Effect of various concentrated copper and plant extract concentrations on the antibacterial activity.

Authors

  • Alaa F. Hashim  Department of Physics, College of Education for Pure Sciences, Tikrit University, Salahuddin, Iraq
  • Khalid H. Razeg  Department of Physics, College of Education for Pure Sciences, Tikrit University, Salahuddin, Iraq
  • Fuad T. Ibrahim  Department of Physics, College of Science, University of Baghdad, Baghdad, Iraq

DOI:

https://doi.org//10.32628/IJSRST52310271

Keywords:

copper nanoparticles, green method, plant extract, reduction agents, inhibition zone.

Abstract

Copper nanoparticles (Cu NPs) were created using two methods, one with reducing and stabilizing agents and the other with green tea extract. The formation of Cu NPs has been described by spectra of UV-Vis absorption, which showed the surface plasmon resonance (SPR) at 620 and 630 nanometers, respectively. The position and shape of the surface plasmon resonance and plasmon absorption bands strongly depend on the reaction conditions. The crystalline morphology and size of the nanoparticles were determined by XRD, FESEM, and TEM studies. In both ways, the average particle size of Cu nanoparticles was found to be in the range of 28 nm and 142 nm for the chemical and green methods, respectively. The effectiveness of the materials prepared by both methods was high, and the antibacterial activity of the products prepared by both ways was against E. coli and S. aureus pathogens represented by inhibition zones ranging from 14–20 mm, 30–38 mm, and 11–18 mm, 20–24 mm, respectively.

References

  1. K.Parveen; V. Banse; L. Ledwani; "Green synthesis of nanoparticles: their advantages and disadvantages", AIP Conf. Proc. 1724 (2016), 020048.
  2. M. Shah; D. F.; S. Sharma, S. T.; G. Poinern, 'Green synthesis of metallic nanoparticles via biological entities', Materials 8 (11) (2015) 7278–7308.
  3. D.A. Jamdade; D. Rajpali ; K.A. Joshi, R. Kitture, A.S. K., V.S. Shinde; J. Bellare, K.R. Babiya; S. Ghosh, Gnidia glauca &Plumbago zeylanica – 'mediated synthesis of novel copper nanoparticles as promising antidiabetic agents', Adv. Pharmacol. Sci. (2019) ,1–11.
  4. N. Elisma ; A. Labanni; Emriadi, Y. Rilda, M. Asrofi; S. Arief, "Green synthesis of copper nanoparticles using Uncaria gambir roxb. leaf extract and its characterization", R. J. Chem. 12 (4) (2019) 1752–1756.
  5. Kobayashi; Y., Ishida, S., Ihara, K., Y., Y., Morita, T.;Yamada, S."Synthesis of metallic copper nanoparticles coated with polypyrrole". Coll. Polym. Sci. 287, 877–880 (2009)
  6. T.M.D., Le, T.T.T., Blanc, E.F., Dang, M.C.: "Synthesis and optical properties of copper nanoparticles prepared by a chemical reduction method". Adv. Nat. Sci. Nanosci. Nanotechnol.2, 15009–15012 (2011).
  7. Kar, A.; Thambi, V., Paital, D.; Joshi, G., Khatua, S. 'Synthesis of solution-stable end-to-end linked gold nanorod dimers via pHdependent surface reconfiguration'. Langmuir 2020, 36, 9894−9899.
  8. Sharma; P., Pant , S., Dave, V.; Tak, K., Sadhu, V.,Reddy, K.R. "Green synthesis and characterization of copper nanoparticles by Tinospora cardifolia to produce nature-friendly copper nano-coated fabric and their antimicrobial evaluation". Journal of Microbiological Methods 2019, 160, 107-116, https://doi.org/10.1016/j.mimet.2019.03.007.
  9. Z., M.M.; G., H.; Akbaribazm; M.; Ghanimatdan, M.; Abbasi, N., Goorani, S., Pirabbasi, E. Zangeneh, A. "Novel synthesis of Falcaria vulgaris leaf extract conjugated copper nanoparticles with potent cytotoxicity, antioxidant, antifungal, antibacterial, and cutaneous wound healing activities under in vitro and in vivo condition"., Journal of Photochemistry and Photobiology B: Biology ,2019, 197, https://doi.org/10.1016/j.jphotobiol.2019,111556.
  10. Ismail, M.; G., S.; Khan, M.I.; K., M.A.; Asiri, A.M.; K., S.B. "Green synthesis of zerovalent copper nanoparticles for efficient reduction of toxic azo dyes congo red and methyl orange. Green Processing and Synthesis", 2019, 8, 135-143. https://doi.org/10.1515/gps-2018-0038.
  11. Sharma, P., Pant, S.,Dave, V.; Tak, K., Sadhu, V.; Reddy, K.R. "Green synthesis and characterization of copper nanoparticles by Tinospora cardifolia to produce nature-friendly copper nano-coated fabric and their antimicrobial evaluation". Journal of Microbiological Methods 2019, 160, 107-116, https://doi.org/10.1016/j.mimet.2019.03.007.
  12. Al Banna, L.S., Salem, N.M., Jaleel, G.A., Awwad, A.M., 2020. "Green synthesis of sulfur nanoparticles using Rosmarinus officinalis leaves extract and nematicidal activity against Meloidogyne javanica". Chemistry International 6, 137- 143.
  13. Dang, T.M.D., Le, T.T.T., Blanc, E.F., Dang, M.C., "Synthesis and optical properties of copper nanoparticles prepared by a chemical reduction method". Adv. Nat. Sci. Nanosci. Nanotechnol.2, 15009–15012 (2011).
  14. M. W. Amer and Akl M. A.," Green synthesis of copper nanoparticles by Citrus limon fruits extract, characterization and antibacterial activity ",Chemistry International .7(1) (2021) 1-8.
  15. B. D.Harishchandra, et al, 'Copper Nanoparticles: a review on synthesis, characterization and applications', Asian Pac. J Cancer Biol, 2020.5 (4), 201-210. DOI:10.31557/APJCB.2020.5.4.201
  16. Li Q, Mahendra S, Lyon DY, Brunet L, Liga M, et al. (2008) Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications. Water Research 42: 4591-4602.
  17. Longano D, Ditaranto N, Sabbatini L, Torsi L, Cioffi N, etal. (2012) Nano- Antimicro Progress and Prospects 3: 85-117.
  18. R. Hassanien; D.Z. Husein; M.F. Al-Hakkani, "Biosynthesis of copper nanoparticles using aqueous Tilia extract: antimicrobial and anticancer activities", Heliyon 4 (12) (2018), e01077.
  19. Jahan, I.; Isildak, I. "Microwave Irradiation System For A Rapid Synthesis Of Non-Toxic Metallic Copper Nanoparticles From Green Tea". Trakya University J. N.l S. 2020, 21, 79-86, https://doi.org/10.23902/trkjnat.731692 .
  20. F. Duman, I. Ocsoy, F.O. Kup, "Chamomile flower extract-directed CuO nanoparticle formation for its antioxidant and DNA cleavage properties, Mater". Sci. Eng. C60,(2016) ,333–338.
  21. Jahan, I.; Erci, F.; Isildak, I. Facile microwave-mediated green synthesis of non-toxic copper nanoparticles using Citrus sinensis aqueous fruit extract and their antibacterial potentials. Journal of Drug Delivery Science and Technology 2021, 61, https://doi.org/10.1016/j.jddst.2020.102172.
  22. Marlene C. Morris, Howard F. McMurdie, Eloise H. Evans, Boris Paretzkin, Harry S. Parker, Winnie Wong-Ng, and Donna M. Gladhill , Standard X-ray Diffraction Powder Patterns, International Centre for Diffraction Data,1985.
  23. S. Shende, A.P. Ingle, A. Gade, M. Rai, Green synthesis of copper nanoparticles by Citrus medica Linn. (Idilimbu) juice and its antimicrobial activity,World J. Microbiol. Biotechnol. 31 (2015) 865e873.
  24. S. Shiravand, F. Azarbani, Phytosynthesis, characterization, antibacterial and cytotoxic effects of copper nanoparticles, Green Chem. Lett. Rev. 10 (2017) 241e249.
  25. T.-t. Zhang, L.-l. Wang, Z.-x. He, D. Zhang, Growth inhibition and biochemical changes of cyanobacteria induced by emergent macrophyte Thalia dealbata roots, Biochem. Syst. Ecol. 39 (2011) 88e94.

Downloads

Published

2023-04-30

Issue

Section

Research Articles

How to Cite

[1]
Alaa F. Hashim, Khalid H. Razeg, Fuad T. Ibrahim, " Effect of various concentrated copper and plant extract concentrations on the antibacterial activity., International Journal of Scientific Research in Science and Technology(IJSRST), Online ISSN : 2395-602X, Print ISSN : 2395-6011, Volume 10, Issue 2, pp.543-551, March-April-2023. Available at doi : https://doi.org/10.32628/IJSRST52310271