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 The integration of Artificial Intelligence (AI) with multiphysics fluid 

dynamics modeling has emerged as a transformative approach in product 

design engineering. As industries demand faster, more efficient, and cost-

effective solutions, traditional Computational Fluid Dynamics (CFD) 

methods—while powerful—are often limited by high computational costs, 

long simulation times, and the complexity of solving coupled multiphysics 

phenomena. AI-based optimization addresses these challenges by 

enhancing predictive accuracy, accelerating simulation workflows, and 

enabling real-time design iteration across a range of fluid dynamics 

applications, including aerodynamics, thermal management, and fluid-

structure interaction. Recent advances have focused on the use of machine 

learning algorithms, particularly deep learning, surrogate modeling, and 

reinforcement learning, to approximate complex flow behavior and reduce 

reliance on full-scale numerical simulations. These models learn from large 

datasets generated by high-fidelity simulations or experimental data to 

predict outcomes under new conditions with remarkable speed and 

accuracy. Hybrid approaches combining physics-informed neural 

networks (PINNs) with CFD solvers enable adherence to governing 

physical laws while leveraging AI’s pattern recognition capabilities, 

offering a new paradigm for solving Navier-Stokes and other coupled 

partial differential equations in multiphysics environments. In product 

design engineering, AI-driven optimization frameworks are increasingly 

employed to automate geometry generation, refine mesh quality, minimize 

drag, optimize heat transfer, and manage multiphase flow systems. These 
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tools enable engineers to explore vast design spaces, identify optimal 

solutions rapidly, and adapt to changing performance constraints. 

Furthermore, the use of AI in uncertainty quantification and sensitivity 

analysis contributes to more robust and resilient product development 

cycles. This paper reviews current advancements in AI-integrated 

multiphysics fluid dynamics, highlighting applications in automotive, 

aerospace, energy systems, and biomedical device design. It also identifies 

limitations in current methodologies, including data scarcity, model 

generalization, and integration complexity. The future of AI in this domain 

lies in the convergence of explainable AI, edge computing, and 

autonomous simulation systems that can continuously learn and adapt, 

driving innovation in next-generation product development. 

Keywords: Artificial Intelligence, Multiphysics Fluid Dynamics, 

Computational Fluid Dynamics (CFD), Product Design Engineering, 

Machine Learning, Optimization, Surrogate Modeling, Deep Learning, 

Physics-Informed Neural Networks (PINNs), Simulation Acceleration. 

 

I. Introduction 

 

In modern product design engineering, the 

integration of multiphysics fluid dynamics has 

become essential for developing high-performance 

systems across various industries, including aerospace, 

automotive, biomedical, and energy. These systems 

often involve complex interactions among fluid flow, 

heat transfer, structural mechanics, and even 

chemical reactions, all of which must be accurately 

modeled to ensure optimal functionality, safety, and 

efficiency (Adeleke & Peter, 2021, Oladosu, et al., 

2021, Onukwulu, et al., 2021). Computational Fluid 

Dynamics (CFD) has long served as a cornerstone for 

analyzing such interactions, enabling engineers to 

simulate and refine designs before physical 

prototyping. However, traditional CFD methods are 

often computationally intensive, time-consuming, and 

limited in their capacity to handle high-dimensional 

parameter spaces and nonlinear multiphysics 

couplings within strict design timelines. These 

challenges become even more pronounced when 

rapid design iterations, uncertainty quantification, or 

real-time control responses are required. 

In response to these limitations, artificial intelligence 

(AI) has emerged as a transformative tool in the 

optimization of multiphysics fluid dynamics problems. 

AI-based approaches, particularly those leveraging 

machine learning and deep learning techniques, are 

redefining the boundaries of computational modeling 

by enabling faster simulations, intelligent parameter 

tuning, and real-time predictive analytics (Ogunwole, 

et al., 2022, Okeke, et al., 2022, Onukwulu, et al., 

2022). These models can learn from vast datasets 

generated by high-fidelity CFD simulations, capturing 

complex fluid-structure interactions and multi-

domain dependencies without the need for repeated 

numerical solving. Surrogate models, neural networks, 

and reinforcement learning agents are increasingly 

used to approximate simulation outputs, identify 

optimal design configurations, and support adaptive 

control strategies in dynamic environments. As a 

result, AI-driven optimization not only accelerates 
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the design cycle but also opens new frontiers in 

performance enhancement and system innovation. 

This paper aims to explore recent advances in AI-

based optimization techniques for multiphysics fluid 

dynamics and their growing impact on product design 

engineering. It investigates how AI tools are being 

integrated into traditional simulation workflows to 

overcome computational barriers and enable scalable, 

data-driven design processes. The scope of the study 

includes the application of AI for surrogate modeling, 

design space exploration, uncertainty reduction, and 

real-time simulation, with a particular focus on their 

implementation in fluid-thermal-structural systems 

(Aderamo, et al., 2024, Ofodile, et al., 2024, Omowole, 

et al., 2024). Through this examination, the paper 

highlights the potential of AI to revolutionize how 

fluid-dynamics-informed engineering products are 

conceived, evaluated, and optimized in the era of 

digital innovation. 

 

II. Methodology 

 

The methodology for the study on Advances in AI-

Based Optimization for Multiphysics Fluid Dynamics 

in Product Design Engineering using the PRISMA 

method was structured to ensure comprehensive 

evidence synthesis and rigorous inclusion of relevant 

conceptual frameworks. Initially, a focused objective 

was developed to investigate how artificial 

intelligence techniques can enhance the optimization 

process in fluid dynamics simulations across 

multidisciplinary product design applications. The 

research design involved a systematic exploration of 

literature indexed in peer-reviewed databases, 

targeting recent advances that intersect computational 

fluid dynamics (CFD), product engineering, artificial 

intelligence (AI), and optimization. Studies included 

in this review were selected based on relevance to AI-

based modeling, design process integration, and 

multiphysics simulation contexts. 

The search strategy involved querying indexed 

databases using key terms such as ―AI in product 

design,‖ ―optimization in CFD,‖ ―intelligent fluid 

dynamics,‖ and ―multiphysics simulation.‖ Filters 

were applied to restrict results to English-language 

articles published within the past five years. The 

initial pool of literature underwent a two-stage 

screening: title and abstract screening followed by 

full-text review. Eligibility was determined using a 

defined set of inclusion and exclusion criteria. Studies 

that presented practical frameworks, comparative 

analyses, simulations, or empirical results were 

retained. Articles lacking methodological clarity or 

real-world applicability were excluded. 

Data extraction was systematically carried out to 

capture study characteristics, including author 

contributions, AI algorithms used (e.g., neural 

networks, reinforcement learning, genetic algorithms), 

simulation tools (e.g., ANSYS, OpenFOAM), and the 

nature of fluid-structure interaction problems 

addressed. Particular attention was given to methods 

enhancing design performance through optimization 

loops that integrate real-time data processing, sensor 

feedback, or metamodeling strategies. The findings 

were analyzed thematically, with studies grouped into 

clusters representing: (1) model development and 

integration, (2) optimization strategies, and (3) 

validation techniques. 

A comparative synthesis of methods enabled the 

formulation of a conceptual framework unifying AI 

algorithms with CFD workflows. This framework 

incorporates data preprocessing, surrogate modeling, 

multi-objective optimization, and iterative refinement 

loops, addressing both computational efficiency and 

design accuracy. Validation techniques included in 

the analyzed papers comprised both benchmark 

simulations and real-world case studies, enabling the 

identification of promising hybrid models combining 

deep learning with finite volume methods. 

The study advanced current knowledge by proposing 

a scalable model for incorporating intelligent 

algorithms into CFD-driven product design, 

highlighting industrial use cases in aerospace, energy 

systems, and biomedical engineering. This model 
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addresses common challenges such as simulation 

latency, convergence instability, and high-

dimensional parameter spaces by leveraging AI’s 

adaptive learning capabilities. Ultimately, the review 

offers a consolidated pathway for engineers and 

developers to transition from manual, trial-and-error 

design cycles to AI-assisted, automated optimization 

processes that are not only cost-effective but also 

yield enhanced performance outcomes in complex 

multiphysics environments.  

 
Figure 1: PRISMA Flow chart of the study 

methodology 

 

III. Fundamentals of Multiphysics Fluid Dynamics 

 

Multiphysics fluid dynamics represents a significant 

advancement in engineering simulation 

methodologies, integrating multiple interacting 

physical phenomena to accurately model complex 

systems in product design. This domain encompasses 

fluid-thermal, fluid-structure interactions (FSI), fluid-

electromagnetic coupling, and various other 

combinations of physical effects (Sam Bulya, et al., 

2023). The core rationale behind multiphysics 

approaches lies in the recognition that real-world 

engineering problems rarely exist in isolation. Rather, 

systems typically exhibit intricate interactions 

between fluid flows and various other physical 

phenomena. Thus, the scope of multiphysics fluid 

dynamics includes scenarios such as heat transfer in 

fluid flow, fluid-induced vibrations of structures, 

electro-hydrodynamics, and magnetohydrodynamics, 

among others. By accurately capturing these 

interactions, engineers can better predict system 

behavior, enhance design reliability, optimize product 

performance, and reduce the risk of unexpected 

failures. Figure 2 shows the framework for the AI-

based aerodynamic design system presented by Zou, 

et al., 2024. 

 
Figure 2: Framework for the AI-based aerodynamic 

design system (Zou, et al., 2024). 

 

A primary aspect of multiphysics fluid dynamics is 

fluid-thermal interaction, frequently encountered in 

processes such as combustion engines, heat 

exchangers, electronic cooling systems, and aerospace 

propulsion. Fluid-thermal coupling involves the 

simultaneous consideration of fluid dynamics and 

heat transfer, allowing simulation of how fluid flow 

impacts thermal gradients and vice versa (Adeoba, 

Pandelani & Ngwagwa, 2024, Ogunsola, et al., 2024, 

Onyeke, et al., 2024). This coupling typically requires 

solving the Navier-Stokes equations for fluid flow 

simultaneously with the energy equation governing 

heat conduction and convection processes. In doing so, 

simulation tools capture phenomena such as thermal 

boundary layer development, convective heat transfer 
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enhancement, and temperature-induced viscosity 

variations that significantly influence flow 

characteristics. 

Another critical multiphysics interaction is fluid-

structure interaction (FSI), prevalent in structural 

mechanics and aerospace engineering applications. 

FSI modeling combines fluid flow equations with 

structural dynamics to predict the dynamic responses 

of solid structures to fluid forces and vice versa 

(Adebayo, et al., 2024, Ofoegbu, et al., 2024, 

Omowole, et al., 2024). Typical examples include the 

interaction between wind and tall buildings, blood 

flow-induced arterial wall deformation in biomedical 

engineering, aerodynamic flutter in aircraft wings, 

and vibration-induced fatigue in turbine blades. The 

governing equations for these scenarios couple the 

Navier-Stokes equations for fluid dynamics with 

structural mechanics equations—often derived from 

linear or nonlinear elasticity theories, and 

occasionally from plasticity or viscoelasticity models, 

depending on the complexity of the material behavior. 

Fluid-electromagnetic coupling, another essential area 

within multiphysics fluid dynamics, becomes critical 

in industries involving electric and magnetic fields 

interacting with conductive fluids, such as in 

metallurgy, nuclear fusion, and electromechanical 

devices. The equations governing such interactions 

couple Maxwell’s equations, which describe 

electromagnetic fields, with fluid dynamic equations 

like the Navier-Stokes equations, extended by Lorentz 

force terms to reflect electromagnetic influences 

(Adeleke, et al., 2024, Ofodile, et al., 2024, Osundare, 

et al., 2024). This interaction is particularly important 

in applications like magnetic pumps, induction 

heating, and cooling systems for electronic 

components, where accurate predictions of system 

behavior significantly enhance operational efficiency 

and reliability. 

The governing equations for multiphysics fluid 

dynamics primarily revolve around the Navier-Stokes 

equations, which describe the conservation of mass, 

momentum, and energy for incompressible and 

compressible fluid flows. In their generalized form, 

these equations include continuity equations for mass 

conservation, momentum equations expressing 

Newton’s second law, and energy equations detailing 

thermodynamic state changes (Adebisi, et al., 2023, 

Ogu, et al., 2023, Onukwulu, et al., 2023). Additional 

governing equations are introduced when coupling 

fluid dynamics with structural mechanics (often 

through finite element structural deformation 

equations), thermal analysis (via heat transfer 

equations), or electromagnetics (through Maxwell’s 

equations). The mathematical complexity and 

nonlinearities inherent in these coupled equations 

pose significant challenges for numerical solution 

methods, requiring robust computational techniques. 

Graphical summary of the engineering design loop 

presented by Guerrero, Mantelli & Naqvi, 2020, is 

shown in figure 3. 

 
Figure 3: Graphical summary of the engineering 

design loop (Guerrero, Mantelli & Naqvi, 2020). 

 

Numerical methods like finite element methods 

(FEM), finite volume methods (FVM), and finite 

difference methods (FDM) are predominantly 

employed to discretize and solve these governing 

equations. The accuracy of multiphysics simulations 

heavily depends on proper discretization techniques, 

mesh quality, numerical stability, and computational 

efficiency (Okeke, et al., 2022, Olisakwe, Ekengwu & 

Ehirim, 2022). Challenges include dealing with vastly 

different time scales across coupled physical processes, 

accurately capturing boundary conditions at fluid-
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solid interfaces, addressing nonlinearities due to 

coupled effects, and managing computational expense, 

especially when simulating large-scale engineering 

problems involving detailed geometric models. 

Despite computational advancements, traditional 

multiphysics modeling methods face several 

limitations. One critical limitation involves balancing 

accuracy and computational cost; highly accurate 

models tend to be computationally expensive and 

challenging for iterative design optimization processes. 

Additionally, complex multiphysics phenomena often 

introduce uncertainties due to approximations 

required in numerical modeling, such as turbulence 

modeling uncertainties, simplifications in boundary 

conditions, and the limited resolution of 

computational meshes (Aderamo, et al., 2024, 

Ofoegbu, et al., 2024, Onyeke, et al., 2024). 

Advances in artificial intelligence (AI) and machine 

learning techniques are increasingly used to address 

these challenges, significantly enhancing the 

optimization of multiphysics fluid dynamics 

simulations in product design. AI-driven approaches 

utilize neural networks, surrogate modeling, 

reinforcement learning, and other machine learning 

algorithms to efficiently approximate complex 

multiphysics interactions, accelerate simulation 

convergence, and enable rapid optimization cycles. 

These techniques substantially reduce computational 

costs while preserving high accuracy, facilitating 

iterative optimization processes crucial for product 

development (Adeoba, et al., 2024, Ogu, et al., 2024, 

Omowole, et al., 2024, Udeh, et al., 2024). Qiu & 

Huang, 2023, presented in figure 4, Characteristics of 

mechanical design and manufacturing and its 

automation business capability. 

 
Figure 4: Characteristics of mechanical design and 

manufacturing and its automation business capability 

(Qiu & Huang, 2023). 

 

In real-world engineering design applications, 

multiphysics fluid dynamics modeling has 

transformed multiple industries. Automotive 

engineers leverage fluid-thermal models to optimize 

engine cooling and enhance vehicle aerodynamics. 

Aerospace engineers extensively employ fluid-

structure interaction modeling to predict 

aerodynamic stability, manage vibration risks, and 

improve wing designs for higher fuel efficiency and 

structural integrity. Similarly, in the electronics 

industry, fluid-electromagnetic coupling simulations 

optimize thermal management systems for high-

performance computing hardware, preventing 

overheating and ensuring reliability. 

Biomedical engineering applications benefit 

significantly from multiphysics fluid modeling as well, 

particularly in cardiovascular flow simulations where 

fluid-structure interactions provide insights into 

arterial health, enabling personalized medical 

diagnostics and treatment strategies. Additionally, the 

energy sector utilizes multiphysics models extensively 

to optimize turbine efficiency, thermal management 

in power plants, and design safer, more resilient 

offshore wind turbine structures subjected to fluid-

structure interactions (Adeleke, et al., 2024, Ogunsola, 

et al., 2024, Oteri, et al., 2024). 

In conclusion, multiphysics fluid dynamics represents 

a sophisticated and increasingly essential discipline 

within product design engineering, enabling more 
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accurate, efficient, and reliable product development 

through realistic simulation of interacting physical 

phenomena. The continuing integration of AI and 

machine learning into multiphysics simulations 

promises further advancements, significantly 

enhancing the speed, accuracy, and practicality of 

computational modeling. As product design 

complexity and performance requirements continue 

to escalate across industries, multiphysics fluid 

dynamics, augmented by advanced AI-driven 

optimization strategies, stands poised to play an ever-

increasing role in engineering innovation, sustainable 

development, and the broader technological progress 

of our society. 

 

IV. Role of Artificial Intelligence in Engineering 

Design 

 

Artificial intelligence (AI) has rapidly evolved into a 

transformative force within engineering disciplines, 

particularly enhancing the effectiveness and precision 

of product design engineering. With the escalating 

complexity of engineering challenges, such as 

multiphysics fluid dynamics problems involving 

intricate interactions between fluid flow, thermal 

phenomena, structural deformation, and 

electromagnetic effects, traditional simulation 

methods alone often struggle with computational 

limitations and iterative inefficiencies (Adebayo, et al., 

2024, Ofoegbu, et al., 2024, Onyeke, et al., 2024). AI, 

encompassing various computational strategies such as 

machine learning (ML) and deep learning (DL), has 

become instrumental in overcoming these barriers by 

accelerating simulations, predicting system behaviors 

with remarkable accuracy, and optimizing design 

outcomes in engineering applications. 

AI broadly describes computational systems that 

emulate aspects of human intelligence, particularly 

learning, reasoning, and decision-making capabilities. 

Within AI, machine learning represents a subset of 

techniques enabling computer systems to learn 

patterns from data without explicit programming 

instructions. ML algorithms can identify relationships, 

make predictions, and support decision-making by 

statistically analyzing input-output correlations. Deep 

learning, a specialized subset of ML based on artificial 

neural networks inspired by biological neural systems, 

is particularly adept at modeling complex, nonlinear 

relationships found abundantly in fluid dynamics 

problems (Adebisi, et al., 2023, Okeke, et al., 2023, 

Onukwulu, et al., 2023). DL architectures, such as 

convolutional neural networks (CNNs), recurrent 

neural networks (RNNs), and generative adversarial 

networks (GANs), leverage hierarchical learning 

structures capable of capturing subtle features from 

massive datasets, thus significantly enhancing 

predictive performance in engineering simulations. 

In fluid dynamics applications, AI methodologies 

typically fall under supervised learning, unsupervised 

learning, and reinforcement learning frameworks. 

Supervised learning, one of the most widely applied 

approaches in fluid dynamics, involves training 

models using labeled datasets where known inputs 

correlate explicitly to known outputs. In engineering 

design contexts, supervised learning techniques, 

including regression models, random forests, and 

neural networks, predict flow behavior, thermal 

characteristics, and structural responses based on 

prior simulation results or experimental data (Adeoba, 

Ukoba & Osaye, 2024, Olu-lawal, et al., 2024, Udeh, 

et al., 2024). Such predictive capabilities significantly 

reduce the necessity for repetitive high-cost 

simulations, accelerating the overall design cycle. 

Unsupervised learning techniques, such as clustering 

algorithms and principal component analysis, aid in 

discovering inherent structures or relationships 

within complex fluid flow data without predefined 

labels or outcomes. For example, engineers employ 

clustering algorithms to identify distinct flow regimes, 

classify turbulence structures, or recognize patterns in 

fluid-induced vibrations. By extracting meaningful 

insights from vast simulation data, unsupervised 

learning enhances engineers' understanding of fluid 
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dynamic behaviors, guiding improved design 

decisions (Chikelu, et al., 2022, Otokiti, et al., 2022). 

Reinforcement learning (RL), another powerful AI 

paradigm, is gaining prominence within multiphysics 

fluid dynamics optimization. Unlike supervised and 

unsupervised learning, RL involves iterative decision-

making processes guided by reward-based feedback. 

In fluid dynamics applications, RL algorithms 

progressively improve designs by exploring various 

parameter configurations, evaluating performance 

through simulation feedback, and learning optimal 

strategies to maximize desired outcomes (Ozobu, et al., 

2023, Sam Bulya, et al., 2023). For example, 

reinforcement learning algorithms have successfully 

optimized aerodynamic profiles of aircraft wings, 

improving lift-to-drag ratios, structural integrity, and 

operational efficiency through iterative simulation-

driven refinements. 

The role of AI in accelerating multiphysics fluid 

dynamics simulations is particularly crucial. 

Traditional computational fluid dynamics (CFD) 

simulations often entail solving large sets of nonlinear 

partial differential equations (PDEs), requiring 

extensive computational resources and time, 

especially for complex, real-world engineering 

scenarios involving fluid-structure interaction (FSI), 

thermal-fluid coupling, and electromagnetic-fluid 

interactions. AI-driven surrogate models or reduced-

order models (ROMs) offer efficient approximations 

of these computationally expensive simulations 

(Aderamo, et al., 2024, Ogunsola, et al., 2024, Oteri, et 

al., 2024). Surrogate models, typically developed 

through supervised learning methods like Gaussian 

process regression or neural networks, rapidly predict 

fluid dynamic behaviors from input parameters, 

substantially cutting down simulation time while 

maintaining high accuracy. 

AI-enhanced simulations enable engineers to execute 

extensive parametric studies rapidly, facilitating 

comprehensive exploration of design spaces and 

performance optimization possibilities. These 

accelerated simulations significantly expedite iterative 

design processes, reducing development cycles, 

computational costs, and resource usage. As a result, 

engineering teams can swiftly explore numerous 

design alternatives, identify optimal solutions, and 

rapidly adapt to evolving performance requirements, 

dramatically increasing productivity and innovation 

(Adeleke, et al., 2021, Oladosu, et al., 2021, 

Onukwulu, et al., 2021). 

Furthermore, deep learning methods have 

increasingly been adopted to resolve complex 

multiphysics fluid dynamics problems involving 

turbulence modeling, heat transfer prediction, and 

structural responses to fluid loads. Traditional 

turbulence modeling, for instance, relies heavily on 

empirical correlations or simplified models such as 

Reynolds-averaged Navier-Stokes (RANS) equations, 

Large Eddy Simulation (LES), or Direct Numerical 

Simulation (DNS). However, these conventional 

approaches either suffer from insufficient accuracy or 

excessive computational demands (Okeke, et al., 2023, 

Okuh, et al., 2023, Osazuwa, et al., 2023). Deep neural 

networks, trained on extensive datasets obtained from 

high-fidelity simulations or experimental observations, 

have demonstrated remarkable capability in 

accurately modeling turbulent flows, significantly 

surpassing traditional approaches in both 

computational speed and predictive accuracy. 

Similarly, AI-based optimization techniques enhance 

the accuracy of predicting complex thermal-fluid 

interactions essential in various engineering 

applications, including heat exchanger design, 

automotive engine cooling, electronic device thermal 

management, and energy-efficient HVAC systems. By 

integrating neural network predictions within 

multiphysics simulation frameworks, engineers obtain 

more reliable thermal management solutions faster, 

resulting in enhanced product reliability, energy 

efficiency, and operational sustainability (Adebayo, et 

al., 2024, Ofoegbu, et al., 2024, Omowole, et al., 2024). 

In structural-fluid interactions, AI has proven 

invaluable in rapidly predicting structural 

deformation, fatigue risks, and vibration responses 
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resulting from fluid-induced loading. Neural 

network-based surrogate models accurately 

approximate structural responses under varied loading 

conditions derived from fluid dynamics simulations, 

drastically reducing computational burdens and 

enabling quicker assessments of structural integrity, 

fatigue life, and safety margins (Adebisi, et al., 2023, 

Okeke, et al., 2023, Oteri, et al., 2023). This capability 

is particularly beneficial in aerospace, civil 

infrastructure, automotive engineering, and 

biomedical applications, where ensuring safety and 

reliability is paramount. 

The potential for AI to further transform multiphysics 

fluid dynamics in product design engineering is vast, 

promising continued innovation in AI model 

architectures, hybrid modeling strategies combining 

physical knowledge with data-driven learning, and 

enhanced scalability across complex engineering 

problems. Advanced AI methods like physics-

informed neural networks (PINNs) integrate 

governing physical equations directly into learning 

algorithms, significantly improving prediction 

accuracy and generalization capabilities while 

ensuring adherence to fundamental physical 

principles (Adeoye, et al., 2024, Okeke, et al., 2024, 

Omowole, et al., 2024). This approach bridges the gap 

between purely empirical data-driven modeling and 

rigorous physics-based modeling, greatly enhancing 

trustworthiness, interpretability, and applicability of 

AI-driven optimization solutions in engineering. 

In conclusion, artificial intelligence has become a 

cornerstone of modern engineering design, 

particularly within multiphysics fluid dynamics, 

fundamentally transforming simulation 

methodologies, predictive capabilities, and design 

optimization processes. By enabling faster simulations, 

highly accurate predictive models, and efficient 

optimization strategies, AI techniques drive 

significant advancements in product innovation, 

reliability, performance, and sustainability across 

engineering domains (Adebayo, et al., 2024, Okoli, et 

al., 2024, Oyedokun, Ewim & Oyeyemi, 2024). 

Continued development and integration of AI 

technologies promise further profound impacts, 

solidifying AI’s role as an indispensable tool in 

engineering design for tackling the increasingly 

sophisticated challenges of modern product 

development. 

 

V. AI-Based Optimization Techniques in Fluid 

Dynamics 

 

Artificial Intelligence (AI) has emerged as a 

transformative catalyst in fluid dynamics, significantly 

enhancing optimization methodologies for 

multiphysics fluid dynamics applications in 

engineering design. By integrating advanced 

computational approaches such as surrogate modeling, 

reduced-order modeling, genetic algorithms, 

evolutionary strategies, reinforcement learning, 

Bayesian optimization, and sensitivity analysis, AI 

enables engineers to solve increasingly complex fluid 

dynamic problems with unprecedented accuracy and 

computational efficiency (Aderamo, et al., 2024, Okuh, 

et al., 2024, Onyeke, et al., 2024). 

Surrogate modeling and reduced-order modeling 

(ROM) stand out prominently among AI-driven 

techniques used to accelerate fluid dynamics 

simulations and optimizations. Surrogate models, also 

known as meta-models, are computationally efficient 

approximations developed from high-fidelity 

simulation data or experimental results. These models, 

typically built using machine learning (ML) 

algorithms like Gaussian process regression, support 

vector machines (SVMs), neural networks, and 

polynomial chaos expansions, serve as efficient 

predictors of fluid dynamic behaviors. Surrogate 

models enable rapid exploration of complex, multi-

dimensional design spaces without repeatedly running 

expensive computational fluid dynamics (CFD) 

simulations, making them invaluable in iterative 

optimization processes (Adeleke, et al., 2022, Okeke, 

et al., 2022, Onukwulu, et al., 2022). 
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Reduced-order modeling complements surrogate 

modeling by mathematically reducing the 

dimensionality of computational models while 

preserving essential fluid dynamic behaviors. ROM 

techniques such as Proper Orthogonal Decomposition 

(POD), Dynamic Mode Decomposition (DMD), and 

autoencoder-based deep learning approaches 

significantly reduce computational complexity by 

focusing on dominant flow features and patterns. 

POD-based ROMs, for example, identify dominant 

modes of flow behavior from CFD data and 

approximate fluid dynamics using a limited set of 

basis functions (Adebisi, et al., 2021, Olutimehin, et 

al., 2021, Onukwulu, et al., 2021). Consequently, 

ROMs drastically improve simulation speed, enabling 

engineers to rapidly iterate designs, evaluate 

performance trade-offs, and make informed 

optimization decisions. 

Genetic algorithms (GAs) and evolutionary strategies 

represent another class of AI-based optimization 

techniques widely employed in fluid dynamics. 

Inspired by biological evolution principles, genetic 

algorithms iteratively optimize fluid dynamic 

problems through mechanisms of selection, crossover, 

and mutation. These techniques encode fluid dynamic 

design variables—such as geometric parameters, 

boundary conditions, or material properties—into 

genetic representations and evolve populations of 

candidate solutions based on a fitness function 

evaluating performance metrics like aerodynamic 

efficiency, thermal management effectiveness, or 

structural integrity (Adebayo, et al., 2024, Okeke, et 

al., 2024, Omowole, et al., 2024). 

Evolutionary strategies, closely related to genetic 

algorithms, apply stochastic optimization approaches 

to explore fluid dynamics design spaces efficiently. 

Methods such as Covariance Matrix Adaptation 

Evolution Strategy (CMA-ES) are particularly 

effective in dealing with high-dimensional, nonlinear, 

and multimodal optimization problems characteristic 

of multiphysics fluid dynamics. CMA-ES adapts 

covariance matrices dynamically, adjusting search 

distributions to efficiently explore design spaces and 

avoid local minima (Adeleke, 2021, Olisakwe, Tuleun 

& Eloka-Eboka, 2011). These evolutionary 

optimization methods efficiently tackle problems like 

aerodynamic shape optimization, turbine blade design, 

heat exchanger configurations, and complex fluid-

structure interaction scenarios, significantly 

outperforming traditional gradient-based optimization 

methods in terms of solution quality and robustness. 

Reinforcement learning (RL) emerges as a powerful 

AI-driven optimization method tailored for control-

oriented fluid dynamics applications and adaptive 

modeling. RL operates through an iterative learning 

framework in which computational agents interact 

with simulation environments, progressively learning 

optimal decision-making policies guided by reward-

based feedback. In fluid dynamics contexts, RL has 

demonstrated exceptional capability in optimizing 

flow control problems, such as drag reduction, 

boundary layer control, vortex suppression, and 

thermal management strategies (Okeke, et al., 2023, 

Onukwulu, et al., 2023, Onyeke, et al., 2023). RL 

models learn directly from fluid dynamic simulation 

outcomes, continuously improving control strategies 

through experience-driven adjustments. 

Reinforcement learning also supports adaptive 

modeling strategies, dynamically updating fluid 

dynamic models in response to changing operational 

conditions or evolving system behaviors. For example, 

RL algorithms have successfully optimized the 

adaptive control of unmanned aerial vehicle (UAV) 

aerodynamics, dynamically adjusting wing 

configurations, angle-of-attack, and aerodynamic 

surfaces to maintain optimal flight performance 

despite varying environmental conditions or 

operational constraints. Such adaptive, AI-driven 

approaches significantly improve product 

performance, resilience, and operational reliability 

compared to conventional static design methodologies 

(Adepoju, et al., 2022, Okeke, et al., 2022, Onukwulu, 

et al., 2022). 
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Bayesian optimization represents another 

sophisticated AI optimization technique ideally suited 

for fluid dynamics problems characterized by 

expensive computational evaluations and complex, 

uncertain design spaces. Bayesian optimization 

integrates probabilistic modeling, typically Gaussian 

process models, with sequential experimental design 

strategies to iteratively explore design spaces and 

identify optimal configurations efficiently (Adebayo, 

et al., 2024, Onukwulu, et al., 2024, Onyeke, et al., 

2024). By balancing exploration (examining less-

known regions of the design space) and exploitation 

(refining promising design regions), Bayesian 

optimization significantly reduces computational cost 

while enhancing solution quality. 

Sensitivity analysis, frequently combined with 

Bayesian optimization, systematically evaluates the 

impact of input parameters on fluid dynamic 

performance metrics. By quantifying sensitivity 

indices, engineers prioritize critical parameters and 

reduce design complexity, focusing computational 

resources on influential variables. AI-driven 

sensitivity analyses, often leveraging surrogate models 

or Bayesian frameworks, enable robust design 

decision-making, particularly in multiphysics 

problems involving complex parameter interactions, 

nonlinear effects, and uncertainties. 

However, despite the substantial benefits of AI-based 

optimization techniques in fluid dynamics, engineers 

must carefully navigate performance trade-offs and 

computational efficiency considerations. Surrogate 

and reduced-order models significantly enhance 

computational speed but typically introduce 

approximation errors requiring careful validation 

against high-fidelity simulations (Aderamo, et al., 

2024, Okeke, et al., 2024, Omowole, et al., 2024). 

Genetic algorithms and evolutionary strategies 

robustly explore design spaces but often demand 

numerous evaluations, which may pose computational 

challenges for highly detailed multiphysics 

simulations. 

Reinforcement learning, while adaptive and highly 

effective, involves computationally intensive training 

processes and extensive simulation data requirements 

to achieve reliable performance. Additionally, 

Bayesian optimization, although computationally 

efficient for high-cost evaluations, becomes 

computationally prohibitive for extremely high-

dimensional problems or excessively large parameter 

spaces due to its inherent computational overhead 

associated with Gaussian process modeling and 

inference. 

Addressing these challenges, engineers increasingly 

adopt hybrid approaches that integrate AI techniques 

with physical insights and conventional optimization 

methods. For instance, combining surrogate modeling 

with genetic algorithms or reinforcement learning can 

significantly enhance optimization speed and 

accuracy (Adeleke, 2024, Omomo, Esiri & Olisakwe, 

2024, Oyedokun, Ewim & Oyeyemi, 2024). Moreover, 

leveraging physics-informed neural networks 

(PINNs)—deep learning models embedding physical 

equations directly into the learning process—further 

improves AI optimization techniques' computational 

efficiency, robustness, and interpretability. 

In conclusion, AI-based optimization techniques, 

including surrogate modeling, reduced-order 

modeling, genetic algorithms, evolutionary strategies, 

reinforcement learning, Bayesian optimization, and 

sensitivity analysis, profoundly transform 

multiphysics fluid dynamics optimization within 

product design engineering. These advanced 

computational methodologies accelerate simulation 

processes, significantly enhance prediction accuracy, 

enable comprehensive exploration of complex design 

spaces, and facilitate informed decision-making 

amidst performance trade-offs (Adebayo, et al., 2024, 

Okuh, et al., 2024, Omowole, et al., 2024). Continued 

advancements in AI algorithms, hybrid methodologies, 

and physics-informed modeling promise further 

substantial improvements, establishing AI-driven 

optimization as a foundational element of modern 
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fluid dynamics engineering, fueling innovation and 

progress in engineering product design. 

 

VI. Physics-Informed Neural Networks (PINNs) 

 

Physics-Informed Neural Networks (PINNs) represent 

an advanced class of artificial intelligence (AI) 

algorithms designed to incorporate physical laws 

directly into neural network architectures. By 

seamlessly integrating domain-specific knowledge, 

particularly the governing equations of fluid dynamics 

and other partial differential equations (PDEs), PINNs 

provide an efficient, robust, and versatile framework 

for tackling complex multiphysics problems in 

engineering design (Adepoju, et al., 2022, Okeke, et 

al., 2022, Oyeniyi, et al., 2022). This approach 

significantly enhances traditional machine learning 

methods, combining the flexibility of deep neural 

networks with the rigor of physics-based modeling. 

Consequently, PINNs have emerged as a 

transformative tool in multiphysics fluid dynamics 

simulations, particularly in applications where 

accurate predictions of coupled phenomena—such as 

fluid-structure interactions, fluid-thermal couplings, 

and fluid-electromagnetic interactions—are critical. 

The foundational concept behind PINNs involves 

embedding known physical equations directly within 

the neural network training process. Unlike purely 

data-driven models, which rely exclusively on large 

datasets to infer patterns, PINNs leverage existing 

physical knowledge, such as conservation laws, 

constitutive equations, and boundary conditions, as 

integral constraints during neural network 

optimization (Adeleke, et al., 2024, Oladosu, et al., 

2024, Onyeke, et al., 2024). This physics-driven 

formulation transforms the training of neural 

networks from purely statistical exercises into 

structured, physically meaningful optimization tasks, 

effectively aligning the model predictions with the 

fundamental principles underlying fluid dynamics and 

related physical phenomena. 

Architecturally, PINNs typically consist of fully 

connected deep neural networks, where the input 

layer receives spatial and temporal coordinates, 

boundary conditions, and physical parameters 

relevant to the fluid dynamics problem. Intermediate 

hidden layers process this information using 

nonlinear activation functions, such as hyperbolic 

tangent or rectified linear units (ReLU), generating 

complex representations of the system behavior. 

Crucially, the output layer produces predictions of 

physical variables, including fluid velocity fields, 

pressure distributions, temperature profiles, and 

structural displacements (Okeke, et al., 2023, 

Onukwulu, et al., 2023, Oteri, et al., 2023). The 

network is trained using a customized loss function 

composed of two primary components: a data-driven 

term, reflecting differences between predicted and 

observed or simulated values, and a physics-driven 

term, capturing residuals of governing PDEs evaluated 

at various collocation points within the domain. 

The integration of physical equations, notably the 

Navier-Stokes equations governing fluid flow, into 

PINNs offers substantial advantages in multiphysics 

fluid dynamics simulations. The Navier-Stokes 

equations—consisting of momentum, continuity, and 

energy conservation equations—are fundamental 

PDEs describing incompressible and compressible 

fluid behaviors (Sam Bulya, et al., 2024, Sonko, et al., 

2024, Thompson, et al., 2024). However, solving these 

equations numerically, especially in complex 

multiphysics scenarios, often involves significant 

computational effort due to their inherent 

nonlinearity, high-dimensional nature, and sensitivity 

to boundary and initial conditions. Traditional 

numerical methods, including finite element methods 

(FEM), finite volume methods (FVM), and finite 

difference methods (FDM), typically require extensive 

computational resources and refined discretizations, 

which can become prohibitively costly, particularly 

for iterative optimization in engineering design 

contexts. 
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PINNs effectively address these computational 

challenges by representing PDE solutions in a 

continuous and differentiable form through neural 

networks, enabling efficient computation of 

derivatives via automatic differentiation. Automatic 

differentiation—an essential component of PINN 

architectures—allows precise calculation of PDE 

residuals and boundary condition discrepancies 

without relying on traditional numerical 

approximations, significantly enhancing solution 

accuracy and computational efficiency (Aderamo, et 

al., 2024, Olajiga, et al., 2024, Onyeke, Odujobi & 

Elete, 2024). This continuous representation facilitates 

seamless handling of complex domain geometries, 

intricate boundary conditions, and dynamically 

changing conditions commonly encountered in 

multiphysics fluid dynamics problems. 

Solving Navier-Stokes equations using PINNs involves 

defining residual functions that quantify deviations 

from governing physical laws, including mass 

conservation, momentum balance, and energy 

transfer. The neural network is trained iteratively by 

minimizing these residual functions alongside any 

available measurement or simulation data. For 

example, in fluid-structure interaction (FSI) scenarios, 

PINNs simultaneously enforce fluid dynamics 

equations and structural deformation equations, 

inherently capturing coupling effects such as fluid-

induced vibrations, structural deformation feedback 

to fluid flow, and thermal-fluid interactions without 

explicitly requiring separate coupled solver 

formulations (Adebayo, et al., 2024, Olisakwe, et al., 

2024, Oyedokun, Ewim & Oyeyemi, 2024). This 

intrinsic multiphysics capability significantly 

simplifies model development and reduces 

computational complexity compared to traditional 

numerical coupling methods. 

Moreover, PINNs excel in inverse problems and 

parameter estimation scenarios, widely prevalent in 

product design engineering. Engineers frequently face 

inverse multiphysics problems, such as estimating 

unknown material properties, boundary conditions, 

or internal source distributions based on observed 

responses. PINNs naturally handle inverse problems 

by incorporating unknown parameters into the neural 

network architecture, simultaneously optimizing both 

system predictions and inferred parameters (Adepoju, 

et al., 2023, Okeke, et al., 2023, Onyeke, et al., 2023). 

This capability substantially enhances model 

interpretability, facilitates robust uncertainty 

quantification, and supports informed decision-

making in design optimization. 

Despite these significant advantages, PINNs exhibit 

specific limitations when applied to multiphysics fluid 

dynamics. One primary challenge is training 

complexity and computational cost associated with 

optimizing deep neural network architectures and 

handling large, high-dimensional multiphysics 

domains. While PINNs considerably reduce the 

computational burden compared to traditional 

numerical methods, extensive training times and the 

need for careful hyperparameter tuning remain 

notable hurdles, particularly in large-scale, high-

fidelity simulations. 

Another critical limitation arises from the "spectral 

bias" phenomenon inherent to neural networks, 

where training processes preferentially capture low-

frequency solution features, potentially overlooking 

finer-scale or rapidly varying physical details. This 

limitation poses particular concerns in highly 

turbulent flow regimes, multi-scale fluid dynamics 

problems, or scenarios involving sharp gradients and 

discontinuities, where accurately resolving fine-scale 

details is essential (Okeke, et al., 2022, Olisakwe, 

Ikpambese & Tuleun, 2022, Ozobu, et al., 2022). 

Addressing this challenge typically involves hybrid 

modeling strategies, improved sampling 

methodologies, adaptive network architectures, or 

specialized training protocols to ensure accurate 

resolution across multiple scales. 

Additionally, PINNs depend heavily on the accurate 

formulation and completeness of governing physical 

equations. While integrating well-established 

equations like Navier-Stokes into neural networks 
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significantly enhances model robustness and 

reliability, incomplete or uncertain physics can 

introduce biases or inaccuracies into model 

predictions. Thus, PINNs demand careful validation 

against experimental data or high-fidelity numerical 

benchmarks, particularly when exploring novel 

multiphysics interactions or emerging physical 

phenomena with limited theoretical understanding 

(Adeleke, et al., 2024, Olu-lawal, et al., 2024, Sam 

Bulya, et al., 2024). 

Despite these limitations, ongoing advancements 

continue to refine and expand PINN capabilities, 

including developing adaptive sampling strategies, 

multi-scale architectures, advanced regularization 

techniques, and enhanced computational hardware 

leveraging GPU acceleration and parallel processing. 

Hybrid frameworks combining PINNs with 

traditional numerical methods—such as finite 

element PINNs or domain decomposition 

approaches—further enhance computational 

efficiency, accuracy, and scalability in multiphysics 

applications. 

In conclusion, Physics-Informed Neural Networks 

represent a significant advancement in AI-based 

optimization for multiphysics fluid dynamics within 

product design engineering. By seamlessly integrating 

physical laws directly into neural network 

architectures, PINNs provide highly accurate, 

computationally efficient, and inherently 

interpretable models capable of addressing complex 

fluid dynamic interactions fundamental to modern 

engineering challenges (Aderamo, et al., 2024, 

Omomo, Esiri & Olisakwe, 2024, Sonko, et al., 2024). 

While limitations concerning training complexity, 

spectral bias, and dependence on accurate physical 

formulations persist, ongoing research and 

methodological improvements continue to solidify 

PINNs as an indispensable tool, transforming 

engineering design optimization and fueling 

continued innovation in multiphysics fluid dynamics 

simulation methodologies. 

 

VII. Integration of AI and CFD Workflows 

 

Integrating Artificial Intelligence (AI) into 

Computational Fluid Dynamics (CFD) workflows has 

transformed modern engineering design practices, 

particularly for multiphysics fluid dynamics scenarios. 

This integration significantly enhances traditional 

simulation-driven design approaches by combining 

AI’s data-driven predictive power with CFD’s 

rigorous physics-based modeling. By seamlessly 

embedding AI methodologies into CFD workflows, 

engineers can rapidly explore extensive design spaces, 

enhance prediction accuracy, achieve real-time 

feedback during simulations, and automate repetitive 

tasks, fundamentally reshaping product development 

processes across diverse engineering applications 

(Adebayo, et al., 2024, Okeke, et al., 2024, Onukwulu, 

et al., 2024). 

A critical first step in integrating AI and CFD 

workflows is generating reliable, high-quality datasets 

from CFD simulations. CFD simulations solve 

complex fluid dynamic equations—primarily the 

Navier-Stokes equations—to provide detailed flow 

field predictions for velocity, pressure, temperature 

distributions, and other critical performance metrics. 

Generating comprehensive datasets typically involves 

extensive CFD simulations spanning diverse 

parameter combinations, boundary conditions, 

geometric configurations, and operational scenarios 

relevant to specific multiphysics fluid dynamics 

problems (Adepoju, et al., 2024, Omowole, et al., 2024, 

Onyeke, et al., 2024, Ukpohor, Adebayo & Dienagha, 

2024). Advanced computational resources, such as 

high-performance computing clusters and parallel 

processing frameworks, facilitate extensive simulation 

campaigns required to cover complex multiparameter 

design spaces adequately. 

CFD-generated data typically includes numerical 

results like pressure contours, velocity fields, thermal 

gradients, and structural responses for fluid-structure 

interaction cases. These data form the foundation for 

AI training, providing labeled datasets necessary for 
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supervised learning techniques such as regression 

models, neural networks, and surrogate modeling 

approaches. Data quality directly impacts AI model 

accuracy and generalizability; thus, engineers must 

carefully validate CFD simulations, ensure mesh 

convergence, manage discretization errors, and 

maintain consistent simulation setups (Okeke, et al., 

2023, Olisakwe, et al., 2023, Oteri, et al., 2023). 

Additionally, incorporating uncertainty quantification 

methods into CFD datasets enhances model 

robustness, allowing AI models to account for 

inherent variability and uncertainties in input 

parameters or boundary conditions, significantly 

improving their predictive reliability. 

After generating CFD datasets, AI model training, 

validation, and deployment form essential stages in 

integrating AI into fluid dynamics workflows. AI 

model training involves selecting appropriate machine 

learning algorithms and neural network architectures 

tailored to fluid dynamics applications. Models such 

as fully connected neural networks, convolutional 

neural networks (CNNs), recurrent neural networks 

(RNNs), and hybrid architectures combining different 

neural network types are prevalent in CFD 

applications (Adeleke, et al., 2024, Omomo, Esiri & 

Olisakwe, 2024, Sonko, et al., 2024). Training these 

models entails iterative optimization processes, 

minimizing prediction errors through cost functions 

typically involving mean squared errors, mean 

absolute errors, or physics-informed residuals in cases 

employing physics-informed neural networks 

(PINNs). 

Validation represents a crucial step in AI model 

development, involving the systematic evaluation of 

trained models against independent CFD simulation 

results or experimental measurements not used during 

training. Validation ensures model accuracy, 

identifies potential overfitting or underfitting issues, 

and provides insights into model generalization 

capabilities across diverse multiphysics scenarios 

(Adebayo, et al., 2024, Omomo, Esiri & Olisakwe, 

2024, Sam Bulya, et al., 2024). Cross-validation 

techniques, sensitivity analyses, and rigorous 

performance metrics—such as mean absolute 

percentage error, correlation coefficients, or 

coefficient of determination (R²)—are typically 

employed to assess AI model reliability 

comprehensively. 

Deployment constitutes the final phase of integrating 

AI into CFD workflows, incorporating trained and 

validated AI models directly into engineering design 

processes. Deployment strategies vary from 

standalone predictive tools to fully integrated modules 

within established CFD solvers. AI-driven surrogate 

models or reduced-order models (ROMs), for instance, 

frequently function as real-time predictive engines, 

rapidly estimating fluid dynamic behaviors based on 

input parameters without resorting to 

computationally intensive CFD simulations (Adepoju, 

et al., 2024, Omowole, et al., 2024, Onyeke, et al., 

2024). Such AI deployments substantially accelerate 

iterative design optimizations, reduce computational 

costs, and facilitate rapid evaluations of numerous 

design alternatives, significantly enhancing 

engineering productivity and innovation. 

A particularly transformative aspect of integrating AI 

with CFD workflows involves coupling AI models 

directly with CFD solvers, providing real-time 

feedback during simulations. Real-time feedback 

enables dynamic, adaptive control of CFD simulations, 

significantly enhancing computational efficiency and 

design flexibility. Coupling AI models with CFD 

solvers can involve embedding neural network-based 

surrogate models directly within iterative solver 

frameworks, dynamically adjusting solver parameters, 

or selectively invoking full-scale CFD simulations 

only when necessary, guided by AI model predictions 

(Okeke, et al., 2022, Olisakwe, et al., 2022, Onyeke, et 

al., 2022). 

This real-time integration proves particularly 

beneficial in multiphysics fluid dynamics scenarios 

characterized by complex interactions, nonlinear 

behaviors, and dynamically evolving phenomena such 

as turbulence, fluid-structure coupling, or thermal-
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fluid interactions. For example, AI-driven turbulence 

models or adaptive mesh refinement strategies 

informed by neural networks continuously guide CFD 

simulations toward optimal computational resource 

utilization, efficiently capturing critical flow 

phenomena while avoiding unnecessary 

computational expenses associated with over-

resolving non-critical regions. 

Automation of geometry generation and design 

parameter tuning represents another critical 

advancement facilitated by AI-CFD integration. 

Automating geometry generation entails leveraging 

AI-driven generative design algorithms—such as 

generative adversarial networks (GANs), variational 

autoencoders (VAEs), and reinforcement learning 

approaches—to autonomously produce optimized 

fluid dynamic geometries based on specified 

performance objectives or constraints (Aderamo, et al., 

2024, Omowole, et al., 2024, Sam Bulya, et al., 2024). 

AI-generated geometries often exhibit innovative, 

non-intuitive configurations, significantly surpassing 

traditional, human-designed geometries in 

aerodynamic efficiency, thermal management 

effectiveness, structural integrity, or operational 

performance metrics. 

Similarly, automating design parameter tuning using 

AI methods like Bayesian optimization, genetic 

algorithms, and evolutionary strategies significantly 

accelerates iterative optimization processes 

traditionally conducted manually. AI-driven 

optimization techniques systematically explore 

extensive parameter spaces, dynamically adjust design 

configurations, and rapidly converge toward optimal 

or near-optimal solutions, considerably outperforming 

conventional trial-and-error methodologies (Ozobu, 

et al., 2023, Sam Bulya, et al., 2023). Consequently, 

automation significantly streamlines engineering 

workflows, reduces manual intervention, minimizes 

human errors, and facilitates comprehensive design 

space exploration unattainable through traditional 

manual processes. 

Despite substantial advancements, integrating AI with 

CFD workflows entails specific challenges requiring 

careful consideration. Ensuring seamless compatibility 

between AI models and CFD solver environments 

demands sophisticated software integration strategies, 

application programming interfaces (APIs), and 

computational frameworks capable of efficiently 

managing complex data exchanges and iterative solver 

interactions (Adeleke, et al., 2024, Omomo, Esiri & 

Olisakwe, 2024, Sonko, et al., 2024). Additionally, 

accurately quantifying uncertainties associated with 

AI predictions, addressing inherent biases within 

datasets, and maintaining computational efficiency 

during AI model training and deployment represent 

critical issues necessitating continued methodological 

refinement. 

In conclusion, integrating artificial intelligence 

within CFD workflows profoundly transforms 

multiphysics fluid dynamics optimization in product 

design engineering. By facilitating efficient data 

generation from CFD simulations, robust AI model 

training and validation processes, real-time AI-CFD 

solver coupling, and automated geometry generation 

and design optimization, AI-driven workflows 

significantly enhance prediction accuracy, 

computational efficiency, and engineering 

productivity (Adebayo, et al., 2024, Omomo, Esiri & 

Olisakwe, 2024, Sam Bulya, et al., 2024). Continued 

advances in AI methodologies, hybrid modeling 

approaches, and computational integration 

frameworks promise further substantial innovations, 

firmly establishing AI-integrated CFD workflows as 

foundational to future engineering design 

optimization, product innovation, and technological 

progress in multiphysics fluid dynamics. 

 

VIII. Industrial Applications 

 

The integration of AI-based optimization techniques 

into multiphysics fluid dynamics has significantly 

impacted various industrial sectors, offering enhanced 

performance, efficiency, and innovation in product 
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design. AI methodologies, including machine learning, 

neural networks, and reinforcement learning, are 

transforming how engineers approach complex fluid 

dynamic problems, providing solutions that were 

previously unattainable using traditional design 

methods. These advancements have been particularly 

valuable in aerospace, automotive, thermal 

management, biomedical devices, renewable energy, 

and turbomachinery applications (Onukwulu, et al., 

2021, Otokiti, et al., 2021). By incorporating AI-

driven optimization, industries can accelerate the 

design process, optimize system performance, and 

reduce development costs, all while ensuring high 

levels of precision in engineering outputs. 

In aerospace and automotive design optimization, AI-

based optimization techniques have become 

indispensable tools for enhancing the performance 

and efficiency of vehicles and aircraft. Fluid dynamics 

plays a crucial role in both fields, particularly when it 

comes to aerodynamics, propulsion systems, and 

structural design. In aerospace engineering, 

optimizing the shape of an aircraft’s wings, fuselage, 

and other components for minimal drag and 

maximum lift is essential to improve fuel efficiency 

and reduce operational costs (Adepoju, et al., 2023, 

Okeke, et al., 2023, Onyeke, et al., 2023). AI models 

trained on CFD simulation data allow for rapid 

exploration of design spaces, evaluating aerodynamic 

performance under different conditions and 

identifying optimal configurations. The use of AI in 

aerodynamic shape optimization, often through 

surrogate models or reduced-order models, 

significantly accelerates design iterations and 

optimizes performance metrics such as fuel 

consumption and speed. In the automotive sector, AI-

based optimization similarly aids in designing more 

aerodynamically efficient vehicles. Neural networks 

and genetic algorithms enable automakers to fine-

tune vehicle shapes and components, such as spoilers, 

mirrors, and undercarriages, to reduce drag and 

improve fuel economy while maintaining safety and 

performance standards. 

In heat exchanger and thermal management systems, 

the integration of AI-based optimization has led to 

substantial improvements in energy efficiency and 

system performance. Heat exchangers are critical 

components in a wide range of industrial applications, 

including power generation, refrigeration, and HVAC 

systems, where efficient heat transfer is essential to 

ensure optimal performance and reduce energy 

consumption. Traditional design methods for heat 

exchangers rely on empirical correlations and 

extensive trial-and-error iterations to optimize flow 

paths, materials, and geometries (Aderamo, et al., 

2024, Omowole, et al., 2024, Oyeyemi, et al., 2024, 

Usman, et al., 2024). AI-based optimization 

techniques, such as deep learning, reinforcement 

learning, and surrogate models, offer a more data-

driven approach, enabling engineers to rapidly 

identify the most efficient configurations and 

parameters for heat exchangers. By integrating AI 

with CFD simulations, engineers can more accurately 

predict temperature profiles, pressure drops, and fluid 

flow distributions, allowing for the optimization of 

heat exchanger designs in real-time. This integration 

not only improves thermal performance but also 

enhances energy efficiency by reducing the 

operational costs associated with heating and cooling 

processes. 

Biomedical devices and microfluidics are another area 

where AI-based optimization for multiphysics fluid 

dynamics is making significant strides. In biomedical 

engineering, AI plays a key role in optimizing the 

design of devices such as pacemakers, artificial heart 

valves, and blood flow monitors, which require 

precise fluid dynamic analysis to ensure proper 

functionality within the human body. AI-based 

optimization techniques, in combination with CFD 

simulations, enable more accurate modeling of blood 

flow, tissue interactions, and pressure distribution in 

vascular systems (Adeleke, et al., 2024, Omomo, Esiri 

& Olisakwe, 2024, Sam Bulya, et al., 2024). By 

simulating and optimizing these interactions, 

engineers can design devices that are more effective, 
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safer, and better suited to individual patient needs. In 

the field of microfluidics, AI helps in optimizing lab-

on-a-chip devices, which require fine control over 

fluid flow at the microscale. AI-driven algorithms 

allow for the precise manipulation of fluid paths, 

droplet formation, and mixing processes within 

microchannels, which is essential for applications 

such as diagnostics, drug delivery, and chemical 

analysis. The use of AI for optimizing microfluidic 

systems enables faster, more cost-effective device 

development, providing enhanced capabilities for 

personalized medicine and medical diagnostics. 

The integration of AI in renewable energy and 

turbomachinery applications has also demonstrated 

remarkable potential for improving efficiency and 

performance. In the renewable energy sector, 

optimizing the performance of wind turbines, solar 

panels, and other renewable energy systems is 

essential for maximizing energy production and 

minimizing operational costs. AI-based optimization 

techniques are particularly valuable in wind turbine 

design, where they are used to optimize blade shapes, 

rotor angles, and control systems (Adebayo, et al., 

2024, Omowole, et al., 2024, Onukwulu, et al., 2024). 

By simulating various wind conditions and turbine 

configurations, AI models can quickly identify the 

most efficient designs that maximize energy 

extraction while reducing wear and tear on 

components. Similarly, AI-driven optimization is also 

being applied to the design of solar panels, where it 

helps optimize the layout of photovoltaic cells and 

materials to increase energy conversion efficiency. 

Additionally, AI-based optimization is playing an 

essential role in improving the performance of energy 

storage systems, which are critical for balancing the 

intermittent nature of renewable energy sources. AI 

models can optimize battery management systems and 

predict energy storage requirements, ensuring more 

reliable and efficient operation of renewable energy 

grids. 

Turbomachinery applications, including gas turbines, 

steam turbines, and compressors, are another area 

where AI-based optimization techniques are yielding 

substantial improvements. In turbomachinery design, 

optimizing fluid dynamics is essential to ensure high 

efficiency and reliability. AI techniques, such as 

neural networks and genetic algorithms, are used to 

optimize rotor and stator geometries, combustion 

processes, and cooling systems to maximize energy 

efficiency while minimizing emissions (Sam Bulya, et 

al., 2024, Sonko, et al., 2024, Thompson, Adeoye & 

Olisakwe, 2024). The integration of AI with CFD 

simulations allows engineers to simulate complex 

fluid-structure interactions, such as pressure 

fluctuations and heat generation, in real-time. This 

integration provides more accurate predictions of 

turbine performance and enables the optimization of 

operational parameters, leading to significant 

improvements in fuel efficiency, reduced 

environmental impact, and increased system 

longevity. 

Case studies across various industries have 

demonstrated the effectiveness of AI-based 

optimization techniques in achieving efficiency gains 

and fostering innovation. In aerospace, AI-based 

optimization methods have been used to design 

lighter, more efficient aircraft with improved fuel 

efficiency and performance. For instance, Airbus has 

integrated AI into its design processes to optimize 

wing shapes for minimal drag and maximum lift, 

leading to improved fuel efficiency and reduced 

environmental impact (Ogunyankinnu, et al., 2022, 

Okeke, et al., 2022, Onyeke, et al., 2022). In the 

automotive sector, AI optimization has been used to 

develop vehicles with reduced aerodynamic drag, 

resulting in better fuel economy and lower CO2 

emissions. One notable example is the use of AI to 

optimize vehicle body shapes, achieving up to a 5% 

reduction in fuel consumption and improved overall 

vehicle performance. 

In the renewable energy sector, AI-driven 

optimization has played a crucial role in increasing 

the efficiency of wind turbines and solar panels. A 

case study from GE Renewable Energy demonstrated 
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the use of AI algorithms to optimize wind turbine 

blade designs, which led to a significant increase in 

energy capture from wind farms. Similarly, AI-based 

optimization of turbine control systems has enabled 

improved operational efficiency, reducing downtime 

and maintenance costs. In the biomedical field, AI 

optimization has led to the development of more 

efficient and personalized medical devices, such as 

pacemakers and artificial heart valves, by accurately 

simulating and optimizing fluid dynamics within the 

human body (Aderamo, et al., 2024, Omomo, Esiri & 

Olisakwe, 2024, Sam Bulya, et al., 2024). These 

advancements have significantly enhanced patient 

outcomes and reduced device failure rates. 

In conclusion, AI-based optimization techniques are 

revolutionizing product design engineering across 

numerous industrial sectors. From aerospace and 

automotive design to thermal management, 

biomedical devices, renewable energy, and 

turbomachinery applications, AI is enabling faster, 

more efficient, and more innovative solutions to 

complex multiphysics fluid dynamics problems. The 

integration of AI with CFD simulations is improving 

design processes, optimizing performance, and driving 

significant gains in efficiency, all while fostering 

innovation that will shape the future of engineering 

(Adeleke, et al., 2024, Omomo, Esiri & Olisakwe, 2024, 

Paul, et al., 2024). As AI and computational 

technologies continue to evolve, their impact on 

multiphysics fluid dynamics optimization will only 

increase, further advancing industrial capabilities and 

enhancing sustainability across industries. 

 

IX. Challenges and Limitations 

 

As artificial intelligence (AI)-based optimization 

techniques continue to make significant strides in the 

field of multiphysics fluid dynamics, they bring 

immense potential for enhancing product design 

engineering. AI applications in fluid dynamics enable 

more efficient simulations, faster design processes, 

and the ability to optimize complex multiparameter 

systems (Okeke, et al., 2023, Olisakwe, Bam & 

Aigbodion, 2023, Oteri, et al., 2023). However, 

despite the promising advantages, there are several 

challenges and limitations that need to be addressed 

before AI-based optimization methods can fully 

realize their potential in practical engineering 

applications. These challenges span issues related to 

data scarcity, model generalization, interpretability, 

integration complexity, computational trade-offs, and 

the reliability of AI models in safety-critical systems. 

One of the primary challenges in AI-based 

optimization for multiphysics fluid dynamics is data 

scarcity and high-dimensionality. The effectiveness of 

AI models, particularly machine learning (ML) and 

deep learning (DL) models, hinges on the availability 

of large, high-quality datasets. In the context of fluid 

dynamics, generating the required datasets can be 

resource-intensive, as accurate simulations of fluid 

flow, heat transfer, and other physical phenomena 

often require extensive computational effort and time. 

In many cases, high-fidelity simulation results can be 

limited, especially for rare or complex flow regimes 

where empirical data is sparse or difficult to obtain 

(Aderamo, et al., 2024, Omowole, et al., 2024, 

Oyeyemi, et al., 2024, Usman, et al., 2024). 

Furthermore, the high-dimensionality of fluid 

dynamics problems, where multiple variables such as 

velocity, pressure, temperature, material properties, 

and boundary conditions interact in non-linear ways, 

exacerbates the difficulty of training effective AI 

models. The curse of dimensionality, where the 

amount of data needed to train a model increases 

exponentially with the number of parameters, often 

leads to overfitting, poor generalization, and difficulty 

in capturing the full range of system behaviors with 

limited data. 

Another significant limitation lies in model 

generalization and interpretability. While AI models, 

particularly deep learning networks, are capable of 

learning highly complex patterns in large datasets, 

they often operate as "black-box" models. This lack of 

interpretability is problematic, particularly in 
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engineering applications where understanding the 

reasoning behind a model's predictions is crucial for 

trust, verification, and validation. Engineers often 

require not just predictions but explanations for how 

and why a particular design choice or simulation 

result is optimal or valid. The black-box nature of AI 

models complicates their integration into decision-

making processes, as engineers may hesitate to rely on 

solutions whose underlying mechanisms are opaque 

(Adeleke, et al., 2024, Omomo, Esiri & Olisakwe, 2024, 

Sam Bulya, et al., 2024). Moreover, generalization to 

unseen or novel conditions remains a significant 

hurdle. AI models trained on a specific set of 

simulation data may struggle to generalize to new or 

previously unexplored operating conditions, such as 

extreme flow rates, non-standard boundary 

conditions, or untested material properties. This 

limited ability to extrapolate outside the training 

dataset can lead to poor performance or even failure 

in real-world applications, particularly in dynamic or 

evolving systems. 

The integration complexity and computational trade-

offs involved in AI-based optimization for 

multiphysics fluid dynamics further complicate their 

adoption. The integration of AI models with 

traditional computational fluid dynamics (CFD) 

solvers requires sophisticated software architectures 

and substantial computational resources. Developing 

interfaces between AI models and CFD solvers, which 

were not originally designed with AI integration in 

mind, can be a time-consuming and technically 

challenging process. Furthermore, while AI-based 

optimization methods promise to accelerate 

simulations and reduce computational costs, the 

training of AI models itself can be computationally 

intensive. The need to train AI models on vast 

datasets, run simulations iteratively, and fine-tune 

hyperparameters can place heavy demands on 

computing infrastructure, especially in industrial 

settings where resources are often limited (Adebayo, 

et al., 2024, Omowole, et al., 2024, Onukwulu, et al., 

2024). Moreover, the time saved during optimization 

and simulation may not always offset the initial 

computational costs of training AI models, leading to 

diminishing returns in terms of overall system 

efficiency. Additionally, the complexity of real-world 

engineering problems often requires the use of high-

dimensional models that can become computationally 

prohibitive, especially in cases where high-fidelity 

simulations are required to ensure accurate 

predictions of multiphysics interactions. 

Reliability and regulatory concerns are particularly 

critical in safety-critical systems, where failure to 

perform correctly could result in catastrophic 

consequences. Many applications of multiphysics fluid 

dynamics, such as aerospace, automotive, energy, and 

biomedical devices, involve systems where safety, 

reliability, and precision are paramount. In these 

fields, any deviation from expected behavior can lead 

to significant risks, including operational failure, 

environmental damage, or loss of human life. AI 

models, particularly those that are highly complex 

and opaque, introduce additional uncertainty into 

safety-critical designs. The lack of interpretability, 

along with potential issues related to model validation 

and verification, makes it difficult to confidently rely 

on AI predictions, particularly when the AI system is 

used in safety-critical design decisions (Sam Bulya, et 

al., 2024, Sonko, et al., 2024, Thompson, Adeoye & 

Olisakwe, 2024). Ensuring the reliability of AI models 

in such contexts requires rigorous validation, real-

world testing, and a clear understanding of the 

model's limitations and failure modes. Moreover, 

regulatory standards and industry guidelines often do 

not yet fully account for the use of AI in product 

design engineering, especially in multiphysics fluid 

dynamics. Many industries are still navigating how to 

incorporate AI into their traditional design and 

regulatory frameworks, leading to uncertainty about 

the compliance of AI-driven designs with established 

safety and performance standards. Regulatory 

agencies are likely to require additional assurances 

regarding the robustness and traceability of AI models 
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before they can be fully trusted in safety-critical 

applications. 

Furthermore, the validation and verification of AI 

models used in fluid dynamics optimization present 

another critical challenge. In traditional engineering 

design, validation is a well-established process where 

computational models are verified against 

experimental data or high-fidelity simulations to 

ensure their accuracy. However, AI models introduce 

a new layer of complexity in this process. The lack of 

direct physical insight into the model’s internal 

decision-making process means that traditional 

validation methods may not be sufficient to assess 

model reliability (Ogunyankinnu, et al., 2022, Okeke, 

et al., 2022, Onyeke, et al., 2022). Additionally, 

because AI models are trained on data that may not 

fully capture all possible operating conditions or 

extreme scenarios, there is a risk that models may fail 

to generalize adequately when exposed to novel or 

unanticipated conditions. Therefore, establishing 

comprehensive validation frameworks that are 

compatible with AI-based optimization techniques is 

an urgent need for their wider adoption in 

engineering applications. 

Lastly, the need for explainability and transparency in 

AI models is intertwined with regulatory concerns. 

While regulatory bodies in some industries have 

begun to introduce guidelines for the use of AI, these 

are often generic and may not provide enough 

specificity for fluid dynamics optimization in 

particular (Aderamo, et al., 2024, Omomo, Esiri & 

Olisakwe, 2024, Sam Bulya, et al., 2024). Many 

regulatory standards still focus on traditional 

numerical methods, such as finite element analysis 

(FEA) or CFD solvers, and have yet to catch up with 

the complexities introduced by AI. This mismatch 

between AI-based optimization methods and existing 

regulatory frameworks creates significant barriers to 

the widespread adoption of AI in safety-critical 

industries. 

In conclusion, while AI-based optimization 

techniques have the potential to revolutionize 

multiphysics fluid dynamics in product design 

engineering, they come with notable challenges and 

limitations. Issues related to data scarcity, model 

generalization, interpretability, integration 

complexity, computational trade-offs, and regulatory 

concerns must be addressed to ensure the successful 

implementation of AI-driven design optimization in 

industrial applications (Adeleke, et al., 2024, Omomo, 

Esiri & Olisakwe, 2024, Paul, et al., 2024). 

Overcoming these obstacles will require the 

development of more robust, transparent, and 

explainable AI models, as well as a closer integration 

of AI methods with traditional engineering practices. 

Only through such advancements can AI-based 

optimization reach its full potential in the design and 

optimization of complex, multiphysics systems, 

particularly in safety-critical applications. 

 

X. Conclusion, Future Trends and Research 

Opportunities 

 

Advances in AI-based optimization for multiphysics 

fluid dynamics in product design engineering have 

brought about transformative improvements across 

various industries, enabling more efficient, precise, 

and innovative design processes. The integration of AI 

with fluid dynamics simulations allows for rapid 

optimization of complex systems, such as 

aerodynamic shapes in aerospace, thermal 

management in automotive systems, and fluid-

structure interactions in biomedical devices. AI-

driven techniques, particularly machine learning and 

deep learning, have accelerated simulations, reduced 

computational costs, and enhanced design iteration 

cycles, offering vast potential to improve product 

performance and sustainability. As AI continues to 

evolve, it plays a strategic role in reshaping 

engineering design, fostering innovation, and 

addressing challenges related to resource efficiency, 

product optimization, and energy conservation. 

Looking ahead, several future trends and research 

opportunities will shape the continued advancement 
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of AI-based optimization in fluid dynamics. One key 

trend will be the increased focus on explainable AI 

and the development of trustworthy models. For AI 

models to be fully adopted in safety-critical systems, 

transparency in how decisions are made and the 

ability to interpret model predictions will be essential. 

Developing AI techniques that allow engineers to 

understand and trust the underlying processes driving 

model outputs will be crucial, especially in industries 

where reliability and safety are paramount. 

Another promising area is the integration of AI with 

edge computing and digital twins. As the demand for 

real-time data processing and on-site decision-making 

increases, AI-powered edge computing solutions will 

allow for immediate optimization of fluid dynamics 

systems. Digital twins, which create real-time digital 

replicas of physical systems, will benefit from AI-

driven insights, enabling continuous monitoring and 

adaptive optimization based on live data. This 

combination of AI, edge computing, and digital twins 

will support more dynamic and efficient design and 

operational processes, particularly in industries such 

as aerospace, automotive, and energy. 

The development of autonomous design systems and 

continuous learning models will also be a key focus. 

AI models that continuously learn from new data and 

adapt to changing conditions will enable autonomous 

design iterations, allowing systems to evolve 

independently while maintaining optimal 

performance. These continuous learning models will 

further enhance AI's role in product design, enabling 

quicker, more responsive adaptations to new 

challenges and opportunities without requiring 

manual interventions. This level of autonomy will be 

crucial for industries requiring rapid innovation, such 

as renewable energy and turbomachinery, where 

efficiency and performance optimization are critical. 

Cross-disciplinary collaboration will be essential for 

driving sustainable innovation in AI-based 

optimization for fluid dynamics. Engineers, computer 

scientists, data scientists, and domain experts must 

work together to create AI systems that are not only 

technically advanced but also address real-world 

engineering challenges. By fostering collaboration 

across disciplines, the development of AI models that 

are both technically sound and practically applicable 

will be accelerated. These partnerships will also 

encourage the development of AI tools that integrate 

seamlessly with existing engineering workflows, 

making AI-based optimization a more accessible and 

effective solution for industries ranging from 

automotive to healthcare. 

In summary, AI-based optimization techniques have 

already had a profound impact on the field of 

multiphysics fluid dynamics, enhancing efficiency, 

accelerating innovation, and optimizing product 

design processes across various industries. The 

continued advancement of AI in fluid dynamics will 

undoubtedly bring about even more significant 

breakthroughs, driven by developments in 

explainability, edge computing, autonomous design, 

and cross-disciplinary collaboration. As AI 

technologies mature and their integration into 

product design becomes more seamless, the potential 

for creating more efficient, sustainable, and high-

performing systems will expand, leading to improved 

products and services across numerous sectors. 

Moving forward, continued research and industry 

adoption are crucial for realizing the full potential of 

AI in fluid dynamics and product design. As 

researchers explore new methodologies for improving 

model interpretability, generalization, and 

computational efficiency, and as industries implement 

these technologies into real-world applications, the 

scope for AI-driven optimization will continue to 

grow. Emphasizing the strategic role of AI in 

transforming fluid dynamics and product design will 

be key in driving innovation and sustainability in the 

future. The call for continued research, collaboration, 

and industry adoption remains as important as ever, as 

AI increasingly becomes an essential tool for 

engineers aiming to solve the complex, 

multidimensional problems inherent in product 

design and optimization. 
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