Hydroxyl Radical Mediated an Improved Photocatalytic Baeyer–Villiger Oxidation to Synthesize L-Dopa Derivative from L-Tyrosine

Authors

  • Ayan Bandyopadhyay  Department of Chemistry, Government General Degree College, Chapra, Vill-Shikra, P.O.-Padmamala, District-Nadia, India

DOI:

https://doi.org/10.32628/IJSRST52411262

Keywords:

Photocatalysis, Baeyer–Villiger oxidation, L-dopa, Parkinson’s disease, Anticancer.

Abstract

The arena of visible light-mediated photochemistry has experienced significant progress, leading to the development of a wide array of methodologies in synthetic organic chemistry. In particular, photocatalysis by using long-wavelength light, such as red/green or blue, has attracted significant attention. In this regard, the Baeyer–Villiger (B–V) oxidation of ketones to the corresponding lactones/esters is one of the definitive and crucial reactions in the chemical industry. However, this oxidation process has not yet been studied in ambient conditions with the aid of hydroxyl radicals using purely organic photocatalysts, especially on the synthesis of amino acids like L-dope. For a long time, L-dopa and its derivatives were synthesized and investigated for their enormous pharmacological activities and their capabilities to be converted into other natural and unnatural products, which have a great biological interest. Herein, transition metal-free organic dyes have been utilized as photocatalysts for the assistance of B-V-rearrangement, which has been developed in the final step to produce a much improved yield of L-dopa derivative with minimal byproducts, under mild conditions and without any racemization of the chiral center.

References

  1. Funk. C. J. Chem. Soc.1911, 99, 55.
  2. Raper S. H. Biochem. J.1926, 20, 735.
  3. Kofman, O. The Canadian Medical Association Journal Le Journal de1971,104, 483-487.
  4.  a) Porter, C.C. Biochem. Pharmacol.1962, 11, 1067.b) Sletzinger, M., Chemerda, M. J., Bolinger, W. F. J. Med. Chem.1963, 6, 101.
  5. Cotizias, C.G., Papavasilion, S.P., Gellene, R. New. Engl. J. Med. 1969, 280, 337.
  6. a) Denora, N., Laquintana, V., Lopedota, A., Serra, M., Dazzi, L, Biggio, G., Pal, D., Mitra, K. A., Latrofa, A., Trapani, G., Liso, G. Pharm. Res.2007, 7, 1309-24. b) Zhou, T., Hider, C. R., Jenner, P., Campbell, B., Hobbs, J. C., Rose, S.; Jairaj, M., Tayarani-Binazir, A. K., Syme, A. Biorg. Med. Chem. Lett. 2013, 19, 5279-82.
  7. a) Sano, S.; Ikai, K.; Yoshikawa, Y., Nakamura, T., Obayashi, A. J. Antibiot. 1987, 40, 512.
  8. b) Yauzawa, T.; Shirahata, K.; Sano, H. J. Antibiot. 1987, 40, 455-458.
  9. c) Boger, D. L.; Yohannes, D. J. Org. Chem.1990, 55, 6000-6017.
  10. d) Chattopadhyay, K. S.; Bandyopadhyay A; Pal, B. K. Tetrahedron Lett.2007, 48, 3655-3659.
  11. 8. Ciamician, G. Science,1912, 36, 385–394.
  12. 9. Nicewicz, D. A.; MacMillan, D. W. C. Science, 2008, 322, 77–80.
  13. 10. a) Jeffrey, J. L.; Petronijević, F. R.; MacMillan, D. W. C. J. Am. Chem. Soc.,2015, 137, 8404–8407. b) Noble, A.; Macmillan, D. W. C. J. Am. Chem. Soc.,2014,136, 11602–11605. c) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev.,2013, 113, 5322–5363. c) Du, J.; Yoon, T. P. J. Am. Chem. Soc.,2009, 131, 14604–14605. d) Narayanam, J. M.; Tucker, J. W.; Stephenson, C. R. J. J. Am. Chem. Soc.,2009, 131, 8756–8787.
  14. 11. a) Nicewicz, D. A.; Nguyen, T. M. ACS Catal.,2014, 4, 355–360. b) Ravelli, D.; Fagnoni, M. Chem Cat Chem, 2012, 4, 169–171. c) Romero, N. A.; Nicewicz, D. A. Chem. Rev.,2016, 116, 10075–10166.
  15. 12. a) Fukuzumi, S.; Ohkubo, K. Org. Biomol. Chem.,2014, 12, 6059–6071. b) Hari, D. P.; König, B. Chem. Commun.,2014, 50, 6688–6699. c) Stephenson, C.; Yoon, T.; Macmillan, D. W. C. Visible Light Photocatalysis in Organic Chemistry, Wiley-VCH, Germany,2018.
  16. 13. Waser, E., Lewandowski, N. Helv. Chim. Acta.1921, 4, 657-666.
  17. 14. a) Knowles, S.W.; Sabacky, J. M. Chem. Commun.1966, 1445. b) Knowles, J. Chem. Educ.1986, 63(3), 222-225.; c) Vocke, W., Hanel, R.; Flother, U. F. Chem. Technol. 1987, 39 (3), 123-125. d) Chen, C.; Zhu, Y. F.; Wilcoxen, K. J. Org. Chem. 2000, 65, 2574-2576.
  18. 15. Ooi, T., Kameda, M.; Tannai, H., Maruoka, K. Tetrahedron Lett.2000, 41, 8339-8342.
  19. 16. a) Luo, S.; Gao, L.; Wei, Z.; Spinney, R.; Dionysiou, D. D.; Hu, W. P.; Chai, L.; Xiao, R. Water Res.2018, 137, 233–241. b) Zhang, K.; Parker, K. M. Environ. Sci. Technol.2018, 52, 9579-9594. c) Wang, H. Wang, J. Lu, S.-H. Yu, H.-L. Jiang, J. Am. Chem. Soc. 2017, 139, 2035–2044. d) Sankar, M.; Nowicka, E.; Carter, E.; Murphy, D. M.; Knight, D. W.; Bethell, D.; Hutchings, G. J. Nat. Commun.2014, 5, 3332.
  20. 17. Boger, L. D.; Yohannes, D. J. Org. Chem.1987, 52, 5283-5286.
  21. 18. Banerjee, A.; Lei, Z.; Ngai, Y. M. Synthesis2019, 51, 303–333.
  22. 19. Kravchuk, V. D.; Forbes, Z. T. Angew. Chem. Int. Ed.2019, 58, 18429 –18433.

Downloads

Published

2019-06-12

Issue

Section

Research Articles

How to Cite

[1]
Ayan Bandyopadhyay "Hydroxyl Radical Mediated an Improved Photocatalytic Baeyer–Villiger Oxidation to Synthesize L-Dopa Derivative from L-Tyrosine" International Journal of Scientific Research in Science and Technology(IJSRST), Online ISSN : 2395-602X, Print ISSN : 2395-6011,Volume 6, Issue 3, pp.975-982 , May-June-2019. Available at doi : https://doi.org/10.32628/IJSRST52411262