Pathophysiology of Neurodegeneration in Retinal Diseases as Glaucoma and Diabetic Retinopathy and Potential Mechanisms of Retinal Neuroprotection
DOI:
https://doi.org/10.32628/IJSRST523103125Keywords:
Glaucoma, diabetic retinopathy, macular degeneration, retinitis pigmentosa and neuro degeneration.Abstract
Retinal cell neurodegeneration relates to glaucoma, diabetic retinopathy, age-related macular degeneration, and retinitis pigmentosa. Early stages of such disease are preceded by retinal neurodegeneration or angiogenesis in retinal vessels. It is a well established fact that total or partial vision loss is caused by abnormal retinal degeneration of the photo receptors or the inner retinal neurons, as well as unusual growth of cells forming extra retinal venules and arterioles. However the reasons and mechanisms behind the abnormal retinal cell deaths or unusual cell growths remains unknown and is considered an area of active research. This paper reviews contemporary research on retinal disease citing reasons for a typical retinal vessel cell growth, unusual death of retinal cells, and ways to repair the retinal damaged cells under various degrees of impairment. Knowledge about the mechanism behind the sudden change in cell pattern behavior will help to track and better understand the reasons behind early start and rate of progression for such retinal diseases, and how to harness an quick control over disease progression, with help to prognosis and complete recovery. Neurodegeneration of RGC (retinal ganglion cell) is due to Glutamate excitoxicity and a few other factors. Neovascularization occurs from increased VEGF presence in vitreous of eye. Precise cellular repair is done on retina using derived information.
References
- Bussel II, Wolstein G, Schuman JS, 'OCT for glaucoma diagnosis, screening and detection of glaucoma progression,' Journal of Opthalmology, 2014;98(Suppl-II):ii15-ii19. doi: 10.1136/bjophthalmol-2013-304326
- Shah, N et al. 'Combining Structural and Functional Testing for Detection of Glaucoma.' Opthalmolgy, 113(9), 1593-1602. doi:10.1016/J.OPHTHA.2006.06.004
- Mukherjee, Rishav, Shamik Kundu, Kaushik Dutta, Anindya Sen, and Somnath Majumdar. 'Predictive diagnosis of glaucoma based on analysis of focal notching along the neuro-retinal rim using machine learning.' Pattern Recognition and Image Analysis 29, no. 3 (2019): 523-532.
- Dutta, Kaushik, Rishav Mukherjee, Shamik Kundu, Tanmay Biswas, and Anindya Sen. 'Automatic evaluation and predictive analysis of optic nerve head for the detection of glaucoma.' In 2018 2nd International Conference on Electronics, Materials Engineering & Nano-Technology (IEMENTech), pp. 1-7. IEEE, 2018.
- Gardner, G. Gail, David Keating, Tom H. Williamson, and Alex T. Elliott. 'Automatic detection of diabetic retinopathy using an artificial neural network: a screening tool.' British journal of Ophthalmology 80, no. 11 (1996): 940-944.
- Mateen, Muhammad, Junhao Wen, Mehdi Hassan, Nasrullah Nasrullah, Song Sun, and Shaukat Hayat. 'Automatic detection of diabetic retinopathy: a review on datasets, methods and evaluation metrics.' IEEE Access 8 (2020): 48784-48811.
- Sopharak, Akara, Bunyarit Uyyanonvara, Sarah Barman, and Thomas H. Williamson. 'Automatic detection of diabetic retinopathy exudates from non-dilated retinal images using mathematical morphology methods.' Computerized medical imaging and graphics 32, no. 8 (2008): 720-727.
- Basu, Soham, Sayantan Mukherjee, Ankit Bhattacharya, and Anindya Sen. 'Segmentation of Blood Vessels, Optic Disc Localization, Detection of Exudates, and Diabetic Retinopathy Diagnosis from Digital Fundus Images.' In Proceedings of Research and Applications in Artificial Intelligence, pp. 173-184. Springer, Singapore, 2021.
- Aich, Geetanjali, Pramita Banerjee, Shreeparna Debnath, and Anindya Sen. 'Optical Disc Segmentation from Color Fundus Image using Contrast Limited Adaptive Histogram Equalization and Morphological Operations.' In 2021 International Conference on Smart Generation Computing, Communication and Networking (SMART GENCON), pp. 1-6. IEEE, 2021.
- Casey PJ, Gilman AG (February 1988). 'G protein involvement in receptor-effector coupling'. The Journal of Biological Chemistry. 263 (6): 2577–2580. doi:10.1016/s0021-9258(18)69103-3. PMID 2830256. S2CID .
- Attwood TK, Findlay JB (February 1994). 'Fingerprinting G-protein-coupled receptors'. Protein Engineering. 7 (2): 195–203. doi:10.1093/protein/7.2.195. PMID 8170923.
- Travis J Good & Malik Y Kahook†.The role of endothelin in the pathophysiology of glaucoma, Expert Opin. Ther. Targets (2010) 14(6):647-654.
- Heijl A (2013) The times they are a-changin’: time to change glaucoma management. Acta Ophthalmol 91:92–99.
- Hoyt WF, Newman NM. The earliest observable defect in glaucoma? Lancet. 1972;1:692.
- Hoyt WF, Frisen L, Newman NM. Fundoscopy of nerve fiber layer defects in glaucoma. Invest Ophthalmol. 1973;12:814–829.
- Sommer A, Katz J, Quigley HA, et al. Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss. Arch Ophthalmol. 1991;109:77–83.
- Quigley HA, Addicks EM. Quantitative studies of retinal nerve fiber layer defects. Arch Ophthalmol. 1982;100:807–814.
- Quigley HA. Examination of the retinal nerve fiber layer in the recognition of early glaucoma damage. Trans Am Ophthalmol Soc. 1986;84:920–966.
- Fortune B, Wang L, Cull G, Cioffi GA. Intravitreal colchicine causes decreased RNFL birefringence without altering RNFL thickness. Invest Ophthalmol Vis Sci. 2007;48:in press.
- Fortune B, Yang H, Strouthidis NG, et al. The effect of acute intraocular pressure elevation on peripapillary retinal thickness, retinal nerve fiber layer thickness, and retardance. Invest Ophthalmol Vis Sci. 2009;50:4719–4726
- Weinreb RN, Bowd C, Zangwill LM. Scanning laser polarimetry in monkey eyes using variable corneal polarization compensation. J Glaucoma. 2002;11:378–384
- Choplin NT, Zhou Q, Knighton RW. Effect of individualized compensation for anterior segment birefringence on retinal nerve fiber layer assessments as determined by scanning laser polarimetry. Ophthalmology. 2003;110:719–725.
- GDxVCC Instrument Manual. RNFL Analysis with GDxVCC: A Primer and Clinical Guide. San Diego, CA: Laser Diagnostic Technologies, Inc; 2004.
- Fortune B, Wang L, Bui BV, Cull G, Dong J, Cioffi GA. Local ganglion cell contributions to the macaque electroretinogram revealed by experimental nerve fiber layer bundle defect. Invest Ophthalmol Vis Sci. 2003;44:4567–4579.
- Gaasterland D, Kupfer C. Experimental glaucoma in the rhesus monkey. Invest Ophthalmol. 1974;13:455–457.
- Quigley HA, Hohman RM. Laser energy levels for trabecular meshwork damage in the primate eye. Invest Ophthalmol Vis Sci. 1983;24:1305–1307.
- Chauhan BC, Blanchard JW, Hamilton DC, LeBlanc RP. Technique for detecting serial topographic changes in the optic disc and peripapillary retina using scanning laser tomography. Invest Ophthalmol Vis Sci. 2000;41:775–782.
- Chauhan BC, McCormick TA, Nicolela MT, LeBlanc RP. Optic disc and visual field changes in a prospective longitudinal study of patients with glaucoma: comparison of scanning laser tomography with conventional perimetry and optic disc photography. Arch Ophthalmol. 2001;119:1492–1499.
- Rangaswamy NV, Zhou W, Harwerth RS, Frishman LJ. Effect of experimental glaucoma in primates on oscillatory potentials of the slow-sequence mfERG. Invest Ophthalmol Vis Sci. 2006; 47:753–767.
- Ventura LM, Porciatti V. Restoration of retinal ganglion cell function in early glaucoma after intraocular pressure reduction: a pilot study. Ophthalmology. 2005;112:20–27.
- Chauhan BC, LeVatte TL, Jollimore CA, et al. Model of endothelin-1-induced chronic optic neuropathy in rat. Invest Ophthalmol Vis Sci 2004;45:144-52.
- Stokely ME, Brady ST, Yorio T. Effects of endothelin-1 on components of anterograde axonal transport in optic nerve. Invest Ophthalmol Vis Sci 2002;43:3223-30.
- Calkins DJ (2012) Critical pathogenic events underlying progression of neurodegeneration in glaucoma. Prog Retin Eye Res 31:702–719
- Algire GH, Chalkley HW, Legallais FY et al. Vascular reactions of normal and malignant tissues in vivo. I. Vascular reactions of mice to wounds and to normal and neoplastic transplants. J Natl Cancer Inst 1945;6:73-85.
- Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med 2003;9:669-676.
- Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med 1971;285:1182-1186.
- Goldman D., Müller glial cell reprogramming and retina regeneration, Nature Reviews Neuroscience, 15, 431-442, (2014).
- Abedin Zadeh M, Khoder M, Al-Kinani AA, Younes HM, Alany RG, Retinal cell regeneration using tissue engineered polymeric scaffolds, Drug Discovery Today (2019), https://doi.org/10.1016/j.drudis.2019.04.009
- Zi-Bing Jin, Mei-Ling Gao, Wen-Li Deng, Kun-Chao Wu, Sunao Sugit, Michiko Mandai, Masayo Takahashi, Stemming retinal regeneration with pluripotent stem cells, Progress in Retinal and Eye Research, 69 (2019) 38 - 56
- Tshering Sherpa, Shane M. Fimbel, Dianne E. Mallory, Hans Maaswinkel, Scott D. Spritzer, Jordan A. Sand, L. Li, David R. Hyde, and Deborah L. Stenkamp, Ganglion Cell Regeneration Following Whole-Retina Destruction in Zebrafish, Dev Neurobiol. 2008 February 1; 68(2): 166–181. doi:10.1002/dneu.20568
- Purves D, Augustine GJ, Fitzpatrick D, et al., editors. Neuroscience. 2nd edition. Sunderland (MA): Sinauer Associates; 2001. The Retina.Available from: https://www.ncbi.nlm.nih.gov/books/NBK10885/
- https://en.wikipedia.org/wiki/Rod_cell
- https://en.wikipedia.org/wiki/Cone_cell
- Morris AC, Scholz TL, Brockerhoff SE, Fadool JM. Genetic dissection reveals two separate pathways for rod and cone regeneration in the teleost retina. Dev Neurobiol. 2008 Apr;68(5):605-19. doi: 10.1002/dneu.20610. PMID: 18265406; PMCID: PMC2801137.
- Gamm, D. M. and Albert, . Daniel M.. 'optic neuritis.' Encyclopedia Britannica, April 5, 2018. https://www.britannica.com/science/optic-neuritis.
- Gamm, David M. and Albert, Daniel M.. 'optic atrophy'. Encyclopedia Britannica, 7 Jul. 2022, https://www.britannica.com/science/optic-atrophy. Accessed 24 February 2023.
- Gülgün Tezel, Multifactorial Pathogenic Processes of Retinal Ganglion Cell Degeneration in Glaucoma towards Multi-Target Strategies for Broader Treatment Effects, Cells 2021, 10(6), 1372; https://doi.org/10.3390/cells10061372, Received: 19 April 2021 / Revised: 14 May 2021 / Accepted: 29 May 2021 / Published: 2 June 2021
Downloads
Published
Issue
Section
License
Copyright (c) IJSRST

This work is licensed under a Creative Commons Attribution 4.0 International License.