/10.3390/ma9040299.
  39. Salah, N.; AL-Shawafi, W.M.; Alshahrie, A.; Baghdadi, N.; Soliman, Y.M.; Memic, A. Size controlled, antimicrobial ZnO nanostructures produced by the microwave assisted route. Mater. Sci. & Eng. C 2019, 99, 1164–1173, https://doi.org/10.1016/j.msec.2019.02.077
  40. Xiangyang, B.; Linlin, L.; Huiyu, L.; Longfei, T.; Tianlong, L.; Xianwei, M. Small molecule ligand solvothermal synthesis of ZnO nanoparticles and anti-infection application in vivo. ACS Appl. Mater. Interfaces 2015, 7, 1308-1317, https://doi.org/10.1021/am507532p.
  41. Angaiah, S.; Arunachalam, S.; Murugadoss, V.; Vijayakumar, G. A Facile Polyvinylpyrrolidone assisted solvothermal synthesis of zinc oxide nanowires and nanoparticles and their influence on the photovoltaic performance of dye sensitized solar cell. ES Energy Environ. 2019, 4, 59–65, https://doi.org/10.30919/esee8c280.
  42. Yao, Q.; Wang, C.; Fan, B.; Wang, H.; Sun, Q.; Jin, C.; Zhang, H. One-step solvothermal deposition of ZnO nanorod arrays on a wood surface for robust superamphiphobic performance and superior ultraviolet resistance. Scientific Reports 2016, 6, 35505, 1-11, https://doi.org/10.1038/srep35505.
  43. Karthikeyan, L.; Akshaya, M.V.; Basu, P.K. Microwave assisted synthesis of ZnO and Pd-ZnO nanospheres for UV photodetector. Sensors and Actuators A: Physical 2017, 264, 90-95, https://doi.org/10.1016/j.sna.2017.06.013.
  44. Kumar, V.; Gohain, M.; Som, S.; Kumar, V.; Bezuindenhoudt, B.C.B.; Swart, H.C. Microwave assisted synthesis of ZnO nanoparticles for lighting and dye removal application. Physica B: Condensed Matter 2016, 480, 36-41, https://doi.org/10.1016/j.physb.2015.07.020.
  45. T. H. Mahato, G.K. Prasad and B.S.J.Acharya // J. Hazard. Mater. 165 (2009) 928.
  46. L. N. Dem yanets, L.E. Li and T.G. Uvarova // J. Mater. Sci. 41 (2006) 1439.
  47. Divya, B.; Karthikeyan, C.; Rajasimman, M. Chemical synthesis of zinc oxide nanoparticles and its application of dye decolourization. Int. J. Nanosci. Nanotechnol. 2018, 14, 267-275.
  48. Prasad, T.; Halder, S.; Goyat, M.S.; Dhar, S.S. Morphological dissimilarities of ZnO nanoparticles and its effect on thermo-physical behavior of epoxy composites. Polymer Composites 2018, 39, 135-145, https://doi.org/10.1002/pc.23914.
  49. Ashraf, R., Riaz, S., Khaleeq-ur-Rehman, M., and Naseem, S. (2013). Synthesis and characterization of ZnO nanoparticles. The 2013 World Congress on Advances in Nano, Biomechanics, Robotics and Energy Research (ANBRE13), Seoul, Korea, August, 25-28, 2013.

Downloads

Published

2023-04-30

Issue

Section

Research Articles

How to Cite

[1]
Dr. B. S. Surung, Dr. R. M. Lokhande, Mrs. M. R. Thokare "Studies of Zinc Oxide Nanoparticle Synthesis Methods and Effect on its Structure, Characteristics and Morphology : A Review" International Journal of Scientific Research in Science and Technology(IJSRST), Online ISSN : 2395-602X, Print ISSN : 2395-6011,Volume 10, Issue 2, pp.655-663, March-April-2023. Available at doi : https://doi.org/10.32628/IJSRST2310182