An Ab-initio Study of the Electronic and Optical Properties of 3d Transition Metals doped Germanene

Authors

  • Khan Ahmad Anas  Department of Physics, Shibli National College, Azamgarh, U.P, India
  • S. Tahir Husen  Prof. Rajendra Singh (Rajju Bhaiya) Institute of Physical Sciences for Study and Research, VBSPU Jaunpur, U.P, India
  • Sachin Rai  Department of Mathematics, Shibli National College, Azamgarh, U.P, India
  • Mohammad Imran Aziz  
  • Nafis Ahmad  

Keywords:

Germanene, Transition metal doped Germanene, Density Functional Theory

Abstract

Density Functional Theory (DFT) computations have been used to look into the electrical and optical characteristics of 3D Germanene sheets doped with transition metals (TM). Recent years have seen a major increase in interest in germanene, a two-dimensional allotrope of germanium, due to its potential use in electrical and optoelectronic devices. The effect of doping Germanene with several 3d TMs, such as titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), and copper (Cu), on its structural, electrical, and optical properties is examined in this paper. In order to comprehend the structural stability and geometry of the systems, we first tune the lattice parameters and atomic locations of the doped Germanene sheets. To further evaluate the alteration of electronic characteristics brought on by TM doping, we compute the electronic band structures, density of states, and charge density distributions. Our findings point to major changes in the electronic band structures that have resulted in the creation of novel electronic states within the band gap and point to possible semiconductor device applications. In addition, we investigate the complicated dielectric function, refractive index, and absorption spectra of TM-doped Germanene. When compared to pure Germanene, the optical properties show significant changes. This suggests that the material's optical response can be tuned, which is important for optoelectronic devices like photodetectors and modulators.

References

  1. Hauser A W and Schwerdtfeger P 2012 Methane-selective nanoporous graphene membranes for gas purification Phys. Chem. Chem. Phys. 14 13292–8
  2. Ponomarenko L A, Schedin F, Katsnelson M I, Yang R, Hill E W, Novoselov K S and Geim A K 2008 Chaotic dirac billiard in graphene quantum dots Science 320 356–8
  3. Zhou Q, Coh S, Cohen M L, Louie S G and Zettl A 2013 Imprint of transition metal d orbitals on a graphene Dirac cone Physical Review B 88 235431
  4. Nieszporek K and Drach M 2015 Alkane separation using nanoporous graphene membranes Phys. Chem. Chem. Phys. 17 1018–24
  5. Houssa M, Dimoulas A and Molle A 2015 Silicene: a review of recent experimental and theoretical investigationsJ. Phys. Condens. Matter 27 253002
  6. Pi X, Ni Z, Liu Y, Ruan Z, Xu M and Yang D 2015 Density functional theory study on boron-and phosphorus-doped hydrogenpassivated silicene Phys. Chem. Chem. Phys. 17 4146–51
  7. Zhao T, Zhang S, Wang Q, Kawazoe Y and Jena P 2014 Tuning electronic and magnetic properties of silicene with magnetic superhalogens Phys. Chem. Chem. Phys. 16 22979–86
  8. Osborn T H, Farajian A A, Pupysheva O V, Aga R S and Voon L C L Y 2011 Ab initio simulations of silicene hydrogenation Chem. Phys. Lett. 511 101–5
  9. Le Lay G 2015 2D materials: silicene transistors Nat. Nanotechnol. 10 202
  10. Pamungkas M A, Setyowati D A and Abdurrouf 2018 AIP Conference Proceedings 2021 Optical Properties of Ga-doped Silicene and as-doped Silicene: First Principle Calculations pp 050014
  11. M. Zeng, Y. Xiao, J. Liu, K. Yang, L. Fu, Exploring Two-Dimensional Materials toward the Next-Generation Circuits: From Monomer Design to Assembly Control, Chem Rev. 118 (2018) 6236–6296. https://doi.org/10.1021/acs.chemrev.7b00633.
  12. R. Mas-Ballesté, C. Gómez-Navarro, J. Gómez-Herrero, F. Zamora, 2D materials: To graphene and beyond, Nanoscale. 3 (2011) 20–30. https://doi.org/10.1039/c0nr00323a.
  13. B. Rahman Rano, I.M. Syed, S.H. Naqib, Elastic, electronic, bonding, and optical properties of WTe2 Weyl semimetal: A comparative investigation with MoTe2 from first principles, Results Phys. 19 (2020). https://doi.org/10.1016/j.rinp.2020.103639.
  14. C. Liu, H. Zhang, Z. Sun, K. Ding, J. Mao, Z. Shao, J. Jie, Topological insulator Bi2Se3 nanowire/Si heterostructure photodetectors with ultrahigh responsivity and broadband response, J Mater Chem C Mater. 4 (2016) 5648–5655. https://doi.org/10.1039/c6tc01083k.
  15. X. Li, J. Yang, First principles design of spintronics materia National Sciences Review, 2016, 3 (3), DOI:10.1093/nsr/nww026.
  16. A. Shuaibu, O.J. Adeyemi, U.R. Ushiekpan, O.G. Olowomofe, J. Akinade, O.A. Kafayat, First Principle Study of Structural, Elastic and Electronic Properties of Hexagonal Boron Nitride (hex-BN) Single Layer, American Journal of Condensed Matter Physics. 2019 (2019) 1–5. https://doi.org/10.5923/j.ajcmp.20190901.01.
  17. A. Lawal, A. Shaari, R. Ahmed, N. Jarkoni, First-principles investigations of electron-hole inclusion effects on optoelectronic properties of Bi2Te3, a topological insulator for broadband photodetector, Physica B Condens Matter. 520 (2017) 69–75. https://doi.org/10.1016/j.physb.2017.05.048.
  18. M.I. Naher, M. Mahamudujjaman, A. Tasnim, R.S. Islam, S.H. Naqib, Ab-initio insights into the elastic, bonding, phonon, optoelectronic and thermophysical properties of SnTaS2.
  19. Naher, M.I., Naqib, S.H. An ab-initio study on structural, elastic, electronic, bonding, thermal, and optical properties of topological Weyl semimetal TaX (X = P, As). Sci Rep 11, 5592 (2021). https://doi.org/10.1038/s41598-021-85074-z.
  20. M.M. Furchi, A. Pospischil, F. Libisch, J. Burgdörfer, T. Mueller, Photovoltaic effect in an electrically tunable Van der Waals heterojunction, Nano Lett. 14 (2014) 4785–4791. https://doi.org/10.1021/nl501962c.
  21. L. Kou, Y. Ma, Z. Sun, T. Heine, C. Chen, Two-Dimensional Topological Insulators: Progress and Prospects, Journal of Physical Chemistry Letters. 8 (2017) 1905–1919. https://doi.org/10.1021/acs.jpclett.7b00222.
  22. Y. Deng, Z. Luo, N.J. Conrad, H. Liu, Y. Gong, S. Najmaei, P.M. Ajayan, J. Lou, X. Xu, P.D. Ye, Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode, ACS Nano. 8 (2014) 8292–8299. https://doi.org/10.1021/nn5027388.
  23. M.Y. Li, C.H. Chen, Y. Shi, L.J. Li, Heterostructures based on two-dimensional layered materials and their potential applications, Materials Today. 19 (2016) 322–335. https://doi.org/10.1016/j.mattod.2015.11.003.
  24. X. Wei, F.G. Yan, C. Shen, Q.S. Lv, K.Y. Wang, Photodetectors based on junctions of two-dimensional transition metal dichalcogenides, Chinese Physics B. 26 (2017). https://doi.org/10.1088/1674-1056/26/3/038504.
  25. S. Jiang, K. Krymowski, T. Asel, M.Q. Arguilla, N.D. Cultrara, E. Yanchenko, X. Yang, L.J. Brillson, W. Windl, J.E. Goldberger, Tailoring the Electronic Structure of Covalently Functionalized Germanane via the Interplay of Ligand Strain and Electronegativity, Chemistry of Materials. 28, (2016), 8071–8077. https://doi.org/10.1021/acs.chemmater.6b04309.
  26. Y. Wang, Y. Ding, Strain-induced self-doping in silicene and germanene from first-principles, Solid State Commun. 155 (2013) 6–11. https://doi.org/10.1016/j.ssc.2012.10.044.
  27. Chiappe D, Scalise E, Cinquanta E, Grazianetti C, van den Broek B, Fanciulli M, Houssa M and Molle A 2014 Two-dimensional Si nanosheets with local hexagonal structure on a MoS2 surface Adv. Mater. 26 2096–101
  28. Liu H, Gao J and Zhao J 2013 Silicene on substrates: a way to preserve or tune its electronic properties The Journal of Physical Chemistry C 117 10353–9
  29. Houssa M, Pourtois G, Afanas’ ev V V and Stesmans A 2010 Can silicon behave like graphene? A first-principles study Appl. Phys. Lett. 97 112106.
  30. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari and R. M. Wentzcovitch, QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials, Journal of Physics Condensed Matter, , DOI:10.1088/0953-8984/21/39/395502.
  31. J. P. Perdew, K. Burke and M. Ernzerhof, ERRATA Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)], 1997.
  32. A. Dal Corso, Pseudopotentials periodic table: From H to Pu, Comput Mater Sci, 2014, 95, 337–350. 31] H. Li, Y. Yu, X. Xue, J. Xie, H. Si, J.Y. Lee, A. Fu, Electroic and optical properties of germanene/MoS2 heterobilayers: first principles study, J Mol Model. 24 (2018). https://doi.org/10.1007/s00894-018-3855-9.
  33. X. Chen, Q. Yang, R. Meng, J. Jiang, Q. Liang, C. Tan, X. Sun, The electronic and optical properties of novel germanene and antimonene heterostructure, 23, (2016), DOI: https://doi.org/10.1039/C6TC01141A.
  34. C. Tan, Q. Yang, R. Meng, Q. Liang, J. Jiang, X. Sun, H. Ye, X.P. Chen, An AlAs/germanene heterostructure with tunable electronic and optical properties: Via external electric field and strain, J Mater Chem C Mater. 4 (2016) 8171–8178. https://doi.org/10.1039/c6tc02951e.
  35. V. Khuong Dien, W.B. Li, K.I. Lin, N. Thi Han, M.F. Lin, Electronic and optical properties of graphene, silicene, germanene, and their semi-hydrogenated systems, RSC Adv. 12 (2022) 34851–34865. https://doi.org/10.1039/d2ra06722f.
  36. Q. Pang, H. Xin, D. li Gao, J. Zhao, R. peng Chai, Y. ling Song, Strain effect on the electronic and optical properties of Germanene/MoS2 heterobilayer, Mater Today Commun. 26 (2021). https://doi.org/10.1016/j.mtcomm.2020.101845.
  37. X. Chen, X. Sun, J. Jiang, Q. Liang, Q. Yang, R. Meng, Electrical and Optical Properties of Germanene on Single-Layer BeO Substrate, Journal of Physical Chemistry C. 120 (2016) 20350–20356. https://doi.org/10.1021/acs.jpcc.6b06161.
  38. X. Chen, Q. Yang, R. Meng, J. Jiang, Q. Liang, C. Tan, X. Sun, The electronic and optical properties of novel germanene and antimonene heterostructure, n.d. www.rsc.org/materialsC.
  39. S. Chowdhury, A. Bandyopadhyay, N. Dhar, D. Jana, Erratum: Optical and magnetic properties of free-standing silicene, germanene and T-graphene system, Physical Sciences Reviews. 3 (2018). https://doi.org/10.1515/psr-2016-9102.
  40. A. Karaei Shiraz, A. Yazdanpanah Goharrizi, S.M. Hamidi, The electronic and optical properties of armchair germanene nanoribbons, Physica E Low Dimens Syst Nanostruct. 107 (2019) 150–153. https://doi.org/10.1016/j.physe.2018.11.019.
  41. R. Merlin, Theoretical Investigation of Structural, Electronic, and Mechanical Properties of Two-Dimensional C, Si, Ge, Sn, Crystal Structure Theory and Applications. 5 (2016) 43–55. https://doi.org/10.4236/csta.2016.53004.
  42. N. Dhar, A. Bandyopadhyay, D. Jana, Tuning electronic, magnetic and optical properties of germanene nanosheet with site dependent adatoms arsenic and gallium: A first principles study, Current Applied Physics. 17 (2017) 573–583. https://doi.org/10.1016/j.cap.2017.02.003.
  43. M.L. Ould NE, A.G. El hachimi, M. Boujnah, A. Benyoussef, A. El Kenz, Comparative study of electronic and optical properties of graphene and germanene: DFT study, Optik (Stuttg). 158 (2018) 693–698. https://doi.org/10.1016/j.ijleo.2017.12.089.
  44. N. Dhar, D. Jana, A DFT perspective analysis of optical properties of defected germanene mono-layer, Physical Sciences Reviews. 3 (2019). https://doi.org/10.1515/psr-2017-0164.
  45. M.R.H. Mojumder, M.S. Islam, J. Park, Germanene/2D-AlP van der Waals heterostructure: Tunable structural and electronic properties, AIP Adv. 11 (2021). https://doi.org/10.1063/5.0023448.
  46. J.F.R.V. Silveira, R. Besse, J.L.F. Da Silva, Stacking Order Effects on the Electronic and Optical Properties of Graphene/Transition Metal Dichalcogenide Van der Waals Heterostructures, ACS Appl Electron Mater. 3 (2021) 1671–1680. https://doi.org/10.1021/acsaelm.1c00009.
  47. V. Kumar, A. Sinha, The Structural, Electronic and Optical Properties of Hydroouorinated Germanene (Ge H1-x Fx): A First-Principles Study, J Mol Model. (2021). https://doi.org/10.21203/rs.3.rs-198590/v1.

Downloads

Published

2023-10-30

Issue

Section

Research Articles

How to Cite

[1]
Khan Ahmad Anas, S. Tahir Husen, Sachin Rai, Mohammad Imran Aziz, Nafis Ahmad "An Ab-initio Study of the Electronic and Optical Properties of 3d Transition Metals doped Germanene" International Journal of Scientific Research in Science and Technology(IJSRST), Online ISSN : 2395-602X, Print ISSN : 2395-6011,Volume 10, Issue 5, pp.205-213, September-October-2023.