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 The search for habitable planets outside our solar system has captivated 

scientists throughout the centuries. Discovery and characterization of 

exoplanets have been one of the most important endeavors of modern 

astronomy. With various space missions, we have significantly expanded 

our observational capacity, resulting in an abundance of information about 

the universe. The influx of more data necessitates the development of 

techniques that can aid astronomers in processing all the information more 

efficiently and in an automated manner. Machine learning in recent years 

has become an indispensable paradigm to automate complex tasks that are 

possible only by humans. This work explores the application of machine 

learning to detect exoplanets from NASA’s Kepler mission. Our dataset 

comprises Kepler Objects of Interest (KOIs), encompassing their 

characteristic features and confirmed exoplanet status. We experiment 

with multiple supervised classification techniques including classical, tree-

based, and neural methods. The best-performing model Histogram 

Gradient Boosting achieves a strong performance of 94.6% precision and 

94.1% recall on a held-out dataset demonstrating the strong potential of 

integrating machine learning techniques into astronomy, potentially 

leading to new insights into planetary systems outside the solar system. 
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I. INTRODUCTION 

 

An exoplanet is a planet that orbits a star outside of 

our solar system. Exoplanet discovery has been an 

important endeavour for astronomers [1] across 

generations. The first two of the exoplanets were 

discovered in the 1992, and since then a total of 

around 5000 have been discovered. Moreover, our 

exoplanets detection systems also have evolved since 

then leading to a greater chance of finding more 

exoplanets. Exoplanet detection helps us to 

understand the different star systems present in the 

universe and how they behave. Furthermore, there’s a 

slight chance of discovering an exoplanet with 
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habitable conditions required for the survival of 

humanity or even finding an alien civilization. 

 

 
Figure 1: Pipeline of our approach 

 

The search for exoplanets has evolved rapidly in the 

last few decades.  To aid the earth telescopes the 

National Aeronautics and Space Administration 

(NASA) has launched telescopes into space. One such 

telescope dedicated to exoplanet discovery i.e. Kepler 

telescope was launched in 2009. Apart from the 

traditional signals such as  the wobble in the light 

frequencies caused by orbiting planets, the Kepler 

telescope provided more powerful signals such as the 

distortion in stellar brightness caused by the eclipsing 

of orbiting planets, etc. From all the data the 

astronomers carefully analyse the light curves, 

consider various parameters, and determine 

exoplanets while ruling out false positives resulting 

from events such as eclipsing binary stars or 

instrumental artifacts. With more telescopes being 

launched and more information being gathered, the 

volume of data is increasing tremendously. While 

exciting this also poses a challenge for astronomers to 

sift through such a large volume of information. 

There has been a significant interest in developing 

automated technology to aid the astronomers. 

Machine learning (ML) provides a promising solution 

to this challenge. Machine  learning  algorithms  can  

help  scientists  by automating many steps of the 

process. This will allow the  astronomers  to  focus  

their  efforts  on  the  most promising candidates with 

more extensive analysis. The  work shows the 

potential  of machine learning models to automate the 

initial screening process. In this paper, we propose a 

machine learning algorithm that can take as input 

data from the telescope such as, the light curve 

parameters and the stellar parameters, and learn  a  

decision  system  from   labelled  data.  We 

experiment with multiple classification models on the 

data retrieved from NASA exoplanet archive. 

 

The remainder of the paper is organized as follows. 

Section II introduces a few works related to ours, 

Section III provides details on the dataset, the data 

preparation strategy, the models we experiment with, 

and the evaluation metrics we use. Section IV 

provides the results of our experimentation and 

discusses the implications.  We  conclude  with  

Section  V summarizing our findings and suggesting 

directions for future research. 

 

II. RELATED WORKS 

 

Malik et al. [2] uses machine learning methods to 

detect exoplanets. They take a different approach to 

using the transit method for detection. They analyse 

the light curves using a time series library and extract 

features from the curve. The works most similar to 

ours are [3,4] which uses machine learning to 

determine exoplanets from Kepler data. They use 

various ML classifiers for their model. Unlike ours, 

[3,4] uses the analysis from the  astronomers  on  false  

positives.  For  example, ‘koi_fpflag_co’ denotes 

whether the source of the signal is from a nearby star 

and is determined by astronomers. We on the other 

hand do not use those columns and only use the light 

curve, transit properties, and stellar parameters to 

detect exoplanets. 

 

III.  METHODS AND MATERIAL 

 

For our experiments we use the pipeline shown in Fig. 

 

1. We first gather our data in the first stage. The data 

is cleaned and prepared for the next stage which 

involves training the machine learning models. In the 

final stage, we evaluate the performance of our model 

on unseen data held out for evaluation purposes. We 

discuss each stage in the following. 
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A. Dataset 

In 2009 NASA launched the Kepler space telescope 

with  the goal of  discovering  Earth-sized exoplanets 

hoping to find places promising for life [5]. We make 

use of the data collected by Kepler. 

 

1)   Data preparation: We retrieve our dataset from 

the NASA exoplanet archive [6] on 2nd August 2024. 

Specifically, we download the “KOI Table 

(Cumulative list)” from their data page. The table 

contains 9564 rows of various extraterrestrial objects. 

The dataset contains 141 columns of features. 

 

 
 

2)  Data  preprocessing:  We  perform  comprehensive 

data cleaning and preprocessing to use for our model. 

Among the 141 columns as input features, we keep 

the column related to transit properties, threshold 

crossing   event   (TCE)   information,   and   stellar 

parameters for input features. These columns provide 

physical information about the planets and hence 

enables us in creating an ML model that can predict 

exoplanets from physical properties. In Table 1 we 

show the columns we used for our model. If any 

column has empty values in the entire table, we 

remove that column. Similarly, columns with 

constant values are also removed. For all the 

uncertainties values we fill the missing values with 0. 

We didn’t find any other column having missing or 

NaN values. ‘koi_disposition’ is used as ground truth 

labels. The ‘koi_disposition’ column contains three 

values ‘CONFIRMED’, ‘FALSE POSITIVE’, and 

‘CANDIDATE’. ‘CONFIRMED’ constitutes our 

positive exoplanet examples, ‘FALSE POSITIVE’ is our 

negative example. We remove the rows with the 

value ‘CANDIDATE’ as they do not provide any signal. 

After the data cleaning, we are left with 7099 rows 

from the original 9564 rows and 54 columns 

(including ground truth label) from the original 141 

columns. 

3) Dataset split: For model training and evaluation, we 

split the 7099 rows randomly into train and test 

datasets. We set aside 30% of the rows for evaluation. 

After the train-test split, the training dataset contains 

4969 rows, and the test dataset contains 2130 rows. 

 

B. Methods 

 

We experiment with multiple classification models 

with varying degrees of complexity. We consider both 

classical and neural network-based machine learning 

models. Following paragraphs provide a brief 

description of the models used. 

 

1) Naive Bayes: Naive Bayes is a probabilistic classifier 

that makes a strong assumption of feature 

independence and applies Bayes' theorem. Despite the 

strong assumption, the method has been shown to 

perform well for high-dimensional spaces. 

 
Figure 2 : Definition of True Positive, False Positive, 

True Negative and False Negative 

 

2) Decision Tree: Decision Trees are a non-parametric 

method. The method works by recursively splitting 

the feature space on a threshold derived from feature 

values. A distinct advantage of the decision tree is the 
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decision prediction is visually interpretable. The 

decision tree generally performs poorly as they do not 

generalize. Extension of decision trees using 

ensembles has been proposed to tackle that. 

3) Logistic Regression: Logistic Regression is a binary 

classifier that estimates the log-odds probability using 

a linear model. It is ubiquitously used for its 

simplicity. In real-world applications, it performs 

quite well if the decision boundary is linear. 

4) Perceptron: The Perceptron is the earliest and 

simplest neural network-based linear classifier. It is 

simple in design that updates its weights with 

backpropagation and gradient descent. 

5) Multilayer Perceptron (MLP): Multilayer 

Perceptron (MLP) is a neural network model that 

stacks multiple layers of Perceptron units separated by 

non-linear layers to learn a nonlinear decision 

boundary. During training, similar to Perceptron it 

uses backpropagation to calculate the gradients for 

each weight and updates it during the gradient 

descent step. 

6) Histogram Gradient Boosting: Histogram Gradient 

Boosting is an ensemble of decision trees that is built 

as a sequence of decision trees where each tree 

reduces the error after the previous tree’s result. The 

continuous features are discretised using histograms 

to increase efficiency. Using an ensemble helps with 

learning complex decisions from large-scale data and 

reduces overfitting problems. 

 

C. Evaluation metrics 

 

We use the metrics ubiquitous in classification 

literature i.e. accuracy, precision, recall, F1 score, and 

Precision-Recall curve. We use the F1-score to decide 

the best-performing model. 

 

1) Accuracy, Precision, Recall, F1 score: These metrics 

are derived from True Positive, True Negative, False 

Positive, and False Negative as defined in Fig. 2. The 

definition of the metrics are as follows 

 

 

 
 

Gradient Boosting model stands out as the top 

performer, achieving the highest scores in accuracy 

(95.5%), precision (94.6%), F1 score (94.4%). This 

model’s strong and balanced performance across these 

metrics highlights its effectiveness in accurately 

identifying exoplanets while minimizing false 

positives. 

 
 

2) Precision-recall curve: Precision-recall curve is a 

graphical metric used to evaluate the performance of a 

classification model. It is particularly useful when 

there is a class imbalance in the dataset. It plots 

precision values in the y-axis and recall values in the 

x-axis for different classification thresholds. Average 

precision (AP) gives us a single score to represent a PR 

curve. It is defined as the weighted mean of precision 

at each threshold. The increase in recall from the 

previous threshold constitutes the weights. 
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IV.  RESULTS AND DISCUSSION 

 

A. Experimental setting 

We conduct our experiments using NumPy [7] and 

Scikit-learn [8] libraries. For logistic regression, 

histogram gradient boosting, and perceptron we set 

the number of iterations to 50000. For MLP we use a 

batch size of 32, 2 hidden layers of size 5 each, and 

1000000 iterations. The hyperparameters are validated 

using a held-out set from the training dataset. We set 

the random state to 42 for all our experiments. 

 

B. Quantitative results 

Our evaluations of various ML models are presented 

in Table II. The result reveals notable differences in 

their performance across several metrics. The 

Histogram The Multilayer Perceptron (MLP) also 

performed well, particularly excelling in recall (95.0%) 

and showing robust results in other metrics. 

Conversely, the Naive Bayes model, while 

demonstrating the highest recall (98.0%), exhibited a 

lower precision (68.1%), indicating a higher rate of 

false positives. Simpler models, such as Decision Tree 

and Perceptron, showed competitive results but were 

ultimately surpassed by the more sophisticated 

algorithms. Logistic Regression also performed well 

with an F1 score of 91.2%. These findings underscore 

the superior performance of ensemble and neural 

network-based approaches in capturing the intricate 

patterns within exoplanet data, while also illustrating 

the value of simpler models. 

 

C. Precision-recall curve 

The precision-recall curve comparison provides 

further evaluation of the performance of the four 

best- performing machine learning models used: 

Logistic Regression, Naive Bayes, Multilayer 

Perceptron (MLP), and Histogram Gradient Boosting 

(HGBoost). Fig. 3 illustrates the relationship between 

precision and recall across varying classification 

thresholds for each model. Histogram Gradient  

Boosting stands out with the highest average precision 

Figure 3: Precision-Recall Curve  

(HGBoost = Histogram Gradient Boosting, 

MLP=Multi-layer Perceptron, AP=Average Precision  

 

(AP) of 0.98, maintaining strong precision across a 

broad range of recall values. Logistic Regression 

closely follows with an AP of 0.97, showing 

comparable performance characteristics. The MLP 

model achieves an AP of 0.96 but exhibits greater 

variability in precision at lower recall levels compared 

to Histogram Gradient Boosting and Logistic 

Regression. On the other hand, the Naive Bayes 

model significantly lags with an AP of 0.70, 

demonstrating a constant precision across all recall 

levels and highlighting its limitations in balancing 

precision and recall effectively for this task. This 

visualization demonstrates the superior performance 

of ensemble methods (Histogram Gradient Boosting) 

and more sophisticated models (Logistic Regression, 

MLP) over simpler approaches like Naive Bayes in the 

context of exoplanet detection, highlighting the 

critical role of model choice in optimizing 

performance. 

 

V. CONCLUSION 

 

In this work, we present a machine learning-based 

approach that classifies exoplanets from Kepler 

cumulative object of interest data obtained from 
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NASA. Our work uses a comprehensive data 

preparation and filtering stage followed by 

experimentation with multiple state-of-the-art 

classification models. We achieve a performance of 

94.6% precision with a recall of 94.1% which 

solidifies the potential of machine learning to 

automate exoplanet detection. Notwithstanding the 

promising results, we have investigated only Kepler 

object of interest data which contains exoplanets from 

a limited area of the universe and may not be 

representative of the diversity of exoplanets from the 

entire universe. A future avenue can investigate 

incorporating data from other space missions and 

ground observatories. More data also unlocks the 

possibility of using more complex machine learning 

models such as transformer models [9] which can take 

advantage of self-attention to discover complex 

interactions between the input features. 

 

In conclusion, we show the tremendous potential of 

machine learning in aiding astronomers in exoplanet 

detection by automating the detection process. They 

can be a powerful tool for this task with their high 

performance, thus accelerating the process of 

understanding exoplanets and by extension the long- 

standing question of whether we are alone in the 

universe. 

 

VI. REFERENCES 

 

[1]. Brennan, Pat (2019). “Why Do Scientists Search 

for Exoplanets? Here Are 7 Reasons”. NASA 

Website. Online. Retrieved from 

https://exoplanets.nasa.gov/news/1610/why-do- 

scientists-search-forexoplanets-here-are-7- 

reasons/. 

[2]. Abhishek Malik, Benjamin P Moster, Christian 

Obermeier, Exoplanet detection using machine 

learning, Monthly Notices of the Royal 

Astronomical Society, Volume 513, Issue 4, July 

2022, Pages 5505–5516, 

https://doi.org/10.1093/mnras/stab3692 

[3]. Sturrock, George Clayton; Manry, Brychan; and 

Rafiqi, Sohail (2019) "Machine Learning 

Pipeline for Exoplanet Classification," SMU 

Data Science Review: Vol. 2: No. 1, Article 9. 

Available at: 

https://scholar.smu.edu/datasciencereview/vol2/

iss 1/9 

[4]. Jin, Yucheng, Lanyi Yang, and Chia-En Chiang. 

"Identifying exoplanets with machine learning 

methods: a preliminary study." arXiv preprint 

arXiv:2204.00721 (2022). 

[5]. “Kepler/K2”. NASA Official Website. Online. 

Retrieved from 

https://astrobiology.nasa.gov/missions/kepler/. 

[6]. “Exoplanet Archive”. NASA Official 

Website.Online. Retrieved from 

https://exoplanetarchive.ipac.caltech.edu/docs/d

at a.html. 

[7]. Harris, Charles R., K. Jarrod Millman, Stéfan J. 

Van Der Walt, Ralf Gommers, Pauli Virtanen, 

David Cournapeau, Eric Wieser et al. "Array 

programming with NumPy." Nature 585, no. 

7825 (2020): 357-362. 

[8]. Pedregosa, Fabian, Gaël Varoquaux, Alexandre 

Gramfort, Vincent Michel, Bertrand Thirion, 

Olivier Grisel, Mathieu Blondel et al. "Scikit-

learn: Machine learning in Python." the Journal 

of machine Learning research 12 (2011): 2825-

2830. 

[9]. Vaswani, Ashish, Noam M. Shazeer, Niki 

Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. 

Gomez, Lukasz Kaiser and Illia Polosukhin. 

“Attention is All you Need.” Neural 

Information Processing Systems (2017). 


