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 The rapid rise of synthetic media, especially deepfakes, has sparked major 

concerns around misinformation, identity fraud, and diminishing public 

confidence in visual content. As these altered videos grow increasingly 

realistic, there is a pressing demand for reliable and scalable detection 

methods. This paper explores the use of the XceptionNet convolutional 

neural network architecture for deepfake detection. The analysis is based 

on the FaceForensics++ dataset, which comprises more than 1.8 million 

manipulated images created with four sophisticated face manipulation 

methods: NeuralTextures, FaceSwap, Face2Face, and DeepFakes. Cropped 

facial images are used for binary classification which is a process of 

differentiating between authentic and fraudulent content. Experimental 

results; with an accuracy of over 95% on unprocessed, and high-quality 

videos; over 80% accuracy even when heavily compressed; demonstrate 

that XceptionNet significantly outperforms both human observers and 

traditional detection methods, particularly under conditions of image 

compression. These findings highlight the robustness of deep learning-

based models and the critical role of domain-specific preprocessing in 

improving detection accuracy. 
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I. INTRODUCTION 

 

The manipulation of visual content, particularly facial 

imagery, has become increasingly widespread and 

raises significant concerns in today’s digital society. 

One notable example is DeepFakes [1], which 

demonstrates how advances in computer graphics and 

visualization can be misused—for instance, replacing 

an individual’s face with another to fabricate events or 

statements. Human faces are especially susceptible to 

such manipulation techniques due to two main factors: 

firstly, the domain of facial tracking and 

reconstruction is well-established within computer 

vision [11]; secondly, the human face is central to 

communication, often serving as a standalone medium 

for conveying emotions and intentions [18]. 

Facial manipulation techniques generally fall into two 

main categories: expression manipulation and identity 

manipulation. Expression manipulation involves 

altering facial movements. For example, Thies et al. 

introduced Face2Face [59], which allows real-time 

transfer of one individual’s facial expressions to 
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another using basic consumer hardware. Similar 

works such as ―Synthesizing Obama‖ [55] take this 

further by generating realistic facial animations from 

audio inputs alone. 

Identity manipulation, on the other hand, typically 

involves replacing one person’s face with another's—a 

process known as face swapping. This has gained 

mainstream popularity due to the rise of user-friendly 

applications like Snapchat and has been enhanced 

further by deep learning techniques such as 

DeepFakes [1]. Unlike real-time face swapping using 

conventional graphics, DeepFakes require extensive 

training for each pair of subjects, making the process 

computationally intensive. 

These methods often rely on image-based rendering 

and have been extended to other domains. For 

instance, they can be applied in virtual reality with 

eye-tracking and reenactment [60] or even extended 

to full-body motion transfer [61]. In the deep learning 

space, Kim et al. [39] proposed an image-to-image 

translation model to convert rendered face images 

into photorealistic outputs. An improved approach, 

NeuralTextures [57], jointly optimizes a learned 

texture and rendering network, achieving particularly 

sharp results in areas like the mouth compared to 

Deep Video Portraits [39]. 

Other advancements include audio-driven 

reenactment, such as the work by Suwajanakorn et al. 

[55], who learned to synthesize lip movements from 

audio, using blending techniques similar to Face2Face. 

Averbuch-Elor et al. [8] introduced Bringing Portraits 

to Life, a method that deforms still images to match a 

source actor’s expressions using 2D warping. 

Recently, deep learning has enabled a variety of face 

image synthesis methods. A detailed overview is 

presented by Lu et al. [47]. Generative Adversarial 

Networks (GANs) have been employed for tasks like 

face aging [7], view synthesis [34], and changing facial 

attributes such as skin tone [46]. Techniques such as 

Deep Feature Interpolation [62] and Fader Networks 

[43] demonstrate impressive results in modifying 

features like age, facial hair, or expressions. However, 

early GAN-based models were limited by low image 

resolutions. This has been significantly improved by 

Karras et al. [37], who introduced progressively 

growing GANs capable of generating high-resolution, 

photorealistic faces. 

In this paper, we apply XceptionNet model to the 

FaceForensics++ dataset a large scale collection of 

manipulated facial videos. We preprocess input images 

by extracting and enlarging the facial region using a 

robust face tracking algorithm, ensuring the model 

focuses on relevant areas. We evaluate XceptionNet 

across various manipulation techniques and 

compression levels, comparing it against baseline 

models and human performance. 

 
Fig 1: Block Diagram of XceptionNet Model 

 

II. RELATED WORK 

 

Traditional multimedia forensics and contemporary 

CNN-based classifiers have both been used in previous 

deepfake detection research. Statistical patterns are 

the foundation of hand-crafted feature techniques like 

steganalysis in conjunction with SVMs, however they 

suffer under compression. Convolutional neural 

networks (CNNs), as opposed to traditional models, 

have been used to detect facial manipulations in 

videos. Researchers like MesoNet, a compact CNN 

model, have shown greater robustness by 

automatically learning manipulation patterns from the 

data itself, while XceptionNet, which was first trained 

on ImageNet, provides a solid baseline that can be 

further refined using forensic datasets. 

To extract particular image features or modification 

types, the majority of forensic datasets were 
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traditionally produced under extremely controlled 

conditions, which frequently required a significant 

amount of manual labor.  

The following are the most significant linked papers:  

Face Manipulation Method 

Interest in virtual face alteration has increased 

dramatically during the last 20 years. Zollhöfer et al. 

provide a thorough overview of the field [68]. Video 

Rewrite by Bregler et al. [13], which presented an 

image-based technique for automatically producing 

lip movements to create fresh video footage, is one of 

the early milestones. One of the first automatic face-

swapping techniques, Video Face Replacement, was 

developed by Dale et al. [20]. Their method warped 

the source face onto the target by reconstructing 3D 

models from monocular recordings.  

Building on this foundation, Garrido et al. [29] 

developed a system that replaces an actor’s face while 

retaining their original expressions. Similarly, VDub 

[30] utilized high-quality 3D face capturing to photo-

realistically sync an actor’s face with a dubber's voice. 

Thies et al. made major contributions with their real-

time expression transfer methods. In [58], they used 

consumer-grade RGB-D cameras to track and transfer 

3D facial deformations between individuals. Later, 

Face2Face [59] allowed real-time manipulation of 

facial expressions in online videos by blending 

modified 3D models into the original footage. 

These methods often rely on image-based rendering 

and have been extended to other domains. For 

instance, they can be applied in virtual reality with 

eye-tracking and reenactment [60] or even extended 

to full-body motion transfer [61]. In the deep learning 

space, Kim et al. [39] proposed an image-to-image 

translation model to convert rendered face images 

into photorealistic outputs. An improved approach, 

NeuralTextures [57], jointly optimizes a learned 

texture and rendering network, achieving particularly 

sharp results in areas like the mouth compared to 

Deep Video Portraits [39]. 

Other advancements include audio-driven 

reenactment, such as the work by Suwajanakorn et al. 

[55], who learned to synthesize lip movements from 

audio, using blending techniques similar to Face2Face. 

Averbuch-Elor et al. [8] introduced Bringing Portraits 

to Life, a method that deforms still images to match a 

source actor’s expressions using 2D warping. 

Recently, deep learning has enabled a variety of face 

image synthesis methods. A detailed overview is 

presented by Lu et al. [47]. Generative Adversarial 

Networks (GANs) have been employed for tasks like 

face aging [7], view synthesis [34], and changing facial 

attributes such as skin tone [46]. Techniques such as 

Deep Feature Interpolation [62] and Fader Networks 

[43] demonstrate impressive results in modifying 

features like age, facial hair, or expressions. However, 

early GAN-based models were limited by low image 

resolutions. This has been significantly improved by 

Karras et al. [37], who introduced progressively 

growing GANs capable of generating high-resolution, 

photorealistic faces. 

Multimedia Forensics 

The goal of multimedia forensics is to verify the 

authenticity, origin, and integrity of images or videos 

without relying on embedded security mechanisms. 

Traditional approaches leveraged handcrafted features 

to detect statistical or physical inconsistencies during 

media formation [26, 53]. With the rise of deep 

learning, CNN-based methods—both supervised and 

unsupervised—have become prevalent in the field [9, 

10, 12, 17, 35, 67]. 

In video forensics, the focus has been on detecting 

tampering operations that require minimal technical 

skill, such as frame duplication or deletion [31, 45, 63], 

interpolation artifacts [25], copy-move manipulations 

[11, 21], and chroma keying [48]. 

Particular attention has been given to face-specific 

forgeries. Techniques exist to identify computer-

generated faces [15, 22, 51], morphing attacks [50], 

splicing [23, 24], and face swapping [38, 66]. Some 

detection approaches exploit visual inconsistencies 

from synthesis pipelines, like irregular eye blinking 

[44], or subtle differences in color, texture, and shape 
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[23, 24]. Others train deep networks to detect both 

low-level and semantic anomalies [5, 33, 38, 50, 66]. 

While many of these approaches show promising 

results, a key limitation is robustness. Common media 

operations—like compression, resizing, and re-

encoding—can obscure forensic traces, making 

detection difficult in practical scenarios. These 

operations are especially common on social media 

platforms, where manipulated content is widely 

shared. 

Forensic Analysis Datasets 

Historically, most forensic datasets were created under 

highly controlled conditions, often requiring 

substantial manual effort to isolate specific image 

properties or manipulation types. While several 

datasets exist for image-level forgery detection, few 

adequately represent video-based manipulations. For 

instance, the MICC F2000 dataset [6] includes 700 

forged images involving copy-move attacks, while the 

IEEE Forensics Challenge dataset contains 1,176 

forged images. The Wild Web Dataset [64] and the 

Realistic Tampering dataset [42] offer small collections 

of real-world manipulations (90 and 220 images, 

respectively). 

For facial forgeries, Zhou et al. [66] released a dataset 

of 2,010 images generated using FaceSwap and 

SwapMe. Korshunov and Marcel [41] contributed a 

collection of 620 DeepFake videos involving 43 

subjects. The most extensive dataset to date was 

published by the National Institute of Standards and 

Technology (NIST), containing around 50,000 

manipulated images and 500 forged videos [32]. 

In contrast to these efforts, our work introduces a vast 

and diverse dataset comprising more than 1.8 million 

images extracted from 4,000 manipulated videos, 

surpassing prior datasets by an order of magnitude. 

This scale is essential for training robust deep learning 

models and evaluating their performance under 

realistic conditions—including varied resolutions and 

compression levels, as explored in Section 3 and 

further analyzed in Section 4. The availability of such 

a dataset supports the development of more effective 

and resilient facial forgery detectors suited for real-

world forensic applications. 

 
Fig 2: Comparison of model performance across 

different video quality settings (LQ: Low Quality, HQ: 

High Quality, Raw: Uncompressed). As observed, 

XceptionNet achieves the highest accuracy across all 

quality levels, with especially strong performance on 

uncompressed (Raw) videos. 

 

Advancements in this field have been supported by 

datasets like DF-TIMIT and the DeepFake Detection 

Challenge, but FaceForensics++ remains a key 

benchmark due to its diverse manipulations, large 

scale, and realistic compression settings. The 

FaceForensics++ dataset includes both graphics-based 

and learning-based manipulation techniques, 

providing a comprehensive basis for model evaluation. 

 

III. METHODOLOGY 

 

We adopt XceptionNet for binary classification of 

facial images as real or fake. Our training pipeline uses 

face tracking to crop and enlarge facial regions by a 

factor of 1.3 to preserve contextual features. The 

model's final layer is replaced with a binary classifier, 

and the network is fine-tuned on the FaceForensics++ 

training set. 

In order to simulate normal social media uploads, 

experiments are conducted under three distinct video 

quality levels: raw (uncompressed), HQ (lightly 

compressed), and LQ (heavily compressed). For each 
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quality setting, we evaluate accuracy, precision, and 

robustness across various manipulation techniques. 

 
Fig 3: Performance evaluation of XceptionNet on 

Deepfake videos across different video quality settings: 

Raw (uncompressed), HQ (light compression), and LQ 

(heavy compression). 

 

IV. RESULTS 

 

With accuracy rates above 95%, XceptionNet 

performs exceptionally well in both raw and high 

definition videos. It outperforms shallow CNNs and 

steganalysis techniques, maintaining over 80% 

accuracy even under severe compression. The model 

also surpasses human detection capabilities, especially 

on NeuralTextures manipulations, which were 

notably difficult for human participants. 

Our ablation study shows the importance of face-

centric preprocessing; using the full image results in a 

performance drop. Additionally, increasing training 

data size improves detection in compressed scenarios, 

reinforcing the value of large-scale datasets.  

 

V. CONCLUSIONS 

 

The legitimacy of visual media is being threatened by 

the growing complexity of deepfake technologies. 

Using the XceptionNet architecture, which was 

refined on the large FaceForensics++ dataset, this 

work demonstrated an efficient method for deepfake 

detection.  

Our method, which leverages face-centric 

preprocessing and binary classification, achieved over 

95% accuracy on high-quality videos and maintained 

robustness even under heavy compression—

conditions common in real-world scenarios.   The 

experimental results highlight how important deep 

learning and domain-specific preparation are to 

surpassing both human perception and conventional 

forensics. Our ablation work also demonstrates how 

preprocessing and extensive training data can improve 

detection reliability to a great extent. 

In the future, investigating ensemble models and 

including temporal characteristics from video 

sequences may provide even more advancements. 

However, this study establishes a solid basis for 

accurate and scalable deepfake detection systems, 

which are necessary for the verification of digital 

information. 
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