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 Managing post-retirement wealth effectively is crucial for ensuring 

financial security in uncertain market conditions. Traditional pension 

investment models assume constant interest rates, which fail to capture 

real-world financial volatility. This study develops an optimal investment 

strategy for post-retirement wealth management under stochastic interest 

rates, modeled using EGARCH and GJR-GARCH frameworks. By 

leveraging GARCH-type models, we estimate volatility dynamics and 

optimize asset allocation strategies. The Hamilton-Jacobi-Bellman (HJB) 

equation is applied within a stochastic control framework to derive the 

optimal investment policy. Sensitivity analysis is conducted to assess the 

impact of different risk aversion levels on portfolio allocation. The results 

demonstrate that accounting for stochastic interest rate volatility improves 

wealth sustainability in the post-retirement phase. 
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I. INTRODUCTION 

 

Optimal retirement planning, especially within 

defined contribution pension schemes, requires 

tailored investment strategies that evolve through 

both wealth accumulation before retirement and 

wealth preservation afterward. The traditional models 

often assume constant interest rates, but this 

simplifying assumption limits their applicability in 

real-world conditions where interest rates are both 

volatile and asymmetric in response to economic 

shocks. Merton's foundational work on continuous-

time portfolio optimization provided a valuable 

framework for dynamic investment strategies [Merton, 

1971].  

To address the limitations of constant interest rate, 

recent research has incorporated stochastic interest 

rate models to capture real-world rate fluctuations 

more accurately [Lioui, and Poncet, 2001; Korn and 

Kraft, 2001; Munk and Sørensen, 2004; Flor and 

Larsen, 2014; Lin and Riedel, 2021]. To adequately 

capture asymmetric responses and volatility clustering, 

the GARCH-type models, particularly EGARCH and 

GJR-GARCH, have been applied to model conditional 

volatility in interest rates. The EGARCH model 

captures asymmetric volatility without requiring 



International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 12 |  Issue 2 

Manasi Goral et al Int J Sci Res Sci & Technol. March-April-2025, 12 (2) : 342-351 

 

 

 
343 

positivity constraints [Nelson, 1991] and the GJR-

GARCH model effectively captures leverage effects 

[Glosten et al., 1993]. 

This study focuses on comparing EGARCH and GJR-

GARCH models in representing short-term interest 

rates volatility during post-retirement investment 

period. Manasi and Talawar (2025) have used GARCH 

type models in representing long-term interest rates 

for whole life pre-retirement investment period. 

Extending this framework, we apply stochastic 

optimal control techniques, which have been applied 

in pension fund modeling and annuity contracts 

[Devolder et al., 2003; Charupat and Milevsky, 2002; 

Osu and Ijioma, 2012; Mallappa and Talawar, 2019], to 

optimize post- retirement asset allocation strategies 

under stochastic interest rates. 

 

II. METHODS AND MATERIAL 

 

The liabilities after retirement are supposed to be paid 

in the form of an annuity whose level is guaranteed by 

the insurer. During the activity period, the 

contributions can be invested in a riskless or risky 

asset and the reserve obtained at retirement age is the 

amount accumulated without any special guarantee by 

the insurer. At the time of retirement this reserve is 

used to purchase a paid-up annuity. After retirement 

the insurer has to pay this guaranteed annuity.  

The optimal control problem is defined as [see also 

Devolder et al., 2003], 

The financial market is supposed to be described by 

two assets: 

One of the assets is a savings account following the di 

erential equation 

One of the assets is a savings account, that is, riskless 

asset with price dynamics   ,following the differential 

equation, 

   ( )   ( )  ( )                                    ( ) 

And the risky asset with price dynamics,    following 

the differential equation 

   ( )    ( )  ( )      ( )  ( )              ( )  

Where, W the standard Brownian motion,   is the 

rate of interest,   is the expected return on the risky 

asset, and   is the volatility of the risky asset. 

Let  ( )       denote the observed short-term interest 

rate.  

The Mean equation is specified as: 

 ( )      ∑       ∑       

 

   

 

   

              ( ) 

 Where,     is the innovation process,  is the MA 

(moving average) coefficients, capturing the influence 

of past shocks on the current rate,    is the AR 

(autoregressive) coefficients, capturing the influence 

of past rates on the current rate, 

 

2.1 The EGARCH model for the Short-term interest 

rate  

The exponential general autoregressive conditional 

heteroskedastic (EGARCH) is another form of the 

GARCH model. The EGARCH model was proposed by 

Nelson (1991) to overcome the weakness in GARCH’s 

handling of financial time series. In particular, to 

allow for asymmetric effects between positive and 

negative asset returns. 

The EGARCH (p, q) model has the variance model as 

   ( ( ) )  

   ∑    
     

√ (   ) 

 
    ∑        ( 

 
   (   ) )  

∑     
     

√ (   ) 
 

 
    (4) 

Where,  ( )  denotes a volatility process     is the 

constant term, controlling the baseline level of 

volatility,    ’s are the parameters capturing the 

impact of past standardized returns on volatility 

(asymmetric shock terms),    ’s arethe parameters 

representing the persistence of volatility and    ’s 

terms allowing for asymmetric effects, where negative 

shocks can impact volatility differently than positive 

shocks, where subscript    for short-term interest rates. 
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2.2 The GJR-GARCH model for the Short-term 

interest rate  

The Glosten-Jagannathan-Runkle GARCH (GJR-

GARCH) model assumes a specific parametric form for 

this conditional heteroskedasticity.  

The mean Equation of GJR-GARCH is same as 

specified in equation (3). 

The GJR-GARCH (p, q), has the variance model 

as  ( )     ∑          
  ∑     ( )    

 
   

 
   

∑         
  

                                                               ( ) 

The parameters have usual meaning as in the case of 

EGARCH model. 

 

2.3 Optimal wealth after retirement  

The proportion invested in the risky asset at time t is 

denoted  by  ( ) and (   ( )) is the proportion in 

the riskless asset. The problem is to find optimal 

solution of  ( )  

State variable: The asset of pension plan is chosen as a 

state variable  

     ( ) (   ,     -       

Decision variable: Following the classical model of 

Merton (1971) the proportion invested in risky asset is 

chosen as the decision variable. 

We model the wealth dynamics  ( ), incorporating 

stochastic interest rate,  ( ), over time t for the post-

retirement phase. The wealth  ( )  is allocated 

between a risky asset and a risk-free asset, with the 

following dynamics, 

  ( )   ( )[ ( )  (   ( )) ( )]   

 ( ) ( )   ( )                                ( )  

Where,  ( )is the stochastic interest rate on the risk-

free asset. 

We optimize the utility of the final surplus after 

retirement period with liabilities. Denoting C the part 

of the fund used to purchase annuity of periods and 

the surplus at the end of the fixed period can be used 

again in a similar way or paid back to the participants. 

The continuous benefit to pay between   and     

is given by  

  
 

      
                                                    ( ) 

  Where, 𝜹 is the continuous technical rate 

Objective function: The problem in two periods will 

be to optimize the expected utility of the final wealth 

at the end of the period. The maximization of the 

expected utility of the surplus after payment of 

pension during   periods is 

 

   
 
  ( (   ))                                             ( ) 

 

2.3.1 Optimal policy after retirement 

Therefore, the final wealth equation after retirement 

for stochastic interest rate is as follows (Devolder et al., 

2003), (       ), 

  ( )   ( )[ ( )  (   ( )) ( )       ]  

  ( ) ( )   ( )                      ( ) 

Using the classical tools of stochastic optimal control, 

to solve equation (8) with  ( ) the amount obtained 

at retirement. 

Define the value function of the problem 

 (     )     
 
 , ( (   )  ( )   -    (  ) 

The maximum principle leads to the following result 

(Hamilton- Jacobi method): 

     * +,
  

  
 ,, ( )(   ( )     )  

 ( )     -   -
  

  
 
 

 
  ( )    

   

   
    

  

   
 

   
  

  

   
 -                                                                      (  )                                                                                                                                                                           

Or            * + 

We can derive from these two equations and second 

order condition: 

(1).  (  )                                                             (  )                                                                                                       

(2). 
  (  )

  
                                                             (  )                                                                                                        

(3). 
   (  )

   
   

Therefore (13) gives the optimal investment 

proportion    in risky asset and it is  

  ( )   
  

  ⁄

. 
  

   
⁄ / 

                                              (  )  

Substituting this in equation (12), the partial 

differential equation for the value function is obtained 

as: 
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 ( ( )        )

  

  
 
 

 

(   ( )     )
 

  

.    ⁄ /
 

. 
  

   
⁄ /

 

   
  

   
    

  
  

   
  

                                                                                    (  )   

                                                                

with limit condition  (       )   ( ). 

Solving equation (15) for the value function   and 

replacing it in (14), we obtain the optimal policy. 

 

III. RESULTS AND DISCUSSION 

 

The analysis uses daily data from Federal Reserve 

Economic Data (FRED) database, for the period 

January 1, 2022, to December 1, 2022. The DGS1MO 

rates were chosen to model short-term interest rates 

due to its relevance in investment strategies after 

retirement. 

3.1. Overview of the datasets for Short-term interest 

rate 

Pension payouts are often tied to short-term 

investments or annuities, where liquidity is important, 

and short-term rates provide a realistic reflection of 

what can be earned in liquid, low-risk investments 

like Treasury bills. Once in retirement, pension 

payouts are typically made periodically (e.g., monthly 

or annually). Therefore, a short-term rate like 

DGS1MO (1-Month U.S. Treasury Rates) is considered 

for the study. 

 
Figure 1. The plot of short-term interest rate 

(DGS1MO) from 1 Jan 2022 -1-Dec 2022 

The above line plot shows the daily movement of 

DGS1MO.The DGS1MO series exhibit a clear upward 

trend over the year. Starting near zero in January 2022, 

the rates progressively increase, reaching 

approximately 4% by December 2022.The rise in rates 

appears to be relatively smooth, with some minor 

fluctuations. The ACF and PACF plot for the observed 

data and the output of Augmented Dickey-Fuller test. 

 
Figure 2.The ACF and PACF plot of Short-term 

interest rate (DGS1MO). 

The ACF plot on the left show’s significant 

autocorrelation at multiple lags. The PACF plot on the 

right shows a significant spike at lag 1 and smaller 

spikes at higher lags, indicating that the series might 

be autoregressive to some extent. The slow decaying 

of ACF indicate the presence of volatility clustering. 

The value of Dickey-Fuller Test for Short-term 

interest rate DGS1MO is -2.2829 with lag order 6, and 

the p-value is 0.4571. Since the p-value >0.05 we fail 

reject the hypothesis of non-stationarity hence the 

data is non stationary and implies no mean reversion. 

Therefore, we proceed with the GARCH type models 

by transforming the data for stationarity to model the 

stochastic interest rates. 
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Figure 3.Plot of first order difference short-term 

interest rates (DGS1MO) 

 
Figure 4.Plot of second order differenced short-term 

interest rates (DGS1MO) 

The plots provide insights into the stationarity and 

behaviour of the short-term interest rate series 

(DGS1MO) after differencing the first-order and the 

second-order. The second-order differenced DGS1MO 

(Figure 4) also fluctuates around zero and appears to 

have reduced long-term trends compared to the first-

order differenced series. This might imply that a 

GARCH-type model would be appropriate for 

capturing the dynamics of the series. 

 

3.2. GARCH Model Estimation  

The models used to analyze the data are EGARCH and 

GJR-GARCH type for conditional variance dynamics 

with an Auto Regressive Fractional Integrated Moving 

Average (ARFIMA) mean structure. 

3.2.1. Estimation of the Model Parameters 

The parameters were estimated using the maximum 

likelihood method under a generalized error 

distribution assumption. The results are summarized 

in Table 1and Table 3. 

 
Figure 5.ACF and  QQ plot of Standardized Residuals 

of EGARCH 

 
Figure 6.Plot of actual verses fitted values from 

EGARCH 
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Figure 7.ACF and  QQ plot of Standardized Residuals 

of GJR-GARCH 

 

 
Figure 8.Plot of actual verses fitted values from GJR-

GARCH 

Table 1.Parameter Estimates for EGARCH(3, 3) with ARFIMA(5, 0, 4). 

Parameters Estimate Std. Error t-value p-value 

Mean Model Parameters     

   0.000256 0.000000 1071.0729 0.000000 

AR(1) 0.008665 0.001215 7.1289 0.000000 

AR(2) -0.201029 0.000233 -862.8699 0.000000 

AR(3) -0.200782 0.000595 -337.3244 0.000000 

AR(4) -0.013484 0.003687 -3.6571 0.000255 

AR(5) 0.245870 0.000467 526.2825 0.000000 

MA(1) -1.111595 0.000332 -3343.7337 0.000000 

MA(2) 0.316763 0.000159 1987.3065 0.000000 

MA(3) -0.258012 0.000120 -2148.0948 0.000000 

MA(4) 0.037595 0.000038 980.7524 0.000000 

Variance Model Parameters     

   -0.586218 0.002428 -241.4173 0.000000 

    -0.271071 0.001917 -141.4092 0.000000 

    0.285118 0.027205 10.4804 0.000000 

    -0.153100 0.007349 -20.8341  

    -0.060621 0.003423 -17.7107 0.000000 

    0.168792 0.000327 515.7613 0.000000 

    0.784461 0.000718 1091.9931 0.000000 
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Parameters Estimate Std. Error t-value p-value 

    1.351888 0.002313 584.3523 0.000000 

    0.335016 0.002394 139.9522 0.000000 

    -0.113289 0.009576 -11.8302 0.000000 

GED distribution parameter     

shape 1.092168 0.034048 32.0772 0.000000 

 

Table 2. Model Selection Criteria EGARCH Models. 

Model Loglikelihood AIC BIC 

EGARCH(2, 3) 390.734 -3.2752 -2.9885 

EGARCH(3, 3) 395.7899 -3.3021 -2.9853 

EGARCH(3, 4) 388.5834 -3.2298 -2.8979 

EGARCH(4, 4) 393.3356 -3.2541 -2.8919 

 

Table 3. Parameter Estimates for GJR-GARCH(4, 3) with ARFIMA(5, 0, 4). 

Parameters Estimate Std. Error t-value p-value 

Mean Model Parameters     

   0.000136 0.000003 49.4585 0.000000 

AR(1) -0.329068 0.006378 -51.5942 0.000000 

AR(2) 0.158684 0.004632 34.2566 0.000000 

AR(3) -0.215016 0.002154 -99.8306 0.000000 

AR(4) -0.081443 0.000554 -147.1142 0.000000 

AR(5) 0.236886 0.002937 80.6651 0.000000 

MA(1) -0.816330 0.001046 -780.7199 0.000000 

MA(2) -0.363125 0.001127 -322.1353 0.000000 

MA(3) 0.181358 0.001329 136.4589 0.000000 

MA(4) -0.007489 0.000293 -25.5455 0.000000 

Variance Model Parameters     

   0.000011 0.000005 2.2960 0.021674 

    0.016163 0.001646 9.8196 0.000000 

    0.014209 0.000277 51.3570 0.000000 

    0.014006 0.000522 26.8476 0.000000 

    0.016398 0.000600 27.3472 0.000000 

    0.218073 0.001439 151.5348 0.000000 

    0.214188 0.001508 141.9991 0.000000 

    0.220751 0.001542 143.1908 0.000000 

    0.187389 0.001369 136.9248 0.000000 

    0.322787 0.002574 125.4082 0.000000 

    -0.207970 0.001377 -151.0598 0.000000 

    0.222534 0.005875 37.8762 0.000000 

    -0.167833 0.001974 -85.0128 0.000000 
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Parameters Estimate Std. Error t-value p-value 

GED distribution parameter     

shape 0.880599 0.098144 8.9725 0.000000 

 

Table 4. Model Selection Criteria of GJR-GARCH Models. 

Model Loglikelihood AIC BIC 

GJR-GARCH(3,3) 374.7491 -3.1167 -2.7999 

GJR-GARCH(3,4) 374.4659 -3.1054 -2.7735 

GJR-GARCH(4,3) 378.7684 -3.1345 -2.7875 

GJR-GARCH(4,4) 373.9528 -3.0833 -2.7212 

 

It is observed from the Table 1, that the parameter 

estimates of EGARCH(3,3) are significant and the 

loglikelihood (Table 2) is maximum for EGARCH(3,3) 

with the lowest AIC and BIC. Similarly in the case of 

GJR-GARCH(4,3), it is observed that the parameter 

estimates (Table 3) are significant, the loglikelihood 

(Table 4) is maximum for GJR-GARCH(4, 3) with the 

lowest AIC and BIC. Furthermore, the MSE and 

RMSE values provide additional support for model 

selection. The MSE and RMSE for EGARCH(3,3) are 

0.8679 and 0.9316, respectively, whereas for GJR-

GARCH(4,3), the MSE and RMSE are 1.1957 and 

1.0935, respectively. The lower MSE and RMSE values 

of the EGARCH(3,3) model indicate better predictive  

accuracy compared to GJR-GARCH(4,3). Additionally 

The ACF and QQ plot (Figure 5) implies that most of 

the lags fall within the confidence band suggesting no 

autocorrelation in the residual and they are normally 

distributed. The actual versus fitted value plot  (Figure 

6) also shows that the model fits most of the observed 

values and also indicates that the model has captured 

the volatility of the short-term interest rate. The same 

is observed in the case GJR-GARCH (4, 3). From the 

above observation it implies that EGARCH(3, 3) 

model fits the short-term interest rate better than 

GJR-GARCH (4, 3) model, based on both information 

criteria (AIC, BIC) and error measures (MSE, RMSE). 

Hence in the study EGARCH(3,3) model is chosen  to 

model short-term interest rate for further analysis. 

 

3.3. Sensitivity Analysis for short-term interest rate 

Each subplot of Figure 9 represents a different 

combination of the parameters, allowing us to analyze 

how they impact post-retirement wealth sustainability 

over 20 years. 
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Table 5. Sensitivity Analysis for Post- Retirement Wealth Trajectories 

 
 

Key Observations from the above figure 

 Effect of Expected Return (α): Higher α (0.09) 

leads to better wealth accumulation, as seen in 

the bottom row. Lower α (0.07) results in more 

moderate growth, making it critical to balance 

return expectations with risk aversion. 

 Effect of Volatility (σ): Higher volatility (σ = 

0.25) increases fluctuations, making wealth 

unpredictable. Lower volatility (σ = 0.15) results 

in smoother wealth paths, reducing downside risk 

but also limiting potential gains. 

 Effect of Risk Aversion: Low risk aversion (γ = 

1)): Wealth trajectories show more aggressive 

growth but also higher. fluctuations. Some paths 

indicate significant gains, while others exhibit 

substantial drawdowns. 

 Moderate risk aversion (γ = 2): Wealth is more 

stable compared to γ = 1. While growth is 

present, returns appear more conservative. 

 High risk aversion (γ = 3): Wealth is less volatile 

but has slower growth. 

Thus, the post-retirement wealth dynamics illustrates 

the significant impact of short-term interest rate 

volatility under the EGARCH model. The findings 

suggest that optimal policy requires cautious yet 

dynamic asset allocation strategy, ensuring risk 

minimization while sustaining wealth to meet 

retirement liabilities. 

 

IV. CONCLUSION 

 

This Study demonstrates that a moderate risk aversion 

strategy (γ = 2) with controlled exposure to market 

volatility (σ between 0.15-0.25) and a return rate of α 

= 0.07 or higher appears to be the most effective 

approach for balancing growth and sustainability in a 

defined contribution pension plan. Overly 

conservative strategies risk premature wealth 

depletion, whereas highly aggressive approaches 

expose retirees to significant financial losses. 

By incorporating stochastic interest rate modeling, we 

show that EGARCH(3,3) and GJR-GARCH(4,3) 
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effectively capture interest rate volatility, leading to 

improved asset allocation decisions. The application of 

the Hamilton-Jacobi-Bellman (HJB) equation further 

enables dynamic investment adjustments, allowing 

retirees to transition from high-risk to low-risk assets 

over time. Sensitivity analysis confirms that higher 

risk aversion levels lead to more conservative 

investment choices, reinforcing the importance of 

tailoring pension strategies to individual risk 

preferences. 
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