Inequalities Related to Some Trigonometric and Hyperbolic Functions
DOI:
https://doi.org/10.32628/IJSRST523103211Keywords:
Bernoulli's numbers; Inequalities of Trigonometric functionsAbstract
In current paper we are elaborated few Trigonometric and Hyperbolic inequalities using well known Bernoulli’s Number and Polynomial of trigonometric and hyperbolic functions.
References
- Abramowitz, Milton, and Irene A. Stegun, eds. Handbook of mathematical functions with formulas, graphs, and mathematical tables. Vol. 55. US Government printing office, 1964.
- Group of Compilation. ”Handbook of Mathematics”,Peoples’ Education Press, Beijing, China, (1979).
- Heikkala, V., Vamanamurthy, M. K., and Vuorinen, M. (2009). Generalized elliptic integrals. Computational Methods and Function Theory, 9(1), 75-109.
- Zhu, L. (2020). New bounds for the ratio of two adjacent even-indexed Bernoulli numbers. Revista de la Real Academia de Ciencias Exactas, F´ısicas y Naturales. Serie A. Matem´aticas, 114(2), 1-13.
- Yang, Z. H., and Tian, J. F. (2020). Sharp bounds for the ratio of two zeta functions. Journal of Computational and Applied Mathematics, 364, 112359
- Qi, F. (2019). A double inequality for the ratio of two non-zero neighbouring Bernoulli numbers. Journal of Computational and Applied Mathematics, 351, 1-5
- Li, J. L. (2006). An identity related to Jordan’s inequality. International Journal of Mathematics and Mathematical Sciences, 2006.
- Kuang, Ji-Chang. ”Applied Inequalities (Changyong Budengshi).” (1993): 584
- Yang, Z. H., Chu, Y. M., and Wang, M. K. (2015). Monotonicity criterion for the quotient of power series with applications. Journal of Mathematical Analysis and Applications, 428(1), 587-604
- Jeffrey, A., and Dai, H. H. (2008). Handbook of mathematical formulas and integrals. Elsevier.
- Anderson, G., Vamanamurthy, M., and Vuorinen, M. (2006). Monotonicity rules in calculus. The American Mathematical Monthly, 113(9), 805-816.
- Alzer, H., and Qiu, S. L. (2003). Inequalities for means in two variables. Archiv der Mathematik, 80(2), 201-215.
- Ponnusamy, S., and Vuorinen, M. (1997). Asymptotic expansions and inequalities for hypergeometric function. Mathematika, 44(2), 278-301.
- Chen, C. P., and Cheung, W. S. (2011). Sharp Cusa and Becker-Stark inequalities. Journal of Inequalities and Applications, 2011(1), 1-6.
- Mortici, C. (2011). The natural approach of Wilker-Cusa-Huygens inequalities. Math. Inequal. Appl, 14(3), 535-541
- Neuman, E., and Sandor, J. (2010). On some inequalities involving trigonometric and hyperbolic functions with emphasis on the Cusa-Huygens, Wilker, and Huygens inequalities. Math. Inequal. Appl, 13(4), 715-723
- S´andor, J. (2013). Sharp Cusa-Huygens and related inequalities. Notes on number theory and discrete mathematics, 19(1), 50-54.
Downloads
Published
2023-07-30
Issue
Section
Research Articles
License
Copyright (c) IJSRST

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
[1]
Amrut Nirwal, Rupali Shinde "Inequalities Related to Some Trigonometric and Hyperbolic Functions" International Journal of Scientific Research in Science and Technology(IJSRST), Online ISSN : 2395-602X, Print ISSN : 2395-6011,Volume 10, Issue 4, pp.60-66, July-August-2023. Available at doi : https://doi.org/10.32628/IJSRST523103211