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 The growing necessity for precise, fine-grained, and real-time weather 

predictions has exposed several limitations in conventional numerical 

weather prediction (NWP) methods. These traditional models, while 

physically grounded, are computationally expensive and often less reliable 

when dealing with incomplete or noisy atmospheric data. In light of this, 

machine learning (ML) and deep learning (DL) approaches have gained 

prominence for their ability to learn from historical patterns and handle 

the complex, nonlinear dynamics of weather systems. This survey 

examines a broad spectrum of ML and DL models, such as Support Vector 

Regression (SVR), Random Forest (RF), Gradient Boosting 

(GBM/XGBoost), Long Short-Term Memory (LSTM), and Convolutional 

Neural Networks (CNN), along with hybrid models like CNN-LSTM and 

XGBoost-LSTM. In addition, the paper explores advanced mechanisms 

such as attention layers, physics-aware ML frameworks, and preprocessing 

techniques including wavelet transforms and empirical mode 

decomposition (EMD) that contribute to improved prediction accuracy. 

Key applications reviewed include rainfall forecasting, temperature 

estimation, flood prediction, and solar radiation modelling. The survey also 

highlights ongoing challenges, including overfitting, lack of 

interpretability, uneven data distribution, and difficulties in transferring 

models across different climatic zones. By synthesizing recent 

advancements, this paper aims to provide a valuable reference point for 

researchers and practitioners seeking to enhance atmospheric forecasting 

using intelligent, data-driven approaches. 
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I. INTRODUCTION 

 

Weather forecasting plays a significant role in 

mitigating the impacts of climate variability and 

enhancing societal readiness for natural disasters. 

With rising occurrences of extreme weather situations 

due to climate change, standard physical models 

cannot cope with the increasing demand for high-

resolution, real-time prediction. These standard 

models are usually computationally intensive and 

require huge atmospheric data in order to provide 

correct predictions. Against this backdrop, researchers 

have been working on discovering data-driven 

alternatives that can complement or even surpass 

these physical models in terms of accuracy, 

responsiveness, and flexibility [1]–[5]. 

Machine Learning (ML) has emerged as a 

paradigmatic force for this shift towards intelligent 

weather forecasting. Several ML techniques, including 

Support Vector Machines (SVM), Decision Trees, k-

Nearest Neighbours (k-NN), Random Forests (RF), 

and ensemble methods, have been applied successfully 

in forecasting weather parameters like rainfall, 

temperature, humidity, and wind speed [6]–[10].  

FIGURE 1: The Structure of the Survey 
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Recent developments have utilized particle swarm-

based models for precipitation analysis [8], applied 

decision-tree strategies for forecasting in smart 

microgrid systems [9], and explored deep neural 

networks to estimate solar radiation in arid zones [10], 

reflecting the broadening scope of data-driven 

approaches tailored to specific regional climatic 

challenges. In recent research work, it has been 

shown that the use of ML models is superior to 

traditional models in predicting rain [11], classifying 

weather patterns [12], and estimating solar radiation 

and wind power [13][14]. These models are 

particularly helpful in regions where meteorological 

data is scarce or unreliable. 

With the evolution of deep learning, neural network-

based models such as Convolutional Neural Networks 

(CNNs), Recurrent Neural Networks (RNNs), and 

Long Short-Term Memory (LSTM) have been used to 

further enhance forecasting accuracy. These models 

have shown outstanding performance in time-series 

forecasting applications and spatiotemporal analysis, 

which are paramount in accurate weather forecasting 

[15]–[20]. Further, hybrid models that combine 

ML/DL with optimization algorithms have shown 

promising results in reducing forecasting error and 

enhancing system stability [21][22]. 

A. Importance of Climate 

Several recent research papers have focused on 

specific application domains such as short-term 

rainstorm forecasting using radar and satellite data, 

long-term temperature forecasting for agriculture 

planning, and wind speed estimation for renewable 

grid integration [23]–[30]. Collectively, these papers 

highlight the flexibility of machine learning to 

operate across climate regions and applications. They 

also emphasize the need for high-quality datasets, 

feature engineering, and rigorous model validation to 

generate robust and generalizable results for 

deployment in the field. 

As countries race to meet the United Nations' 

Sustainable Development Goals (SDGs), especially 

those of clean energy and climate action, the adoption 

of ML into weather forecasting systems is becoming 

more than a technological feat—it is necessary. The 

aim of this survey paper is to thoroughly review and 

contrast current advances in ML-based weather 

forecasting, highlight significant datasets and 

performance metrics used, and offer existing 

challenges and emerging research trends in this 

evolving field. 

B. Role of Machine Learning in Atmospheric 

Forecasting 

Machine learning (ML) and deep learning (DL) are 

increasingly used in weather forecasting as efficient 

alternatives to traditional physical models, which are 

often slow and data-intensive. Models like SVM, 

Random Forest, and LSTM have shown strong 

performance in predicting rainfall, temperature, and 

wind, especially in regions with limited data. Deep 

learning methods capture complex temporal and 

spatial patterns, and hybrid approaches further 

enhance prediction accuracy. While challenges like 

data quality and model transferability remain, ML is 

becoming essential for accurate, real-time forecasts 

and supporting global climate goals. This survey 

highlights recent progress, datasets, and future 

research needs. 

Figure 1 shows the main parts of this survey, divided 

into five sections. It starts with an introduction about 

the importance of climate prediction and how 

machine learning helps. The next section explains the 

methods used, including how data and models were 

chosen. Then, it reviews past studies, grouped into 

traditional, machine learning, and hybrid models. The 

evaluation part looks at how the models perform, the 

challenges faced, and what data was used. Lastly, the 

future work section talks about making models easier 

to understand, useful in different regions, and faster 

with hybrid designs.  
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II. METHODOLOGY: 

 

 
FIGURE 2: Survey Paper Selection Process 

 

A. Survey Scope and Criteria 

A broad set of academic papers was gathered through 

comprehensive searches conducted in reputable 

databases such as IEEE Xplore, ACM Digital Library, 

SpringerLink, Elsevier ScienceDirect, and Google 

Scholar. The selected period of coverage ranged from 

2015 to 2024 to capture the latest developments in the 

field. To maintain scholarly rigor, only peer-reviewed 

articles were included, specifically those utilizing 

machine learning (ML), deep learning (DL), or hybrid 

approaches to forecast meteorological parameters such 

as precipitation, temperature, humidity, wind speed, 

and solar radiation. Papers that lacked experimental 

evaluation or solely focused on traditional physical or 

statistical forecasting methods were intentionally 

excluded from consideration. 

B. Data Source and Selection Strategy 

Each selected study was categorized based on the 

nature of the forecasting strategy employed. Classical 

machine learning methods, including Random Forest 

(RF), Gradient Boosting Machines (GBM/XGBoost), 

Support Vector Regression (SVR), and k-Nearest 

Neighbours (k-NN), were grouped together due to 

their effectiveness in handling medium-sized datasets 

and providing interpretable results. Deep learning 

architectures, such as Long Short-Term Memory 

(LSTM), Bidirectional LSTM (BiLSTM), Convolutional 

Neural Networks (CNN), Gated Recurrent Units 

(GRU), and attention mechanisms, were also 

categorized separately, given their superior ability to 

model temporal sequences and spatial patterns in 

meteorological data. Notably, BiLSTM models 

combined with wavelet packet transforms have 

demonstrated improved forecasting accuracy for 

precipitation events in coastal areas [26], while radar-

based deep learning networks have shown 

effectiveness in short-term rain prediction [27] [28].  

Hybrid and Integrated Methods: This category 

consists of techniques that merge ML and DL 

elements (e.g., CNN-LSTM, XGBoost-LSTM), use 

optimization layers, or incorporate physical modeling 

outputs—like those from Numerical Weather 

Prediction (NWP)—into data-driven models. These 

models seek to enhance forecasting accuracy, 

flexibility, and interpretability[58] [59]. 

C. Categorization of ML Models Used in Climate 

Forecasting 

To facilitate an effective comparative assessment of 

the surveyed forecasting models, a multi-criteria 

evaluation framework was developed. The first 

dimension of comparison was the forecasting objective 

and the regional application context, analysing target 

variables such as rainfall intensity, solar radiation, and 

wind speed, and the geographic settings where the 

models were deployed. Studies focusing on rainfall 

estimation using satellite microwave imagery [33] and 

solar radiation forecasting in desert regions [32] 

exemplify tailored applications based on regional 

demands. Another key dimension was data 

characteristics, including the source (e.g., satellite 

imagery, ground station data, reanalysis datasets), 

volume, temporal resolution, and preprocessing 

methods like empirical mode decomposition (EMD) 

and wavelet transforms [60]. Recent studies have 
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demonstrated that satellite-driven deep learning 

models significantly improve temperature estimation 

accuracy [34], while high-resolution modelling 

techniques have been applied successfully to forecast 

convective storms in aviation meteorology [35]. The 

modelling strategy and learning approaches were also 

assessed, examining model architecture, feature 

engineering, hybridization strategies, and the use of 

sequence modelling or attention mechanisms [61]. 

Advanced studies integrating simulation-based 

forecasting for PV output [36] and meteorologically 

informed scheduling systems for smart grids [37] 

reflect growing innovation in this domain. Common 

evaluation metrics such as Root Mean Square Error 

(RMSE), Mean Absolute Error (MAE), Mean Squared 

Error (MSE), and Coefficient of Determination (R²) 

were widely adopted to ensure fair and objective 

model comparison. Finally, practical deployment 

considerations—such as model complexity, 

interpretability, computational efficiency, and 

suitability for real-time operations—were reviewed to 

evaluate each model’s potential for real-world 

application. 

 

III. RELATED WORKS ON CLIMATE PREDICTION 

 

A. Statistical and Traditional Techniques 

For the case of extreme weather phenomena, F. Khan 

et al. [2] investigated applying Convolutional Neural 

Networks (CNN) and Long Short-Term Memory 

(LSTM) models to predict flood events as a function of 

rainfall and water-level time-series data. Their model 

was quite accurate and had lesser mean squared error 

(MSE) than traditional statistical models such as 

ARIMA, thus highlighting the stability of deep neural 

architectures in learning sequential data. 

Wind forecasting for power, essential in planning 

renewable energy, has also achieved tremendous 

growth utilizing hybrid deep learning architectures. 

M. Asgari et al. [3] have presented a CNN-BiLSTM 

hybrid architecture for predicting wind speed, 

exploiting spatial information by using convolutional 

layers and temporal long-range patterns using 

recurrent units. The hybrid approach surpassed simple 

feedforward as well as independent LSTM models, 

signifying the dramatic accuracy boost of 

hybridization in deep learning architecture for 

meteorological predictions. 

Rainfall prediction is another widely researched topic. 

Nwankwo et al. [4] constructed ensemble ML models, 

namely RF, GBM, and XGBoost, to forecast rainfall 

intensity in the varied ecological regions of Ghana. 

Their results proved the versatility of ensemble 

approaches in heterogeneous climatic conditions and 

their ability to better manage missing or sparse data 

compared to single-model predictors. 

In addition, researchers have used attention 

mechanisms and Transformer-based models to 

improve multivariate time-series prediction. For 

instance, Z. Liu et al. [5] used an attention-based 

LSTM model in solar irradiance forecasting, allowing 

the model to selectively focus on the most important 

input features at each time step. ConvLSTM models, 

which incorporate convolution operations with LSTM 

units, have also exhibited better performance in 

spatial-temporal forecasting issues like cloud cover 

motion and temperature mapping [6]. 

Another significant contribution is from Wu et al. [7], 

who used deep feature extraction and subsequent 

LSTM layers to forecast wind speeds along coastal 

areas.  

Their work highlighted the advantages of 

preprocessing operations such as empirical mode 

decomposition (EMD) and wavelet transform, which 

assisted in removing noise from meteorological signals 

and enhancing prediction quality. These research 

findings are a testimony to the commonality of 

applicability and efficacy of ML and DL models in 

most subdomains of weather prediction. Nevertheless, 

there are issues like overfitting, interpretability, 

imbalanced data, and scalability across diverse 

climatic zones still open for exploration. The general 

agreement in the literature is that combining ML 

models with meteorological domain knowledge and 
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multi-source data fusion is the way forward for 

developing more consistent and more generalizable 

forecast systems. Machine learning (ML) and deep 

learning (DL) algorithms have increasingly found 

themselves essential tools within weather forecasting 

systems because of their capacity to simulate complex, 

nonlinear, and chaotic environmental phenomena. 

Classical numerical weather prediction (NWP) models, 

as useful as they are, entail high computational 

complexity and usually call for extensive atmospheric 

simulations and domain-specific knowledge. ML-

based solutions, however, present a data-driven 

solution that has the capability of learning patterns 

within unseen historical weather data and 

generalizing well across unseen situations. 

A notable work by S. Iram et al. [1] presented a 

machine learning-based architecture to predict 

temperature variations for energy optimization in 

domestic buildings. The research combined weather 

prediction with home automation to mitigate carbon 

emissions, harmonizing with large-scale climate 

action. Their framework showed the viability of ML 

not just for predicting weather but also for extended 

uses in energy-saving infrastructure. For the case of 

extreme weather phenomena, F. Khan et al. [2] 

investigated applying Convolutional Neural Networks 

(CNN) and Long Short-Term Memory (LSTM) models 

to predict flood events as a function of rainfall and 

water-level time-series data. Their model was quite 

accurate and had lesser mean squared error (MSE) 

than traditional statistical models such as ARIMA, 

thus highlighting the stability of deep neural 

architectures in learning sequential data. 

Reference Year Study Focus Methodologies 

Employed 

Meteorological Task 

Area 

Iram et al. [1] 2023 Developed an ML framework for 

indoor thermal prediction in 

smart grids 

Linear models, decision-

based learning 

Energy-efficient 

temperature control 

Khan et al. 

[2] 

2023 Applied sequential neural 

networks to anticipate floodwater 

rise 

Recurrent deep learning 

(LSTM) 

Flood risk estimation 

Nwankwo et 

al. [4] 

2024 Benchmarked classifiers across 

different regions for rainfall 

estimation 

SVM, ensemble trees 

(RF, XGBoost) 

Rain intensity 

modelling 

Liu et al. [5] 2024 Introduced dynamic weighting in 

LSTM for solar radiation 

prediction 

LSTM enhanced with 

attention layers 

Solar irradiance 

forecasting 

Wu et al. [7] 2022 Combined signal denoising and 

neural nets to estimate wind 

speed 

EMD preprocessing + 

LSTM networks 

Wind velocity 

estimation 

Ghimire et al. 

[20] 

2022 Proposed multi-region rainfall 

predictors using hybridized 

models 

Random Forest + LSTM 

integration 

Multi-zone 

precipitation modelling 

Zheng & Wu 

[29] 

2020 Engineered feature-based 

ensemble learners for wind 

prediction 

CART, SVR, RF, 

XGBoost 

Wind power 

forecasting 

Ma et al. [31] 2021 Modelled indoor climate 

parameters using boosted gradient 

XGBoost algorithm Humidity and 

temperature estimation 
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Reference Year Study Focus Methodologies 

Employed 

Meteorological Task 

Area 

models 

Olelewi et al. 

[58] 

2024 Evaluated three distinct learners 

for precipitation analysis 

Artificial Neural Nets, 

RF, SVM 

Rainfall classification 

Tran et al. 

[39] 

2024 Transferred trained DL models 

across geographical locations 

ResNet with transfer 

learning 

Cross-regional rainfall 

prediction 

Lawal et al. 

[65] 

2021 Investigated multiple hybrid 

stacks for African rainfall 

modelling 

LSTM, XGBoost, RF, 

SVR hybridization 

Regional rainfall 

forecasting 

Ganapathy et 

al. [66] 

2024 Compared traditional and DL 

models for long-term rain 

estimates 

ARIMA, XGBoost, SVR, 

LR, LSTM 

Rainfall forecasting 

using trends 

Robert et al. 

[5] 

2019 Optimized computational 

parameters in HPC-based 

simulation environments 

Profiling tools and 

black-box tuning 

Model execution 

enhancement 

Bağbaba et al. 

[6] 

2024 Built a self-optimizing ML layer 

for system-level performance 

Predictive tuning using 

ML regressors 

High-performance 

simulation tuning 

Karna et al. 

[25] 

2024 Analyzed various regression 

frameworks for short-term 

weather estimation 

Linear regression 

techniques 

General atmospheric 

prediction 

Kamal et al. 

[14] 

2022 Modeled temporal climate 

indicators using deep sequential 

learners 

LSTM and GRU 

architectures 

Climate pattern 

forecasting 

Zhang et al. 

[38] 

2024 Combined CNN and LSTM for 

satellite-based rainfall 

interpretation 

CNN feature extractor + 

LSTM sequence model 

Rain prediction from 

visual data 

Deng et al. 

[30] 

2024 Employed a boosting-based 

ensemble for electrical load and 

weather links 

Bagging with XGBoost 

learner 

Energy demand and 

temperature modelling 

Table 1:  Comparison of Existing Works 

 

B. Machine Learning-based Approaches 

Machine learning (ML) and deep learning (DL) 

algorithms have increasingly found themselves 

essential tools within weather forecasting systems 

because of their capacity to simulate complex, 

nonlinear, and chaotic environmental phenomena   . 

Classical numerical weather prediction (NWP) models, 

as useful as they are, entail high computational 

complexity and usually call for extensive atmospheric 

simulations and domain-specific knowledge. ML-

based solutions, however, present a data-driven 

solution that has the capability of learning patterns 

within unseen historical weather data and 

generalizing well across unseen situations. 

A notable work by S. Iram et al. [1] presented a 

machine learning-based architecture to predict 

temperature variations for energy optimization in 

domestic buildings. The research combined weather 

prediction with home automation to mitigate carbon 

emissions, harmonizing with large-scale climate 
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action. Their framework showed the viability of ML 

not just for predicting weather but also for extended 

uses in energy-saving infrastructure. 

Thus, the integration of machine learning into 

weather prediction represents a transformative shift, 

enabling the creation of intelligent, resource-efficient, 

and adaptable forecasting systems that extend their 

utility beyond meteorology into sectors such as energy 

optimization, disaster risk reduction, and 

environmental protection. 

C. Deep Learning and Hybrid Models 

Wind forecasting for power, essential in planning 

renewable energy, has also achieved tremendous 

growth utilizing hybrid deep learning architectures. 

M. Asgari et al. [3] have presented a CNN-BiLSTM 

hybrid architecture for predicting wind speed, 

exploiting spatial information by using convolutional 

layers and temporal long-range patterns using 

recurrent units.  

The hybrid approach surpassed simple feedforward as 

well as independent LSTM models, signifying the 

dramatic accuracy boost of hybridization in deep 

learning architecture for meteorological predictions. 

Rainfall prediction is another widely researched topic. 

Nwankwo et al. [4] constructed ensemble ML models, 

namely RF, GBM, and XGBoost, to forecast rainfall 

intensity in the varied ecological regions of Ghana. 

Their results proved the versatility of ensemble 

approaches in heterogeneous climatic conditions and 

their ability to better manage missing or sparse data 

compared to single-model predictors. 

Researchers have improved multivariate time-series 

prediction with attention mechanisms and 

Transformer models. For instance, Z. Liu et al. [5] 

used an attention-based LSTM for solar irradiance 

forecasting, enabling the model to focus on key input 

features. ConvLSTM models, which combine 

convolution with LSTM, have enhanced spatial-

temporal forecasting for tasks like cloud cover motion 

[6]. Wu et al. [7] applied deep feature extraction with 

LSTM for coastal wind speed forecasting, showing that 

techniques like EMD and wavelet transforms 

effectively denoise meteorological signals, boosting 

accuracy. 

Model Type Strengths Primary Limitations Mitigation Strategies Examples of Models 

NWP 

(Numerical 

Weather 

Prediction) 

Interpretable, 

physics-consistent, 

widely validated 

High computational 

cost, low 

adaptability in real 

time 

Combine with ML/DL 

for post-processing; 

scale using HPC 

GloSea6, ECMWF, 

ARPEGE, WRF, GFS 

Traditional 

ML 

Fast execution, 

interpretable logic, 

low data 

requirements 

Can’t model deep 

temporal/spatial 

dependencies well 

Use ensembles, 

automate feature 

engineering, hybridize 

with DL 

Random Forest (RF), 

Support Vector 

Machines (SVM), 

Decision Trees, 

XGBoost, k-NN 

Deep 

Learning (DL) 

Strong for 

temporal and 

spatial learning, 

minimal feature 

crafting 

Black-box behavior, 

needs large datasets 

and time 

Add attention 

mechanisms, use 

pretraining, apply 

regularization 

LSTM, GRU, CNN, 

BiLSTM, ConvLSTM, 

Attention-LSTM 

Hybrid 

Models 

Combines 

strengths from 

NWP, ML, and DL 

approaches 

Complex 

architecture, tuning 

overhead 

Use AutoML 

frameworks, integrate 

physics knowledge, 

leverage 

CNN-LSTM, XGBoost-

LSTM, Physics-informed 

DL, ResNet+Transfer 

Learning, EMD+LSTM 
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Model Type Strengths Primary Limitations Mitigation Strategies Examples of Models 

interpretability 

modules 

Table 2: Comparison of works on climate prediction 

 

Table 1 highlights recent research applying machine 

learning (SVM, Random Forest, LSTM) to weather 

tasks like rainfall prediction, flood risk assessment, 

and solar radiation estimation, with an increasing 

focus on hybrid models and transfer learning for 

better accuracy. 

Table 2 compares weather forecasting models (NWP, 

ML, DL, and hybrid systems), noting that while 

hybrid models are complex, they offer the best 

combination of accuracy, speed, and flexibility. 
Figure 3: Evolution of Weather Forecasting Models – 

From Traditional NWP to Deep Learning and Hybrid 

Approaches 

 

IV. EVALUATION AND INSIGHT GAINED 

 

Author / 

Study 

Year Focus Area Model Employed Notable Strengths Core Limitations 

GloSea6, 

NWP 

Models 

2024 Simulating global 

atmospheric 

systems 

Numerical 

Weather 

Prediction 

(NWP) 

Scientifically grounded; 

reliable over decades 

High computational 

cost; poor response in 

extreme cases 

Robert et al. 

[5] 

2023 Performance 

optimization in 

weather models 

Black-box 

optimization + 

HPC 

Reduces execution 

time; enhances model 

throughput 

Based on fixed 

assumptions; less 

flexible 

S. Iram et al. 

[1] 

2023 Energy-efficient 

indoor climate 

forecasting 

Decision Trees, 

Linear Models 

Low complexity; fast 

execution; explainable 

Limited nonlinear 

learning capability 

Nwankwo 

et al. [4] 

2023 Rainfall 

prediction in 

regional 

ecosystems 

Random Forest, 

GBM, XGBoost 

Effective in sparse data 

conditions; strong 

ensemble learning 

Needs careful 

parameter tuning; 

prone to overfitting 

F. Khan et 

al. [2] 

2021 Forecasting flood 

levels using time-

series 

CNN + LSTM Learns both space-time 

dependencies; lower 

MSE than traditional 

models 

Requires large 

datasets; sensitive to 

noise 

Wu et al. [7] 2019 Predicting wind 

speed in coastal 

EMD 

preprocessing + 

Enhanced signal 

learning; denoises 

Less generalization; 

preprocessing adds 
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Author / 

Study 

Year Focus Area Model Employed Notable Strengths Core Limitations 

regions LSTM meteorological input complexity 

Liu et al. [5] 2023 Solar irradiance 

forecasting 

Attention-based 

LSTM 

Focuses on relevant 

temporal patterns; 

interpretable 

Heavy architecture; 

training overhead 

Asgari et al. 

[3] 

2020 Short-term wind 

speed interval 

prediction 

CNN + BiLSTM 

Hybrid 

Captures spatial-

temporal dynamics 

effectively 

Long training cycles; 

data-demanding 

Lawal et al. 

[65] 

2021 Precipitation 

modeling in 

Africa 

LSTM + XGBoost 

+ SVR + RF 

(Ensemble) 

High resilience across 

zones; combines 

strengths of various 

models 

Complex tuning; 

interpretation 

challenges 

Ganapathy 

et al. [66] 

2024 Rainfall trend 

estimation using 

hybrid models 

ARIMA, SVR, 

LSTM 

Offers cross-model 

evaluation insights 

Traditional models 

lag in capturing 

complex features 

Zhang et al. 

[38] 

2024 Rain prediction 

from satellite data 

CNN + LSTM Handles satellite 

imagery; detects deep 

temporal-spatial signals 

High data annotation 

burden; intensive 

training 

Tran et al. 

[39] 

2024 Rainfall 

forecasting across 

geographies 

ResNet + Transfer 

Learning 

Learns across regions; 

flexible to data domains 

Needs pretraining; 

domain-specific 

adaptation required 

Kamal et al. 

[14] 

2022 Modeling climate 

indicators 

through 

sequences 

LSTM + GRU Strong sequential 

learning; captures 

climate cycles 

Gradient issues; 

reduced 

interpretability 

Table 3: Evaluation and Insight of Existing Works in Terms of its Strength and Limitation 

 

A. Comparative Performance of Machine Learning 

Models 

Machine learning methods like Random Forest (RF), 

Gradient Boosting Machines (GBM), Support Vector 

Machines (SVM), and k-Nearest Neighbors (k-NN) are 

effective for meteorological predictions, recognizing 

complex data patterns. For example, Nwankwo et al. 

used ensemble classifiers for rainfall forecasting in 

Ghana, which perform well in sparse data situations 

and help reduce overfitting. Iram et al. applied 

regression and decision tree models for indoor thermal 

forecasting, but these models rely on manual feature 

selection and can overfit. 

To enhance performance, techniques like ensemble 

methods (stacking, boosting), automated feature 

selection (recursive feature elimination, L1 

regularization), and rigorous cross-validation (k-fold, 

leave-one-out) are essential. These strategies, as 

shown by Karna et al. and Olelewi et al. 

B. Common Challenge and Limitation 

Hybrid models combining machine learning (ML), 

deep learning (DL), and physical modeling are gaining 

popularity in meteorological forecasting. Models like 

CNN-LSTM (Zhang et al.), XGBoost-LSTM (Lawal et 

al.), and physics-aware DL systems (He et al.) show 

better accuracy and adaptability. However, these 

complex architectures present challenges in training, 
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tuning, and interpretability, making optimization 

resource-heavy and decision-making hard to 

understand. 

To address these, tools like AutoML automate model 

development, while explainable AI (XAI) methods 

like LIME and SHAP improve transparency and model 

interpretability. These advancements, as noted by 

Ganapathy et al. and Tran et al., make hybrid models 

more user-friendly and reliable in practical 

applications. 

C. Datasets and Evaluation Metrics Used 

Deep learning models such as LSTM, CNN, GRU, and 

BiLSTM are effective for sequential and spatial data in 

meteorological forecasting. For example, Khan et al. 

used CNN-LSTM for flood forecasting, and Liu et al. 

applied attention-based LSTM for solar irradiance 

prediction, achieving higher accuracy and 

interpretability. However, these models demand large 

datasets and significant computational power. 

To tackle data limitations, techniques like signal 

decomposition (EMD, wavelets) and transfer learning 

are used to reduce data dependency and enhance 

generalization. Attention mechanisms improve feature 

selection and model transparency. 

Evaluation is done with metrics like Mean Absolute 

Error (MAE), Root Mean Squared Error (RMSE), and 

R-squared (R²) to assess model accuracy and 

performance across various datasets. 

Table-3 reviews recent (2020–2024) machine learning 

applications in meteorology, highlighting hybrid 

models, transfer learning, and ensemble techniques. 

Methods like SVM, Random Forests, CNNs, LSTMs, 

and integrated models address tasks such as flood 

forecasting, rainfall prediction, solar radiation, and 

wind modeling, with a trend toward deep learning for 

improved accuracy and adaptability. 

 

V. FUTURE RESEARCH 

 

A. Explainable Deep Learning Model 

Improving interpretability in deep learning remains 

essential. Although models like LSTM and CNN are 

effective, their internal operations lack transparency. 

Future work should embed explainability techniques 

such as SHAP, saliency maps, and attention 

visualizations to promote user trust and foster model 

accountability. 

Integration of physical principles with data-driven 

models remains underutilized. Embedding outputs or 

constraints from NWP simulations into ML/DL 

training could enhance both prediction accuracy and 

scientific validity, leading to physics-informed ML 

frameworks. 

B. Cross-Regional Model Generation 

Enhancing cross-regional transferability is crucial. 

Existing models often perform well within the bounds 

of a specific dataset but degrade across regions with 

different climate dynamics. Domain adaptation, 

transfer learning, and federated training pipelines 

hold potential to improve the portability of models 

without the need for region-specific retraining. 

Addressing data scarcity and imbalance is a recurring 

issue. While preprocessing tools like EMD and 

wavelets have shown merit, further development of 

synthetic data generation and robust augmentation 

strategies could significantly improve the performance 

of DL models, especially in data-constrained 

environments. 

C. Lightweight Hybrid Architectures 

As hybrid models continue to gain traction, attention 

must be given to their efficiency and deployment 

readiness. These models are computationally 

expensive, making real-time application challenging. 

Research should prioritize modular and lightweight 

architectures that can maintain accuracy while 

minimizing latency. The use of AutoML for model 

tuning and architecture selection could streamline 

development. 

There is an urgent need for standardized benchmarks 

and open-access datasets. Consistent datasets 

annotated with unified evaluation metrics (e.g., RMSE, 

MAE, R²) would facilitate reliable model comparisons 

and support reproducibility across studies. 
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Collectively, these future research directions highlight 

the need for intelligent, adaptable, and interpretable 

climate forecasting solutions, capable of addressing 

global environmental challenges through data-centric 

innovations and interdisciplinary collaboration. 

 

VI. CONCLUSION 

 

This survey has reviewed the evolution and 

integration of machine learning (ML) and deep 

learning (DL) methodologies within the domain of 

atmospheric forecasting. Traditional numerical 

weather prediction (NWP) models, while 

scientifically rigorous, often suffer from 

computational intensity and reduced adaptability in 

uncertain or extreme conditions. ML and DL offer a 

viable alternative by learning complex, nonlinear 

patterns directly from data, enabling more flexible and 

efficient forecasting systems. 

The analysis covered a wide array of models including 

Support Vector Regression (SVR), Random Forest (RF), 

Gradient Boosting (GBM/XGBoost), Long Short-Term 

Memory (LSTM), Convolutional Neural Networks 

(CNN), and hybrid architectures like CNN-LSTM and 

XGBoost-LSTM. These techniques have demonstrated 

improved accuracy in forecasting rainfall, temperature, 

wind speed, and solar irradiance. Moreover, the 

incorporation of attention mechanisms, signal 

preprocessing (e.g., wavelet transforms, empirical 

mode decomposition), and physics-informed ML 

models has shown potential in enhancing prediction 

reliability and robustness. 

However, several challenges remain unresolved. Issues 

such as overfitting, limited model interpretability, 

imbalanced datasets, and insufficient model 

generalization across diverse climate zones are 

prevalent. The lack of standardized benchmark 

datasets and minimal integration of meteorological 

domain knowledge further hinders progress in the 

field. 

To advance ML-driven forecasting, future research 

should focus on enhancing model transparency, 

improving cross-regional generalizability, and 

adopting strategies such as transfer learning, self-

supervised learning, and multi-source data fusion. The 

continued convergence of physical sciences and data-

driven intelligence will be crucial in building next-

generation forecasting systems capable of supporting 

climate resilience and sustainable 

development objectives. 
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