A Digital Integration Model for Streamlining Pharmaceutical Procurement, Distribution, and Monitoring Through E-Health Platforms
Keywords:
Digital Health Platforms, Pharmaceutical Procurement, Supply Chain Monitoring, E-Health Integration, Healthcare Distribution, Informatics InfrastructureAbstract
The pharmaceutical supply chain in many emerging and resource-constrained markets suffers from fragmentation, inefficiencies, and poor visibility. These challenges compromise access to essential medicines, affect health outcomes, and burden healthcare delivery systems. With the advent of e-health platforms and digital health technologies, a new opportunity exists to streamline pharmaceutical procurement, distribution, and monitoring. This paper proposes a Digital Integration Model (DIM) that unifies procurement data, logistics tracking, inventory status, and distribution workflows across healthcare institutions and suppliers. Based on an extensive literature review, the study identifies the technological, organizational, and regulatory factors enabling digital integration. The paper contributes a conceptual framework to guide policymakers, supply chain managers, and IT architects in building resilient, transparent, and responsive pharmaceutical logistics systems via e-health platforms.
References
- S. S. Lim et al., “Measuring the health-related Sustainable Development Goals in 188 countries: a baseline analysis from the Global Burden of Disease Study 2015,” The Lancet, vol. 388, no. 10053, pp. 1813–1850, Oct. 2016, doi: 10.1016/S0140-6736(16)31467-2.
- “Digital health technologies to support access to medicines and pharmaceutical services in the achievement of sustainable development goals - Niranjan Konduri, Francis Aboagye-Nyame, David Mabirizi, Kim Hoppenworth, Mohammad Golam Kibria, Seydou Doumbia, Lucilo Williams, Greatjoy Mazibuko, 2018.” Accessed: Jun. 13, 2022. Online]. Available: https://journals.sagepub.com/doi/full/10.1177/2055207618771407
- C. A. Mgbame, O. E. Akpe, A. A. Abayomi, E. Ogbuefi, and O. O. Adeyelu, “Barriers and Enablers of Healthcare Analytics Tool Implementation in Underserved Healthcare Communities,” Healthcare Analytics, vol. 45, no. 45 SP 45–45, 2020, Online]. Available: https://www.irejournals.com/paper-details/1708221
- O. E. Akpe, C. A. Mgbame, E. Ogbuefi, A. A. Abayomi, and O. O. Adeyelu, “Bridging the Healthcare Intelligence Gap in Healthcare Enterprises: A Conceptual Framework for Scalable Adoption,” Healthcare Analytics, vol. 45, no. 45 SP 45–45, 2021, Online]. Available: https://www.irejournals.com/paper-details/1708222
- “E-Health,” Encyclopedia of Health Services Research, 2009, doi: 10.4135/9781412971942.N121.
- N. Astriani, B. Rubiati, Y. Adharani, S. S. Afifah, R. Salsabila, and R. Diffa, “The responsibility of the indonesian government to fulfill the rights to water during the COVID-19 pandemic: Some legal issues,” Environmental Policy and Law, vol. 51, no. 5, pp. 327–341, 2021, doi: 10.3233/EPL-201044.
- L. van Dyk, “A review of telehealth service implementation frameworks,” Int J Environ Res Public Health, vol. 11, no. 2, pp. 1279–1298, Jan. 2014, doi: 10.3390/IJERPH110201279.
- B. I. Ashiedu, E. Ogbuefi, U. S. Nwabekee, J. C. Ogeawuchi, and A. A. Abayomi, “Developing Financial Due Diligence Frameworks for Mergers and Acquisitions in Emerging Telecom Markets,” Iconic Research And Engineering Journals, vol. 4, no. 1, pp. 183–196, 2020, Online]. Available: https://www.irejournals.com/paper-details/1708562
- E. D. Balogun, K. O. Ogunsola, and A. Samuel, “A cloud-based data warehousing framework for real-time business intelligence and decision-making optimization,” International Journal of Business Intelligence Frameworks, vol. 6, no. 4, pp. 121–134, 2021.
- F. U. Ojika, W. O. Owobu, O. A. Abieba, O. J. Esan, B. C. Ubamadu, and A. I. Daraojimba, “A Conceptual Framework for AI-Driven Digital Transformation: Leveraging NLP and Machine Learning for Enhanced Data Flow in Retail Operations,” 2021.
- S. C. Rametta et al., “Analyzing 2,589 child neurology telehealth encounters necessitated by the COVID-19 pandemic,” Neurology, vol. 95, no. 9, pp. E1257–E1266, Sep. 2020, doi: 10.1212/WNL.0000000000010010.
- Y. N. Kyrychko, K. B. Blyuss, and I. Brovchenko, “Mathematical modelling of the dynamics and containment of COVID-19 in Ukraine,” Sci Rep, vol. 10, no. 1, p. 19662, Dec. 2020, doi: 10.1038/s41598-020-76710-1.
- S. Ashraf et al., “Overview of a multi-stakeholder dialogue around shared services for health: The Digital Health opportunity in Bangladesh,” Health Res Policy Syst, vol. 13, no. 1, Dec. 2015, doi: 10.1186/S12961-015-0063-2.
- A. Y. Forkuo, E. C. Chianumba, A. Y. Mustapha, D. Osamika, and L. S. Komi, “Advances in digital diagnostics and virtual care platforms for primary healthcare delivery in West Africa,” Methodology, vol. 96, no. 71, p. 48, 2022.
- L. S. Komi, E. C. Chianumba, A. Yeboah, D. O. Forkuo, and A. Y. Mustapha, “Advances in Community-Led Digital Health Strategies for Expanding Access in Rural and Underserved Populations,” 2021.
- C. I. Okolie, O. Hamza, A. Eweje, A. Collins, G. O. Babatunde, and B. C. Ubamadu, “Leveraging Digital Transformation and Business Analysis to Improve Healthcare Provider Portal,” ICONIC RESEARCH AND ENGINEERING JOURNALS, vol. 4, no. 10, pp. 253–257, 2021.
- Y. R. Park et al., “Utilization of a clinical trial management system for the whole clinical trial process as an integrated database: System development,” J Med Internet Res, vol. 20, no. 4, Apr. 2018, doi: 10.2196/JMIR.9312.
- J. Ashaba and J. Nabukenya, “Beyond monitoring functionality to results evaluation of eHealth interventions: Development and validation of an eHealth evaluation framework,” Health Informatics J, vol. 28, no. 4, Oct. 2022, doi: 10.1177/14604582221141834.
- T. Ahmed, H. Lucas, A. S. Khan, R. Islam, A. Bhuiya, and M. Iqbal, “EHealth and mHealth initiatives in Bangladesh: A scoping study,” BMC Health Serv Res, vol. 14, no. 1, Jun. 2014, doi: 10.1186/1472-6963-14-260.
- E. O. Alonge, N. L. Eyo-Udo, B. C. Ubanadu, A. I. Daraojimba, E. D. Balogun, and K. O. Ogunsola, “Real-time data analytics for enhancing supply chain efficiency,” International Journal of Multidisciplinary Research and Growth Evaluation, vol. 2, no. 1, pp. 759–771, 2021, doi: 10.54660/.IJMRGE.2021.2.1.759-771.
- B. I. Ashiedu, E. Ogbuefi, S. Nwabekee, J. C. Ogeawuchi, and A. A. Abayomi, “Leveraging Real-Time Dashboards for Strategic KPI Tracking in Multinational Finance Operations,” Iconic Research and Engineering Journals, vol. 4, no. 8, pp. 189–205, 2021, Online]. Available: https://www.irejournals.com/paper-details/1708537
- F. C. Okolo, E. A. Etukudoh, O. Ogunwole, G. O. Osho, and J. O. Basiru, “Advances in Integrated Geographic Information Systems and AI Surveillance for Real-Time Transportation Threat Monitoring,” Journal of Frontiers in Multidisciplinary Research, vol. 3, no. 01, pp. 130–139, 2022.
- A. A. Abayomi, B. C. Ubanadu, A. I. Daraojimba, O. A. Agboola, and S. Owoade, “A Conceptual Framework for Real-Time Data Analytics and Decision-Making in Cloud-Optimized Business Intelligence Systems,” Iconic Research and Engineering Journals, vol. 5, no. 9, pp. 713–722, 2022, Online]. Available: https://www.irejournals.com/paper-details/1708317
- J. C. Ogeawuchi, A. C. Uzoka, A. A. Abayomi, O. A. Agboola, and P. Gbenle, “Innovations in Data Modeling and Transformation for Scalable Healthcare Intelligence on Modern Cloud Platforms,” Healthcare Analytics, vol. 45, no. 45 SP 45–45, 2021, Online]. Available: https://www.irejournals.com/paper-details/1708319
- A. A. Abayomi, B. C. Ubanadu, A. I. Daraojimba, O. A. Agboola, and S. Owoade, “A Conceptual Framework for Real-Time Data Analytics and Decision-Making in Cloud-Optimized Healthcare Intelligence Systems,” Healthcare Analytics, vol. 45, no. 45 SP 45–45, 2022, Online]. Available: https://www.irejournals.com/paper-details/1708317
- E. C. Chianumba, N. Ikhalea, A. Y. Mustapha, A. Y. Forkuo, and D. Osamika, “Integrating AI, blockchain, and big data to strengthen healthcare data security, privacy, and patient outcomes,” Journal of Frontiers in Multidisciplinary Research, vol. 3, no. 1, pp. 124–129, 2022.
- Chianumba, I. E. C., M. N., F. A. Y., A. Y. Osamika, and D, “Developing a predictive model for healthcare compliance, risk management, and fraud detection using data analytics,” C., Ikhalea, N., Mustapha, A. Y., Forkuo, A. Y., & Osamika, D. (2022). Developing a predictive model for healthcare compliance, risk management, and fraud detection using data analytics. International Journal of Social Science Exceptional Research, vol. 2022), 2022.
- I. Perez-Pozuelo et al., “The future of sleep health: a data-driven revolution in sleep science and medicine,” npj Digital Medicine 2020 3:1, vol. 3, no. 1, pp. 1–15, Mar. 2020, doi: 10.1038/s41746-020-0244-4.
- E. Agaba, A. Pomeroy-Stevens, S. Ghosh, and J. K. Griffiths, “Assessing Progress in Implementing Uganda’s Nutrition Action Plan: District-Level Insights,” Food Nutr Bull, vol. 37, no. 4_suppl, pp. S142–S150, Dec. 2016, doi: 10.1177/0379572116674553.
- A. A. Abayomi, C. A. Mgbame, O. E. Akpe, E. Ogbuefi, and O. O. Adeyelu, “Advancing Equity Through Technology: Inclusive Design of Healthcare Analytics Platforms for Healthcare,” Healthcare Analytics, vol. 45, no. 45 SP 45–45, 2021, Online]. Available: https://www.irejournals.com/paper-details/1708220
- E. C. Chianumba, N. Ikhalea, A. Y. Mustapha, A. Y. Forkuo, and D. Osamika, “A conceptual framework for leveraging big data and AI in enhancing healthcare delivery and public health policy,” IRE Journals, vol. 5, no. 6, pp. 303–310, 2021.
- L. S. Komi, E. C. Chianumba, A. Y. Forkuo, D. Osamika, and A. Y. Mustapha, “A conceptual framework for training community health workers through virtual public health education modules,” IRE Journals, vol. 5, no. 11, pp. 332–335, 2022.
- O. E. Akpe, J. C. Ogeawuchi, A. A. Abayomi, and O. A. Agboola, “Advances in Stakeholder-Centric Product Lifecycle Management for Complex, Multi-Stakeholder Energy Program Ecosystems,” Healthcare Analytics, vol. 45, no. 45 SP 45–45, 2021, Online]. Available: https://www.irejournals.com/paper-details/1708349
- A. B. Hassanat et al., “A simulation model for forecasting COVID-19 pandemic spread: Analytical results based on the current Saudi COVID-19 data,” Sustainability, vol. 13, Iss. 9, no. 9, p. 4888, May 2021, doi: 10.3390/su13094888.
- B. Hu et al., “Modeling the complete spatiotemporal spread of the COVID-19 epidemic in mainland China,” Intern. J. of Infectious Diseases, vol. 110, p. 247, Sep. 2021, doi: 10.1016/j.ijid.2021.04.021.
- R. Crichton, D. Moodley, A. Pillay, R. Gakuba, and C. J. Seebregts, “An architecture and reference implementation of an open health information mediator: Enabling interoperability in the Rwandan health information exchange,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 7789 LNCS, pp. 87–104, 2013, doi: 10.1007/978-3-642-39088-3_6.
- R. Bernardi, “Health information systems and accountability in Kenya: A structuration theory perspective,” J Assoc Inf Syst, vol. 18, no. 12, pp. 931–957, Dec. 2017, doi: 10.17705/1JAIS.00475.
- N. Muinga et al., “Digital health Systems in Kenyan Public Hospitals: A mixed-methods survey,” BMC Med Inform Decis Mak, vol. 20, no. 1, Jan. 2020, doi: 10.1186/S12911-019-1005-7.
- H. Alami, M. P. Gagnon, M. A. Ag Ahmed, and J. P. Fortin, “Digital health: Cybersecurity is a value creation lever, not only a source of expenditure,” Health Policy Technol, vol. 8, no. 4, pp. 319–321, Dec. 2019, doi: 10.1016/J.HLPT.2019.09.002.
- M. Kletecka-Pulker et al., “Impacts of biomedical hashtag-based Twitter campaign: #DHPSP utilization for promotion of open innovation in digital health, patient safety, and personalized medicine,” Curr Res Biotechnol, vol. 3, pp. 146–153, Jan. 2021, doi: 10.1016/J.CRBIOT.2021.04.004.
- A. Y. Mustapha, E. C. Chianumba, A. Y. Forkuo, D. Osamika, and L. S. Komi, “Systematic Review of Digital Maternal Health Education Interventions in Low-Infrastructure Environments,” International Journal of Multidisciplinary Research and Growth Evaluation, vol. 2, 2021.
- C. O. Ozobu, F. E. Adikwu, O. Odujobi, F. O. Onyekwe, E. O. Nwulu, and A. I. Daraojimba, “Leveraging AI and Machine Learning to Predict Occupational Diseases: A Conceptual Framework for Proactive Health Risk Management in High-Risk Industries”, doi: 10.54660/.IJMRGE.2023.4.1.928-938.
- D. Damtew, F. Worku, Y. Tesfaye, and A. Jemal, “Availability of Lifesaving Maternal and Child Health Commodities and Associated Factors in Public and Private Health Facilities of Addis Ababa, Ethiopia,” Health Serv Res Manag Epidemiol, vol. 6, p. 233339281989235, Jan. 2019, doi: 10.1177/2333392819892350.
- P. Barker, T. Quick, B. Agins, N. Rollins, T. T. Sint, and A. F. Stern, “A 6-Country Collaborative Quality Improvement Initiative to Improve Nutrition and Decrease Mother-to-Child Transmission of HIV in Mother–Infant Pairs,” J Int Assoc Provid AIDS Care, vol. 18, Jun. 2019, doi: 10.1177/2325958219855625.
- E. C. Chianumba, N. Ikhalea, A. Y. Mustapha, A. Y. Forkuo, and D. Osamika, “Developing a predictive model for healthcare compliance, risk management, and fraud detection using data analytics,” International Journal of Social Science Exceptional Research, vol. 1, no. 1, pp. 232–238, 2022.
- J. C. Ogeawuchi, O. E. Akpe, A. A. Abayomi, O. A. Agboola, and S. Owoade, “Systematic Review of Advanced Data Governance Strategies for Securing Cloud-Based Data Warehouses and Pipelines,” Healthcare Analytics, vol. 45, no. 45 SP 45–45, 2022, Online]. Available: https://www.irejournals.com/paper-details/1708318
- E. C. Chukwuma-Eke, O. Y. Ogunsola, and N. J. Isibor, “Developing an integrated framework for SAP-based cost control and financial reporting in energy companies,” International Journal of Multidisciplinary Research and Growth Evaluation, vol. 3, p. 19, 2022.
- O. Ilori, C. I. Lawal, S. C. Friday, N. J. Isibor, and E. C. Chukwuma-Eke, “Cybersecurity auditing in the digital age: A review of methodologies and regulatory implications,” Journal of Frontiers in Multidisciplinary Research, vol. 3, no. 1, pp. 174–187, 2022, Online]. Available: https://doi.org/10.54660/IJFMR.2022.3.1.174-187
- N. J. Isibor, C. P. M. Ewim, A. I. Ibeh, E. M. Adaga, N. J. Sam-Bulya, and G. O. Achumie, “A generalizable social media utilization framework for entrepreneurs: Enhancing digital branding, customer engagement, and growth,” International Journal of Multidisciplinary Research and Growth Evaluation, 2021.
- O. E. Akpe, J. C. Ogeawuchi, A. A. Abayomi, O. A. Agboola, and E. Ogbuefi, “A Conceptual Framework for Strategic Business Planning in Digitally Transformed Organizations,” Iconic Research And Engineering Journals, vol. 4, no. 4, pp. 207–222, 2020, Online]. Available: https://www.irejournals.com/paper-details/1708525
- L. Woods et al., “Evaluating digital health capability at scale using the digital health indicator,” thieme-connect.com, vol. 13, no. 5, pp. 991–1001, Oct. 2022, doi: 10.1055/S-0042-1757554.
- D. Bihani, B. C. Ubamadu, A. I. Daraojimba, G. O. Osho, and J. O. Omisola, “AI-Enhanced Blockchain Solutions: Improving Developer Advocacy and Community Engagement through Data-Driven Marketing Strategies,” Iconic Research And Engineering Journals, vol. 4, no. 9, 2021.
- Esan, U. O. J., O. O. T., O. O., G. O. Etukudoh, and E. A, “Procurement 4.0: Revolutionizing supplier relationships through blockchain, AI, and automation: A comprehensive framework,” J., Uzozie, O. T., Onaghinor, O., Osho, G. O., & Etukudoh, E. A. (2022). Procurement 4.0: Revolutionizing supplier relationships through blockchain, AI, and automation: A comprehensive framework. Journal of Frontiers in Multidisciplinary Research, vol. 2022), 2022.
- G. O. Osho, “Building Scalable Blockchain Applications: A Framework for Leveraging Solidity and AWS Lambda in Real-World Asset Tokenization,” Unknown Journal, 2020.
- B. I. Ashiedu, E. Ogbuefi, U. S. Nwabekee, J. C. Ogeawuchi, and A. A. Abayomi, “Telecom Infrastructure Audit Models for African Markets: A Data-Driven Governance Perspective,” Iconic Research and Engineering Journals, vol. 6, no. 6, pp. 434–448, 2022, Online]. Available: https://www.irejournals.com/paper-details/1708536
- A. Odeshina, O. Reis, F. Okpeke, V. Attipoe, and O. Orieno, “Artificial Intelligence Integration in Regulatory Compliance: A Strategic Model for Cybersecurity Enhancement,” Journal of Frontiers in Multidisciplinary Research, vol. 3, pp. 35–46, 2022, Online]. Available: https://www.researchgate.net/publication/391901838
- S. Katuu, “Healthcare systems: typologies, framework models, and South Africa’s health sector,” International Journal of Health Governance, vol. 23, no. 2, pp. 134–148, May 2018, doi: 10.1108/IJHG-10-2017-0054.
- E. Pernot-Leplay, “EU Influence on Data Privacy Laws: Is the US Approach Converging with the EU Model?,” Colorado Technology Law Journal, vol. 18, 2020, Accessed: Jun. 05, 2021. Online]. Available: https://heinonline.org/HOL/Page?handle=hein.journals/jtelhtel18&id=39&div=&collection=
- J. D. D’Amore et al., “Are meaningful use stage 2 certified EHRs ready for interoperability? Findings from the SMART C-CDA collaborative,” Journal of the American Medical Informatics Association, vol. 21, no. 6, pp. 1060–1068, 2014, doi: 10.1136/AMIAJNL-2014-002883.
- O. A. Adenuga, R. M. Kekwaletswe, and A. Coleman, “eHealth integration and interoperability issues: Towards a solution through enterprise architecture,” Health Inf Sci Syst, vol. 3, no. 1, Dec. 2015, doi: 10.1186/S13755-015-0009-7.
- A. A. Abayomi, B. C. Ubanadu, A. I. Daraojimba, O. A. Agboola, E. Ogbuefi, and S. Owoade, “A conceptual framework for real-time data analytics and decision-making in cloud-optimized business intelligence systems,” Iconic Research and Engineering Journals, vol. 5, no. 9, pp. 713–722, 2022, Online]. Available: https://www.irejournals.com/paper-details/1708317
- B. Adebisi, E. Aigbedion, O. B. Ayorinde, and E. C. Onukwulu, “A Conceptual Model for Predictive Asset Integrity Management Using Data Analytics to Enhance Maintenance and Reliability in Oil & Gas Operations,” International Journal of Multidisciplinary Research and Growth Evaluation, vol. 2, 2021.
- O. M. Oluoha, A. Odeshina, O. Reis, F. Okpeke, V. Attipoe, and O. Orieno, “Optimizing Business Decision-Making with Advanced Data Analytics Techniques,” Iconic Research and Engineering Journals, vol. 6, no. 5, pp. 184–203, 2022, Online]. Available: https://www.irejournals.com/paper-details/1703887
- E. Ogbuefi, A. C. Mgbame, O. E. Akpe, A. A. Abayomi, and O. O. Adeyelu, “Data Democratization: Making Advanced Analytics Accessible for Micro and Small Enterprises,” International Journal of Management and Organizational Research, vol. 1, no. 1, pp. 199–212, 2022, doi: 10.54660/ijmor.2022.1.1.199-212.
- J. O. Omisola, E. A. Etukudoh, O. K. Okenwa, and G. I. Tokunbo, “Geosteering Real-Time Geosteering Optimization Using Deep Learning Algorithms Integration of Deep Reinforcement Learning in Real-time Well Trajectory Adjustment to Maximize,” Unknown Journal, 2020.
- B. I. Ashiedu, E. Ogbuefi, U. S. Nwabekee, J. C. Ogeawuchi, and A. A. Abayomi, “Leveraging Real-Time Dashboards for Strategic KPI Tracking in Multinational Finance Operations,” Iconic Research And Engineering Journals, vol. 4, no. 8, pp. 189–205, 2021, Online]. Available: https://www.irejournals.com/paper-details/1708537
- P. Gbenle, O. A. Abieba, W. O. Owobu, J. P. Onoja, A. I. Daraojimba, and A. H. Adepoju, “A Conceptual Model for Scalable and Fault-Tolerant Cloud-Native Architectures Supporting Critical Real-Time Analytics in Emergency Response Systems,” 2022.
- B. I. Adekunle, E. C. Chukwuma-Eke, E. D. Balogun, and K. O. Ogunsola, “Predictive Analytics for Demand Forecasting: Enhancing Business Resource Allocation Through Time Series Models,” Journal of Frontiers in Multidisciplinary Research, vol. 2, no. 01, pp. 32–42, 2021.
- E. C. Onukwulu, J. E. Fiemotongha, A. N. Igwe, and P.-M. Ewim, “The strategic influence of geopolitical events on crude oil pricing: An analytical approach for global traders International Journal of Management and Organizational Research The strategic influence of geopolitical events on crude oil pricing: An analytical approach for global traders,” Article in International Journal of Management and Organizational Research, 2022, doi: 10.54660/IJMOR.2022.1.1.58-74.
- F. U. Ojika, W. O. Owobu, O. A. Abieba, O. J. Esan, B. C. Ubamadu, and A. I. Daraojimba, “Integrated framework for enhancing sales enablement through advanced CRM and analytics solutions,” 2022.
- N. Konduri et al., “Digital health technologies to support access to medicines and pharmaceutical services in the achievement of sustainable development goals,” Digit Health, vol. 4, p. 205520761877140, Jan. 2018, doi: 10.1177/2055207618771407/SUPPL_FILE/APPENDIX_A_AND_B.PDF.
- R. Wyber, S. Vaillancourt, W. Perry, P. Mannava, T. Folaranmi, and L. A. Celi, “Mégadonnées dans le domaine de la santé mondiale: Amélioration de la santé dans les pays à revenu faible et intermédiaire,” Bull World Health Organ, vol. 93, no. 3, pp. 203–208, 2015, doi: 10.2471/BLT.14.139022.
- Osamika, A. D., K.-A. B. S., M. M. C., A. Y. Ikhalea, and N, “Machine learning models for early detection of cardiovascular diseases: A systematic review,” S., Kelvin-Agwu, M. C., Mustapha, A. Y., & Ikhalea, N. (2021). Machine learning models for early detection of cardiovascular diseases: A systematic review. IRE Journals, vol. 2021), 2021, Online]. Available: https://doi.org/IRE.1702780
- A. Y. Mustapha, E. C. Chianumba, A. Y. Forkuo, D. Osamika, and L. S. Komi, “Systematic Review of Mobile Health (mHealth) Applications for Infectious Disease Surveillance in Developing Countries,” International Journal of Multidisciplinary Research and Growth Evaluation, vol. 3, 2022.
- K. McCracken and D. R. Phillips, “Measuring population health and disease,” Global Health, pp. 32–59, Nov. 2018, doi: 10.4324/9781315691800-2/MEASURING-POPULATION-HEALTH-DISEASE-KEVIN-MCCRACKEN-DAVID-PHILLIPS.
- W. Mutale et al., “Improving health information systems for decision making across five sub-Saharan African countries: Implementation strategies from the African Health Initiative,” BMC Health Serv Res, vol. 13, no. SUPPL.2, 2013, doi: 10.1186/1472-6963-13-S2-S9.
- E. Nicol, D. Bradshaw, J. Uwimana-Nicol, and L. Dudley, “Perceptions about data-informed decisions: An assessment of information-use in high HIV-prevalence settings in South Africa,” BMC Health Serv Res, vol. 17, Dec. 2017, doi: 10.1186/S12913-017-2641-1.
- N. Konduri et al., “Digital health technologies to support access to medicines and pharmaceutical services in the achievement of sustainable development goals,” Digit Health, vol. 4, p. 205520761877140, Jan. 2018, doi: 10.1177/2055207618771407;PAGEGROUP:STRING:PUBLICATION.
- N. Joudyian, L. Doshmangir, M. Mahdavi, J. S. Tabrizi, and V. S. Gordeev, “Public-private partnerships in primary health care: a scoping review,” BMC Health Serv Res, vol. 21, no. 1, p. 4, Dec. 2021, doi: 10.1186/s12913-020-05979-9.
- L. A. Parker, G. A. Zaragoza, and I. Hernández-Aguado, “Promoting population health with public-private partnerships: Where’s the evidence?,” BMC Public Health, vol. 19, no. 1, p. 1438, Nov. 2019, doi: 10.1186/s12889-019-7765-2.
- N. Hayatu, A. A. Abayomi, and A. C. Uzoka, “Advances in Managed Services Optimization for End-to-End Network Performance in High-Density Mobile Environment,” Iconic Research and Engineering Journals, vol. 3, no. 9, pp. 301–322, 2021, Online]. Available: https://www.irejournals.com/paper-details/1708634
- O. E. Akpe, J. C. Ogeawuchi, A. A. Abayomi, O. A. Agboola, and E. Ogbuefi, “Systematic Review of Last-Mile Delivery Optimization and Procurement Efficiency in African Logistics Ecosystems,” Iconic Research and Engineering Journals, vol. 5, no. 6, pp. 377–388, 2021, Online]. Available: https://www.irejournals.com/paper-details/1708521
- A. C. Mgbame, O. E. Akpe, A. A. Abayomi, E. Ogbuefi, and O. O. Adeyelu, “Building Data-Driven Resilience in Small Businesses: A Framework for Operational Intelligence,” Iconic Research and Engineering Journals, vol. 5, no. 9, pp. 695–712, 2022, Online]. Available: https://www.irejournals.com/paper-details/1708218
- J. C. Ogeawuchi, O. E. Akpe, A. A. Abayomi, O. A. Agboola, and S. Owoade, “Systematic Review of Advanced Data Governance Strategies for Securing Cloud-Based Data Warehouses and Pipelines,” Iconic Research and Engineering Journals, vol. 6, no. 1, pp. 784–794, 2022, Online]. Available: https://www.irejournals.com/paper-details/1708318
- J. C. Ogeawuchi, A. C. Uzoka, A. A. Abayomi, O. A. Agboola, and P. Gbenle, “Innovations in Data Modeling and Transformation for Scalable Business Intelligence on Modern Cloud Platforms,” Iconic Research and Engineering Journals, vol. 5, no. 5, pp. 406–415, 2021, Online]. Available: https://www.irejournals.com/paper-details/1708319
- S. Saleh, R. Khodor, M. Alameddine, and M. Baroud, “Readiness of healthcare providers for eHealth: the case from primary healthcare centers in Lebanon,” BMC Health Serv Res, vol. 16, no. 1, pp. 1–11, Nov. 2016, doi: 10.1186/S12913-016-1896-2.
- S. Saleh, R. Khodor, M. Alameddine, and M. Baroud, “Readiness of healthcare providers for eHealth: the case from primary healthcare centers in Lebanon,” BMC Health Serv Res, vol. 16, no. 1, 2016.
- E. C. Chianumba, N. Ikhalea, A. Y. Mustapha, A. Y. Forkuo, and D. Osamika, “Integrating AI, blockchain, and big data to strengthen healthcare data security, privacy, and patient outcomes,” Journal of Frontiers in Multidisciplinary Research, vol. 3, no. 1, pp. 124–129, 2022.
- D. Allington, B. Duffy, S. Wessely, N. Dhavan, and J. Rubin, “Health-protective behaviour, social media usage and conspiracy belief during the COVID-19 public health emergency,” Psychol Med, vol. 51, no. 10, pp. 1763–1769, Jul. 2021, doi: 10.1017/S003329172000224X.
- M. Gaynor, K. Ho, and R. J. Town, “The Industrial Organization of Health-Care Markets,” J Econ Lit, vol. 53, no. 2, pp. 235–284, Jun. 2015, doi: 10.1257/JEL.53.2.235<SPAN.
- E. C. Chianumba, N. Ikhalea, A. Y. Mustapha, and A. Y. Forkuo, “Developing a framework for using AI in personalized medicine to optimize treatment plans,” Journal of Frontiers in Multidisciplinary Research, vol. 3, no. 1, pp. 57–71, 2022.
- L. Yan, W. Huang, L. Wang, S. Feng, Y. Peng, and J. Peng, “Data-Enabled Digestive Medicine: A New Big Data Analytics Platform,” IEEE/ACM Trans Comput Biol Bioinform, vol. 18, no. 3, pp. 922–931, May 2021, doi: 10.1109/TCBB.2019.2951555.
- X. Zhu, A. Ninh, H. Zhao, and Z. Liu, “Demand Forecasting with Supply‐Chain Information and Machine Learning: Evidence in the Pharmaceutical Industry,” Prod Oper Manag, vol. 30, no. 9, pp. 3231–3252, Sep. 2021, doi: 10.1111/POMS.13426’.
- J. Sarkis, “Environmental Supply Chain Management,” 21st Century Management: A Reference Handbook, pp. I-281-I–293, May 2012, doi: 10.4135/9781412954006.N28.
- A. Sharma and P. Kaur, “A Multitenant Data Store Using a Column Based NoSQL Database,” 2019 12th International Conference on Contemporary Computing, IC3 2019, Aug. 2019, doi: 10.1109/IC3.2019.8844906.
- A. C. Mgbame, O. E. Akpe, A. A. Abayomi, E. Ogbuefi, and O. O. Adeyelu, “Building data-driven resilience in small businesses: A framework for operational intelligence,” Iconic Research and Engineering Journals, vol. 5, no. 9, pp. 695–712, 2022, Online]. Available: https://www.irejournals.com/paper-details/1708219
- E. O. Alonge, N. L. Eyo-Udo, B. C. Ubanadu, A. I. Daraojimba, and E. D. Balogun, “Enhancing data security with machine learning: A study on fraud detection algorithms,” Journal of Data Security and Fraud Prevention, vol. 7, no. 2, pp. 105–118, 2021.
- J. P. Onoja, O. Hamza, A. Collins, U. B. Chibunna, A. Eweja, and A. I. Daraojimba, “Digital Transformation and Data Governance: Strategies for Regulatory Compliance and Secure AI-Driven Business Operations,” 2021.
- P. Gbenle, O. A. Abieba, W. O. Owobu, J. P. Onoja, A. I. Daraojimba, and A. H. Adepoju, “A Privacy-Preserving AI Model for Autonomous Detection and Masking of Sensitive User Data in Contact Center Analytics,” 2022.
- Chianumba, I. E. C., M. N., F. A. Y., A. Y. Osamika, and D, “Integrating AI, blockchain, and big data to strengthen healthcare data security, privacy, and patient outcomes,” C., Ikhalea, N., Mustapha, A. Y., Forkuo, A. Y., & Osamika, D. (2022). Integrating AI, blockchain, and big data to strengthen healthcare data security, privacy, and patient outcomes. Journal of Frontiers in Multidisciplinary Research, vol. 2022), 2022.
- Nnaemeka Stanley Egbuhuzor, Ajibola Joshua Ajayi, Experience Efeosa Akhigbe, Oluwole Oluwadamilola Agbede, Chikezie Paul-Mikki Ewim, and David Iyanuoluwa Ajiga, “Cloud-based CRM systems: Revolutionizing customer engagement in the financial sector with artificial intelligence,” International Journal of Science and Research Archive, vol. 3, no. 1, pp. 215–234, Oct. 2021, doi: 10.30574/ijsra.2021.3.1.0111.
- P. Gbenle, O. A. Abieba, W. O. Owobu, J. P. Onoja, A. I. Daraojimba, and A. H. Adepoju, “A National Education Access Platform Model Using MEAN Stack Technologies: Reducing Barriers Through Cloud-Based Smart Application Systems,” 2022.
- F. U. Ojika, W. O. Owobu, O. A. Abieba, O. J. Esan, B. C. Ubamadu, and A. I. Daraojimba, “Integrating TensorFlow with Cloud-Based Solutions: A Scalable Model for Real-Time Decision-Making in AI-Powered Retail Systems,” 2022.
- R. Widdus, “Public-private partnerships for health: their main targets, their diversity, and their future directions,” Global Health, pp. 431–438, Jan. 2017, doi: 10.4324/9781315254227-32/PUBLIC.
- C. Boudry and M. Durand-Barthez, “Publications en libre accès en biologie–médecine : historique et état des lieux en 2016,” Ethics Med Public Health, vol. 3, no. 1, pp. 169–181, Jan. 2017, doi: 10.1016/j.jemep.2017.02.021.
- J. G. Faulkenberry, A. Luberti, and S. Craig, “Electronic health records, mobile health, and the challenge of improving global health,” Curr Probl Pediatr Adolesc Health Care, vol. 52, no. 1, Jan. 2022, doi: 10.1016/j.cppeds.2021.101111.
- R. H. Epstein, F. Dexter, and E. S. Schwenk, “Provider Access to Legacy Electronic Anesthesia Records Following Implementation of an Electronic Health Record System,” J Med Syst, vol. 43, no. 5, May 2019, doi: 10.1007/S10916-019-1232-6.
- H. Hemingway, G. S. Feder, N. K. Fitzpatrick, S. Denaxas, A. D. Shah, and A. D. Timmis, “Using nationwide ‘big data’ from linked electronic health records to help improve outcomes in cardiovascular diseases: 33 studies using methods from epidemiology, informatics, economics and social science in the ClinicAl disease research using LInked Bespoke studies and Electronic health Records (CALIBER) programme,” Programme Grants for Applied Research, vol. 5, no. 4, pp. 1–330, Jan. 2017, doi: 10.3310/PGFAR05040
Downloads
Published
Issue
Section
License
Copyright (c) IJSRST

This work is licensed under a Creative Commons Attribution 4.0 International License.