A Study on K-Contact Manifolds with Pseudo Quasi-Conformal Curvature Tensor

Authors

  • S. N. Manjunath  Lecturer, Department of Science, Govt. VISSJ Polytechnic, Bhadravathi, Karnataka, India
  • K. J. Jayashree  Senior Scale Lecturer, Department of Science, Govt. Polytechnic, Hiriyur, Karnataka, India
  • P. Rashmi  Lecturer, Department of Science, Govt. Polytechnic, Tumkur, Karnataka, India

Keywords:

Conformal Curvature Tensor, Einstein, K-Contact Manifold.

Abstract

The paper deals with the study on Pseudo quasi-conformal curvature tensor in K-contact manifolds and it is shown that the manifold is Einstein.

References

  1. K. S. Amur and Y. B.  Maralabhavi, On quasi-conformally flat spaces,  Tensor, N.S., 31, (1977), 194-198.
  2. C. Baikoussis and T. Koufiorgos, On a type of contact manifolds,  J. of Geometry, 46, (1993),  1-9.
  3. D.E. Blair, “Contact manifolds in Riemannian geometry, Lecture Notes in Mathematics,”  Vol.509. Springer-Verlag, berlin-New-York, (1976).
  4. D.E. Blair, “Riemannian geometry of contact and symplectic manifolds,”  Progress in Mathematics, 203. Birkhauser Bosten, Inc., Boston, MA, 2002.
  5. Bhagwat Prasad, A pseudo projective curvature tensor on a Riemannian manifold,  Bull. Cal. Math. Soc., 94 (3), (2002),  163-166.
  6. D.E. Blair and J.A. Oubina, Conformal and related changes of metric on the product of two almost contact metric manifolds, Publ. Mat., 34  (1),  (1990), 199-207.
  7. U.C. De and A.A. Shaikh, K-contact and Sasakian manifolds with conservative quasi-conformal curvature tensor,   Bull.Cal. Math. Soc., 89,  (1997),   349-354.
  8. D.G. Prakasha, T.R. Shivamurthy and Kakasab Mirji, On the pseudo quasi conformal curvature tensor of P-Sasakian manifolds, Electronic Journal of Mathematical Analysis and Applications, 5 (2),  (2017),  147-155.
  9. Mukut Mani Tripathi and Mohit Kumar Dwivedi, The structure of some classes of K-contact manifolds,  Proc. Indian Acad.Sci. (Math. Sci.), 118 (3), (2008),  371-379.
  10. H.G. Nagaraja and G.Somashekhara, On Pseudo projective curvature tensor in Sasakian manifolds,  Int. J. Contemp. Math.Sciences, 6 (27),  (2011),  1319-1328.
  11. Satyabrota Kundu, On P-Sasakian manifolds,  Math. Reports,  15 (65),  (2013),  221-232.
  12. S. Sasaki, “Lecture note on almost contact manifolds, Part-I,” Tohoku University, (1965).
  13. A.A. Shaikh and Sanjib Kumar Jana, A Pseudo Quasi-Conformal curvature tensor on a Riemannian manifold,   South East Asian J. Math. & Math. Sc., 4(1), (2005), 15-20.
  14. K. Yano and S. Sawaki, Riemannian manifolds admitting a conformal transformation group, J. Diff. Geom., 2, (1968),  161-184.

Downloads

Published

2021-01-08

Issue

Section

Research Articles

How to Cite

[1]
S. N. Manjunath, K. J. Jayashree, P. Rashmi "A Study on K-Contact Manifolds with Pseudo Quasi-Conformal Curvature Tensor" International Journal of Scientific Research in Science and Technology(IJSRST), Online ISSN : 2395-602X, Print ISSN : 2395-6011,Volume 8, Issue 1, pp.352-355, January-February-2021.