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In this present paper, we studied about thermal stability in a Newtonian 

fluid.  The theory has been applied to the study of some simple lubrication 

problems. According to the theory, couple-stresses are found to appear in 

noticeable magnitudes in fluids with very large molecules. Since the long 

chain hyaluronic acid molecules are found as additives in synovial fluid, 

Walicki and Walicka [80] modeled synovial fluid as a couple-stress fluid in 

human joints. A human joint is a dynamically loaded bearing which has 

particular cartilage as the bearing and synovial fluid as the lubricant. 

Normal synovial fluid is clear or yellowish and is a non-Newtonian, 

viscous fluid.  
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I. INTRODUCTION 

G. K. [1] showed that the bearing with a couple of 

stresses in fluid as the lubricant improves the squeeze 

film characteristic and results in a longer bearing life. 

All diseases of joints are caused by or connected with 

a malfunction of the lubrication. One of the 

applications of couple-stresses in fluid is its use in the 

study of the mechanism of lubrication of synovial 

joints, which has become the objective of scientific 

research. The problem of couple-stress fluid heated 

from below in a porous medium is considered by 

Roberts [5] and Lundquist [2]. Lehnert [3], Cowling et 

al [6], Bateman et al [7], and Sutton et al [4] 

considered the effect of compressibility, suspended 

particles, and rotation on thermal convection in an 

elastic-viscous fluid in hydromagnetic. 

II. MATERIALS AND METHODS 

Consider an infinite, horizontal, electrically 

conducting, incompressible, couple-stress fluid layer 

to thickness d, bounded by the planes z=0 and z=d.  

 

Figure 1: Geometrical configuration 
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This fluid layer is heated from below so that a uniform temperature gradient 𝛽 (|
𝑑𝑇

𝑑𝑧
|) is maintained and the 

layer is acted upon by the gravity field g(0,0,-g), a uniform vertical magnetic field H(0,0 H) and rotation 

Ω(0,0, Ω). 

Let 𝑝, 𝜌, 𝑇, 𝑎, 𝑣, 𝜇′, 𝑘, 𝑎𝑛𝑑 𝑞(𝑢, 𝑣, 𝑤) denote respectively pressure, density, temperature, thermal coefficient of 

expansion, kinematic viscosity, couple-stress viscosity, thermal diffusivity and velocity of the fluid. The 

equation of motion, continuity and heat conduction of couple-stress fluid are 

𝜕𝑞

𝜕𝑡
+ (𝑞. ∇)𝑞 =  −

1

𝜌0
 ∇𝑝 + 𝑔 (1 +

𝛿𝜌

𝜌0
) + (𝜐 −

𝜇′

𝜌0
∇2) ∇2𝑞 + 2(𝑞 × Ω) +

𝜇𝑒

4𝜋𝜌0
[∇ × 𝐻 × 𝐻]            (1) 

∇. 𝑞 = 0                                                                                                      (2) 
𝜕𝑇

𝜕𝑡
+ (𝑞. ∇)𝑇 = 𝑘∇2𝑇                                                                                (3) 

𝜕𝐻

𝜕𝑡
= (𝐻. ∇)𝑞 + 𝜂∇2𝐻                                                                              (4) 

∇. 𝐻 = 0                                                                                                    (5) 

The equation of state is  

𝜌 =  𝜌0[1 − 𝛼)𝑇 − 𝑇0)]                                                                           (6) 

where the suffix zero refers to the values at the reference level z=0. 

The basic motionless solution is 

𝑞 = (0,0,0), 𝑝 = 𝑝(𝑧), 𝑇 = 𝑇𝑜 − 𝛽𝑧, 𝜌 = 𝜌𝑜(1 + 𝛼𝛽𝑧), 𝑁 = 𝑁𝑜, a constant.                            (7) 

Assume small perturbations around the basic solution and let 𝛿𝑝, 𝛿𝜌, 𝜃, 𝑁, 𝐻 (ℎ𝑥 , ℎ𝑦, 𝐻 + ℎ𝑧)  and q(u,v,w,) 

denote respectively the perturbations in pressure, density, temperature, number density, magnetic field and 

couple-stress fluid velocity (0,0,0). The change in density 𝛿𝜌  caused mainly by the perturbbation  in 

temperature is given by 

𝛿𝜌 =  − 𝛼 𝜌𝑜𝜃                                                                                          (8) 

Then the linearized perturbation equations of the couple-stress fluid become 
𝜕𝑞

𝜕𝑡
=  −

1

𝜌𝑜
∇𝛿𝑝 − 𝑔𝑎𝜃 + (𝜐 −

𝜇′

𝜌0
∇2) ∇2𝑞 + 2(𝑞 × Ω) +

𝜇𝑒

4𝜋𝜌0
[∇ × 𝐻 × 𝐻]                  (9) 

∇. 𝑞 = 0                                                                                                   (10) 
𝜕𝜃

𝜕𝑡
= 𝛽𝑤 + 𝑘∇2𝜃                                                                                   (11) 

𝜕𝑞

𝜕𝑡
= (𝐻. ∇)𝑞 + 𝜂∇2ℎ                                                                              (12) 

∇. ℎ = 0                                                                                                   (13) 

where 𝑘 =
𝑞

𝜌0𝑐𝑣
 

 

Dispersion Relation  

Analyze the perturbations in to normal modes by seeking solutions in the form [𝑤, 𝜃, ℎ, 𝜁, 𝜉] =

[𝑊(𝑧), Θ(𝑧), 𝐾(𝑧), 𝑍(𝑧), 𝑋(𝑧)] exp(𝑖𝑘𝑥𝑥 + 𝑖𝑘𝑦𝑦 + 𝑛𝑡) . where 𝑘𝑥 , 𝑘𝑦  are the wave numbers along x and y 

directions respectively, and 𝑘 = (𝑘𝑥
2 + 𝑘𝑦

2)
1

2⁄
 is the resultant wave number of the disturbance and n is the 

growth rate which is, in general, a complex constant and  

𝜁 =
𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑦
 𝑎𝑛𝑑 𝜉 =  

𝜕ℎ𝑦

𝜕𝑥
−

𝜕ℎ𝑥

𝜕𝑦
 stand for the z-components of vorticity and current density, respectively. 
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The non-dimensional system of equations eliminating the physical quantities is  

[𝜎 − (1 − 𝐹(𝐷2 − 𝑎2))(𝐷2 − 𝑎2)](𝐷2 − 𝑎2)𝑊 = −
𝑔𝛼𝑎2𝑑2

𝜐
Θ −

2Ω𝑑3

𝜐
𝐷𝑍 +

𝜇𝑒𝐻𝑑

4𝜋𝜌0𝜐
(𝐷2 − 𝑎2)𝐷𝐾              

(14) 

[𝜎 − (1 − 𝐹(𝐷2 − 𝑎2))(𝐷2 − 𝑎2)]𝑍 = (
2Ω𝑑

𝜐
) 𝐷𝑊 +

𝜇𝑒𝐻𝑑

4𝜋𝜌0𝜈
𝐷𝐾                (15) 

(𝐷2 − 𝑎2 − 𝜎𝑝1)Θ = − (
𝛽𝑑2

𝑘
) 𝑊                                                                (16) 

(𝐷2 − 𝑎2 − 𝑝2𝜎)K = −
𝐻𝑑

𝜂
𝐷𝑊                                                                  (17) 

(𝐷2 − 𝑎2 − 𝑝2𝜎)X = −
𝐻𝑑

𝜂
𝐷𝑍                                                                    (18) 

Eliminating Z, X, Θ and K between equations (14) – (18), we obtain 

[𝜎 + 𝐹(𝐷2 − 𝑎2)2 − (𝐷2 − 𝑎2)][𝐷2 − 𝑎2 − 𝜎𝑝1][𝐷2 − 𝑎2 − 𝜎𝑝2][𝐷2 − 𝑎2]𝑊 

+𝑅𝜆𝑎2[𝐷2 − 𝑎2 − 𝜎𝑝2]𝑊 + 𝑄[𝐷2 − 𝑎2 − 𝜎𝑝1][𝐷2 − 𝑎2]𝐷2𝑊  (19) +𝑇𝐴
[𝐷2−𝑎2−𝜎𝑝2]

2
[𝐷2−𝑎2−𝜎𝑝1]𝐷2𝑊

[{𝜎+𝐹(𝐷2−𝑎2)−(𝐷2−𝑎2)}(𝐷2−𝑎2−𝜎𝑝2)+𝑄𝐷]
=

0 

where 𝑅 =
𝑔𝑎𝛽𝑑4

𝑣𝑘
 is the thermal Rayleigh number, 𝑇𝐴 = (

2Ω𝑑2

𝑦
)

2

 is the Taylor's number and 𝑄 =
𝜇𝑒𝐻2𝑑2

4𝜋𝜌𝑜𝜈𝜂
 is the 

Chandrasekhar number. 

Consider the case in which both the boundaries are free, the medium adjoining the fluid is perfectly conducting 

and temperatures at the boundaries are kept fixed. The boundary conditions, appropriate for the problem, are 

𝑊 = 0 = 𝑍 =  Θ 𝑎𝑛𝑑 𝐷2𝑊 = 0   𝑎𝑡   𝑧 = 0 𝑎𝑛𝑑  𝑧 = 1                           (20) 

W=𝑊0𝑠𝑖𝑛𝜋 𝑧                                                                                                 (21) 

where 𝑊0  is constant. Substituting the proper solution (21) to equation (19), we obtain the dispersion relation 

𝑅1 =
(1+𝑥)

𝜆𝑥
[𝑖𝜎 + 𝐹1 + (1 + 𝑥)][1 + 𝑥 + 𝑖𝜎𝑝1] +

𝑄1(1+𝑥)[1+𝑥+𝑖𝜎1𝑝1]

𝜆𝑥[1+𝑥+𝑖𝜎1𝑝1]
 

+
𝑇𝐴1

[1+𝑥+𝑖𝜎1𝑝2][1+𝑥+𝑖𝜎1𝑝1]

𝜆𝑥[{𝑖𝜎+𝐹1(1+𝑥)2+(1+𝑥)}(1+𝑥+𝑖𝜎1𝑝2)+𝑄1]
                  (22) 

where,  𝑅1 =
𝑅

𝜋4, 𝑇𝐴1
=

𝑇𝐴

𝜋4 , 𝑖𝜎1 =
𝜎

𝜋2 , 𝑄1 =
𝑄

𝜋2  𝑎𝑛𝑑 𝐹1 = 𝜋2𝐹  

The above relation expresses the modified Rayleigh number  𝑅1 as a function of couple stress parameter 𝐹1, 

rotation parameter 𝑇𝐴1
, magnetic field parameter 𝑄1 and dimension less wave number x. 

Stationary Convection  

For stationary convection, the marginal state will be characterized by 𝜎 = 0. Thus equation (22) reduces to  

𝑅1 =
(1+𝑥)

𝜆𝑥
[{𝐹1(1 + 𝑥) + 1}(1 + 𝑥)2 + 𝑄1 +

𝑇𝐴1(1+𝑥)

[{𝐹1(1+𝑥)+1}](1+𝑥)2+𝑄1
]                                                        

(23) 

 

To study the effect of suspended particles, rotation, couple-stress and magnetic field, we examine the nature of  
𝑑𝑅1

𝑑𝑇𝐴1

,
𝑑𝑅1

𝑑𝐹1
 𝑎𝑛𝑑 

𝑑𝑅1

𝑑𝑄1
 analytically. Equation (23) gives 

𝑑𝑅1

𝑑𝑇𝐴1

= (
1+𝑥

𝑥
) {

1+𝑥

[1+𝐹1(1+𝑥)](1+𝑥)2+𝑄1
}                                                        (24) 

which shows that rotation has a stabilizing effect on the system. 

Also, from equation (3.1.23), we have 
𝑑𝑅1

𝑑𝐹1
=

(1+𝑥)4

𝑥
, {1 − 𝑇𝐴1

1+𝑥

{[1+𝐹1(1+𝑥)](1+𝑥)2+𝑄1}2}                                                                              (25) 

𝑑𝑅1

𝑑𝑄1
= (

1+𝑥

𝑥
) . {𝑇𝐴1

1+𝑥

{[1+𝐹1(1+𝑥)](1+𝑥)2+𝑄1}2 + 1}                                                                              (26) 
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which shows that couple-stresses and magnetic field have a stabilizing or destabilizing effect on the system 

according to  𝑇𝐴1
(1 + 𝑥) < 𝑜𝑟 > {[1 + 𝐹1(1 + 𝑥)](1 + 𝑥)2 + 𝑄1}2  

In the absence of rotation (𝑇𝐴1
= 0), we have 

𝑑𝑅1

𝑑𝐹1
=

(1+𝑥)4

𝑥
                                                                                                                                 (27) 

𝑑𝑅1

𝑑𝑄1
= (

1+𝑥

𝑥
)                                                                                                                                 (28) 

which shows that couple-stresses and magnetic field clearly have a stabilizing effect on the system. 

In the absence of magnetic field (𝑄1 = 0), we have 
𝑑𝑅1

𝑑𝐹1
=

(1+𝑥)4

𝑥
.

1

𝐻
{1 − 𝑇𝐴1

1

[1+𝐹1(1+𝑥)]2(1+𝑥)3}                                                                                 (29) 

which shows that couple-stress has a stabilizing (destabilizing) effect on the system according as 𝑇𝐴1
< 𝑜𝑟 >

 (1 + 𝑥)3[1 + 𝐹1(1 + 𝑥)]2 

The dispersion relation (22) is also analyzed numerically. In figure 2, 𝑅1  is plotted against 𝑥  for 𝑇𝐴1
=

100, 150,200, 𝐹1 = 0.5 𝑎𝑛𝑑 𝑄1 = 10.  In figure 3, 𝑅1 is plotted against notation parameter  𝑇𝐴1
 for various values 

of wave number x. In both the figures, it is found that rotation postpones the onset of convection as the 

Rayleigh number increases with the increase in rotation parameter. In figure 4, 𝑅1 is  plotted against x for 𝑄1 =

20,40,60; 𝐹1 = 0.2, 𝑇𝐴1
= 70 and in figure 5 𝑅1 is plotted against 𝑄1 for x =12,4,8,10. Here it is observed that 

the magnetic field hastens the onset of convection for small wave numbers as the Rayleigh number decreases 

with an increase in the magnetic field parameter and postpones the onset of convection for higher wave 

numbers as the Rayleigh number decreases with the increase in couple-stress parameter and postpones the 

onset of convection for higher wave numbers as the Rayleigh number increases with the increase in couple-

stress parameter. 

The critical Rayleigh numbers listed in tables 1 to 3 and illustrated in figures 8-10 are obtained from figures 2 to 

7 by locating the minimum numerically. From table 1 and figure 8, it is clear that rotation has stabilizing effect 

on the system. From the table 2 and figure 9, it is observed that the magnetic field has stabilizing effect in the 

absence of rotation, destabilizing effect for 𝑇𝐴1
= 6000  and for 𝑇𝐴1

= 2000 , the value of critical Rayleigh 

number first decreases and then increases for the increase in the value of magnetic field parameter. In figure 10, 

critical Rayleigh number 𝑅𝑐is plotted against couple-stress parameter 𝐹1. In the absence of rotation, couple-

stresses have stabilizing effect whereas in the presence of rotation, the value of critical Rayleigh number 𝑅𝑐 

decreases and then increases for the increase in value of couple-stress parameter 𝐹1. Table 3 confirms these 

results numerically. 

 
Figure 2: Variation of R1 with x                          Figure 3: Variation of R1 with TA1 
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Figure 4: Variation of R1 with x                             Figure 5: Variation of R1 with Q1 

 

Figure 6: Variation of R1 with x                             Figure 7: Variation of R1 with F1 

 

Figure 8: Variation of Rc with TA1                             Figure 9: Variation of Rc with Q1 

 

Figure 10: Variation of Rc with F1 
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A 

Table 1: The critical Rayleigh numbers and the wave numbers of the associated disturbances for the onset of 

instability as stationary convection for various values of T. 

TA1 Q1  100 Q1  150 Q1  200 

xc Rc xc Rc xc Rc 

100 2.0 187.4235 2.3 259.2703 2.5 329.2593 

150 2.0 189.2602 2.3 260.5939 2.5 330.3077 

200 2.0 191.0969 2.3 261.9175 2.5 331.3561 

250 2.0 194.7704 2.3 264.5647 2.5 333.4530 

300 2.0 198.4439 2.3 267.2120 2.5 335.5498 

400 2.0 202.1173 2.3 269.8592 2.5 337.6466 

Table 2: The critical Rayleigh numbers and the wave numbers of the associated disturbances for the onset of 

instability as stationary convection for various values of Q1. 

 

Q1 

TA1  0 TA1  2000 TA1  6000 

xc Rc xc Rc xc Rc 

20 1.6 46.3411 5.5 277.2780 8.4 543.9253 

40 2.0 77.5500 2.0 251.6312 7.5 529.6470 

60 2.3 106.8679 2.0 233.0730 1.6 481.3190 

80 2.5 135.1525 2.1 233.5286 1.7 430.0211 

100 2.7 162.7387 2.3 246.9746 1.8 408.6656 

140 3.1 216.5092 2.7 281.4301 2.1 405.1923 

Table 3: Critical Rayleigh numbers and the wave numbers of the associated disturbances for the onset of 

instability as stationary convection for various values of F1. 

 
III.  THERMAL STABILITY OF THE SYSTEM AND OSCILLATORY MODES 

 

Now to determine under what conditions the principle of exchange of stabilities (PES) is satisfied (i.e. is real  

is real and the marginal states are characterized by =0) and the oscillations come into play, we multiply 

equation (14) with W* and integrate over the range of z and making use of equations (15)-( 18) together with 

the boundary conditions (20) and get 

𝜎𝐼1 + 𝐼2 + 𝐹𝐼3 −
𝑔𝑎𝑘𝑎2

𝜈𝛽
(𝐼4 + 𝐻𝜎∗𝑝1𝐼5) + 𝑑2[𝜎𝐼6 + 𝐼7 + 𝐹𝐼8] +

𝜇𝑒𝜂𝑑2

4𝜋𝜌𝑜𝜈
 (𝐼9 + 𝜎∗𝑝2𝐼10) 

+
𝜇𝑒𝜂

4𝜋𝜌𝑜𝜈
(𝐼12 + 𝜎∗𝑝2𝐼11) = 0 
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where, 

𝐼1 = ∫(|𝐷𝑊|2 + 𝑎2|𝑊|2)𝑑𝑧,               𝐼2 = ∫  (|𝐷2𝑊2| + 2𝑎2|𝐷𝑊|2 + 𝑎4|𝑊|2)dz, 

𝐼3 = (∫|𝐷2𝑊|2 + 3𝑎2|𝐷2𝑊|2 + 3𝑎4 |𝐷𝑊|2 + 𝑎6|𝑊|2) 𝑑𝑧, 

𝐼4 = ∫(|𝐷Θ|2 + 𝑎2|Θ|2) 𝑑𝑧,                   𝐼5 = ∫|Θ|2𝑑𝑧,     

𝐼6 = ∫|𝑍|2𝑑𝑧                                                 𝐼7 = ∫(|𝐷𝑍|2 + 𝑎2|𝑍|2)  𝑑𝑧,      

𝐼8 =  ∫(|𝐷2𝑍|2 + 2𝑎2|𝐷𝑍|2 + 𝑎4|𝑍|2) 𝑑𝑧, 

𝐼9 = ∫(|𝐷𝑋|2 + 𝑎2|𝑋|2)𝑑𝑧,                          𝐼10 = ∫  |𝑋|2𝑑𝑧, 

𝐼11 = ∫(|𝐷𝐾|2 + 𝑎2|𝐾|2)𝑑𝑧,                          𝐼12 = ∫(|𝐷2𝐾|2 + 2𝑎2|𝐷𝐾|2 + 𝑎4|𝑋|2)𝑑𝑧. 

and 𝜎∗  is complex conjugate of 𝜎. The integrals 𝐼1 − 𝐼12 are all positive definite. Putting 𝜎 = 𝑖𝜎𝑖(𝜎∗ = −𝑖𝜎𝑖) in 

equation (30) and equating imaginary parts, we obtain 

𝜎𝑖  [𝐼1 +
𝑔𝑎𝑘𝑎2

𝜈𝛽
(𝐼4 + 𝐻𝑝1𝐼5) + 𝑑2𝐼6 −

𝜇𝑒𝜂𝑑2

4𝜋𝜌𝑜𝜈
𝑝2𝐼10 −

𝜇𝑒𝜂

4𝜋𝜌𝑜𝜈
𝑝2𝐼11] = 0                                      (31) 

 

 

It is clear from equation (31) that 𝜎𝑖 may be zero or 

non-zero, which implies that modes may be non-

oscillatory or oscillatory. In the absence of magnetic 

field and rotation, equation (31) reduces to 

𝜎𝑖 [𝐼1 +
𝑔𝑎𝑘𝑎2

𝜈𝛽
(𝐼4 + 𝐻𝑝1𝐼5) + 𝑑2𝐼6]=0                    (32) 

The terms in the bracket are positive definite. Thus 

𝜎𝑖 = 0  which means that the oscillatory modes are 

not allowed and the principle of exchange of 

stabilities is satisfied in the absence of rotation and 

magnetic field. 

 

IV. CONCLUSION 

 

In this section, the effect of magnetic field and 

rotation has been considered on the thermal stability 

of a couple-stress fluid. The effect of various 

parameters such as magnetic field, rotation and 

couple-stresses has been investigated analytically as 

well as numerically. The main results from the 

analysis are as follows: In order to investigate the 

effects of magnetic field, rotation and couple-stresses, 

we examine the behavior of 
𝑑𝑅1

𝑑𝑄1
,

𝑑𝑅1

𝑑𝑇𝐴1

𝑎𝑛𝑑
𝑑𝑅1

𝑑𝐹1
  analytically. It is found that rotation 

has stabilizing effect on the system. The magnetic 

field couple-stresses has a stabilizing effect in the 

absence of rotation whereas in the presence of 

rotation it has a stabilizing effect if  𝑇𝐴1
(𝐼 + 𝑥) <

{[𝐼 + 𝐹1(𝐼 + 𝑥)](𝐼 + 𝑥)2 + 𝑄1}2  and destabilizing 

effect if 𝑇𝐴1
(𝐼 + 𝑥) < {[𝐼 + 𝐹1(𝐼 + 𝑥)](𝐼 + 𝑥)2 + 𝑄1}2 . 

The principle of exchange of stabilities is satisfied in 

the absence of rotation and magnetic field. 
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