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 This research introduces an enhanced method for temperature nowcasting 

through framewise modeling using a Convolutional Long Short-Term 

Memory (Conv-LSTM) architecture. Unlike traditional numerical models 

that often fall short in capturing the complex spatiotemporal dynamics of 

atmospheric data, the proposed approach leverages convolutional layers to 

extract spatial dependencies and LSTM units to learn temporal sequences, 

enabling precise short-term temperature prediction. The model is trained 

on sequential temperature frame data and evaluated using key 

performance metrics, achieving a Mean Squared Error (MSE) of 0.00035, 

Peak Signal-to-Noise Ratio (PSNR) of 34.54, Root Mean Square Error 

(RMSE) of 0.027, and Structural Similarity Index (SSIM) of 0.9954. These 

metrics demonstrate that the model delivers highly accurate predictions 

while maintaining the structural integrity and visual quality of the original 

temperature frames. The exceptionally high SSIM value highlights the 

model’s ability to preserve spatial consistency, which is vital in 

meteorological applications. This research underscores the potential of 

deep learning-based spatiotemporal modeling for accurate and reliable 

temperature nowcasting and offers a robust framework that can be further 

extended to other weather prediction tasks requiring fine-grained spatial-

temporal understanding. 
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I. INTRODUCTION 

 

Accurate and timely weather forecasting has become 

increasingly essential in today’s climate-conscious 

world, where the effects of global warming, natural 

disasters, and extreme weather patterns are more 

prevalent than ever. Among the various atmospheric 

parameters, temperature plays a fundamental role in 

determining environmental conditions, public health 

outcomes, agricultural planning, and energy 

consumption. While traditional numerical weather 

prediction (NWP) models have been widely used for 
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large-scale and long-term forecasts, they often fall 

short in short-term, high-resolution forecasting tasks 

known as nowcasting. Temperature nowcasting — the 

prediction of near-future temperature changes, 

typically over a few hours — requires models that can 

effectively capture fine-grained spatiotemporal 

dynamics, something classical models struggle to 

achieve. 

Recent advancements in deep learning have opened 

up new avenues for more accurate and efficient 

nowcasting. Convolutional Long Short-Term Memory 

(Conv-LSTM) networks, in particular, have 

demonstrated strong capabilities in modeling 

sequential data that also exhibit spatial structure. 

Unlike traditional LSTM networks that are optimized 

for temporal patterns only, Conv-LSTM incorporates 

convolutional operations within LSTM cells to 

preserve and learn spatial dependencies over time. 

This makes Conv-LSTM particularly well-suited for 

meteorological applications where both spatial 

structure and temporal evolution are critical. 

This research proposes an enhanced temperature 

nowcasting framework based on Conv-LSTM, 

utilizing a framewise modeling approach. The model 

treats temperature data as sequential spatial frames 

rather than as isolated time-series values, enabling it 

to learn both local spatial features and global temporal 

trends. The data used in this study is sourced from the 

ERA5 Reanalysis dataset, provided by the Copernicus 

Climate Data Store (CDS), which is one of the most 

comprehensive and high-quality climate datasets 

available. The ERA5 dataset includes various 

atmospheric parameters recorded on a global scale and 

is stored in NetCDF (Network Common Data Form) 

format—a widely used data format in climate science. 

In NetCDF, parameters such as temperature are 

categorized as variables, while time, latitude (lat), 

longitude (lon), and vertical levels (lev) are classified 

as coordinate variables. This structure supports 

multidimensional data handling and enables efficient 

extraction and preprocessing for deep learning tasks. 

The dataset can be accessed via Copernicus CDS. 

To evaluate the effectiveness of the proposed Conv-

LSTM model, several performance metrics are utilized, 

including Mean Squared Error (MSE), Root Mean 

Square Error (RMSE), Peak Signal-to-Noise Ratio 

(PSNR), and Structural Similarity Index Measure 

(SSIM). The model achieved impressive results: an 

MSE of 0.00035, RMSE of 0.027, PSNR of 34.54, and 

SSIM of 0.9954, indicating both high numerical 

accuracy and strong structural preservation in the 

predicted temperature frames. 

In summary, this research contributes a robust deep 

learning framework for temperature nowcasting by 

integrating spatial and temporal modeling via Conv-

LSTM and leveraging high-resolution climate data 

from ERA5. The proposed method not only advances 

prediction accuracy but also maintains the structural 

integrity of temperature fields, making it a valuable 

tool for real-time meteorological applications and a 

strong foundation for future extensions in weather 

forecasting. 

 

II. LITERATURE STUDY 

 

In recent years, deep learning has shown significant 

promise in the domain of weather nowcasting, 

particularly for precipitation and temperature 

prediction using radar and satellite data. Traditional 

methods often rely on numerical weather prediction 

(NWP), which, while effective, suffers from 

limitations in computational speed and spatial 

resolution for short-term forecasting. As a result, the 

focus has increasingly shifted toward data-driven 

approaches that leverage deep neural networks to 

model spatiotemporal weather phenomena. 

Asperti et al. [1] introduced a diffusion model-based 

generative framework for precipitation nowcasting. 

Their approach outperforms traditional GAN models 

by incorporating probabilistic sampling, which allows 

for the generation of more realistic and temporally 

consistent precipitation maps. Similarly, Imran et al. 

[2] employed radar-based data for precipitation 

nowcasting using deep learning models such as CNN 
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and LSTM. Their study emphasized the potential of 

fusing radar reflectivity with temporal learning for 

improved short-term predictions. 

Liu et al. [3] proposed a ConvLSTM model that 

integrates radar reflectance and radar-retrieved wind 

fields to improve rainfall nowcasting accuracy. Their 

model effectively captures temporal evolution and 

spatial patterns of atmospheric phenomena, showing 

superiority over baseline LSTM and 3D CNN 

architectures. Czibula et al. [4] developed Nowdeepn, 

an ensemble of deep models using radar data. Their 

ensemble technique integrates multiple CNN-based 

models, significantly improving robustness and 

accuracy across diverse weather conditions. 

Stochastic methods have also found utility in the field. 

Bihlo [5] employed a variational frame predictor with 

a learned prior distribution to generate probabilistic 

precipitation nowcasts, showing improved uncertainty 

estimation. On the other hand, Bouget et al. [6] 

demonstrated the fusion of radar images and wind 

forecasts within a deep learning model, emphasizing 

the advantage of multimodal input in capturing 

complex weather dynamics. 

Marrocu and Massidda [7] compared deep learning 

models with traditional optical flow-based techniques, 

revealing that CNN and ConvLSTM models 

outperform optical flow approaches in predicting 

short-term precipitation from radar images. Bonnet et 

al. [8] used radar data with CNNs and LSTMs in São 

Paulo, Brazil, illustrating the applicability of deep 

learning in diverse geographic contexts. Their results 

indicate that model performance is influenced by local 

terrain and weather variability. 

Yao et al. [9] utilized deep LSTM networks for radar 

image sequence prediction, presenting strong 

temporal modeling capabilities. Samsi et al. [10] 

proposed a distributed deep learning architecture for 

precipitation nowcasting, emphasizing scalability for 

large radar datasets using high-performance 

computing systems. 

Kumar et al. [11] introduced ConvCast, a ConvLSTM-

based architecture using satellite imagery. Their 

model effectively captures cloud dynamics, offering 

competitive performance in short-term precipitation 

forecasts. Zhou et al. [12] provided a comprehensive 

benchmark review of deep learning methods for next-

frame prediction, discussing their suitability for 

weather nowcasting and highlighting ConvLSTM as a 

leading candidate due to its ability to handle spatial 

and temporal dependencies. 

Berthomier et al. [13] explored deep learning for cloud 

cover nowcasting using satellite data, showcasing how 

accurate next-frame prediction could assist in solar 

energy forecasting and aviation operations. Jianhong 

et al. [14] examined radar extrapolation techniques, 

laying the groundwork for integrating optical flow 

with deep neural networks. 

For data management and preprocessing, Hoyer and 

Hamman [15] introduced the xarray Python library, 

which facilitates labeled multi-dimensional data 

handling. This tool is particularly useful when 

working with large climate datasets in NetCDF format, 

a common format adopted by meteorological 

institutions. Their work supports efficient data 

extraction and manipulation, essential for building 

scalable deep learning pipelines. 

In the Indian context, Goyal et al. [16] developed a 

satellite-based technique for thunderstorm 

nowcasting using deep learning. Their model achieves 

real-time applicability and shows high accuracy 

during monsoon periods. Sen Roy et al. [17] 

introduced a paradigm for severe weather short-range 

forecasting, emphasizing region-specific atmospheric 

modeling. In a complementary study, they reviewed 

convective weather nowcasting in India [18], 

recommending hybrid approaches combining NWP 

and deep learning. 

Agrawal et al. [19] used radar images for precipitation 

nowcasting via machine learning, adopting a U-Net 

architecture. Their study underscores the importance 

of capturing fine-grained spatial features and edge 

dynamics in rainfall maps. Finally, Suresh [20] 

presented a foundational analysis of convective 

weather systems in southern India, offering valuable 



International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 12 |  Issue 3 

Vedant Sukhadia et al Int J Sci Res Sci & Technol. May-June-2025, 12 (3) : 440-447 

 

 

 
443 

domain-specific knowledge that complements data-

driven methodologies. 

Collectively, these studies highlight the growing 

importance of deep learning in advancing weather 

nowcasting capabilities. ConvLSTM and its variants 

dominate the landscape, demonstrating strong 

performance across diverse climatic conditions and 

data types. The integration of radar, satellite, and 

wind field data—along with sophisticated 

preprocessing tools like xarray—enhances model 

robustness and spatial-temporal accuracy. Moreover, 

studies emphasize the need for region-specific 

adaptations and hybrid methods to fully realize the 

benefits of deep learning in operational meteorology. 

The current trend is toward combining deep 

generative models, ensemble strategies, and real-time 

data processing pipelines for scalable and accurate 

nowcasting solutions. 

 

III. PROPOSED METHODOLOGY 

 

The workflow for the proposed enhanced temperature 

nowcasting framework using Conv-LSTM is 

illustrated in the given flowchart. The process begins 

by extracting weather data from the ERA5 reanalysis 

dataset, which is publicly available through the 

Copernicus Climate Data Store (CDS). ERA5 provides 

hourly estimates of atmospheric parameters using data 

assimilation and numerical weather modeling. The 

data is stored in NetCDF (Network Common Data 

Form), a standard format in climate science that 

supports the storage of multidimensional scientific 

data. In this format, weather-related measurements 

like temperature are treated as variables, while 

coordinate variables such as time, latitude (lat), 

longitude (lon), and vertical level (lev) define the 

structure of the dataset. These coordinate variables 

help in pinpointing the exact spatial and temporal 

positioning of each data point. 

 

 
Figure 1: Proposed System Flow 

 

Once the dataset is extracted, preprocessing is 

performed to filter the data within a specific 

geographic and temporal range. This ensures that only 

the relevant subset of data is used for modeling. The 

filtered data is then subjected to geo-plotting, where 

temperature values are plotted spatially over maps 

using latitude and longitude coordinates, across time 

intervals. This visual mapping helps in translating raw 

numerical data into meaningful spatiotemporal frames. 

Each plotted frame represents an hourly snapshot of 

the temperature distribution and is saved in JPG 

format for consistency and ease of processing. 

These image frames are then organized into input-

output pairs for the model. A set of consecutive frames 

is used as the input sequence, and the subsequent 

frame(s) are used as the prediction target. This enables 

the Conv-LSTM model to learn temporal 

dependencies across the spatially distributed 

temperature data. The model is then trained on these 
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sequences, allowing it to learn both the spatial 

structure of temperature patterns and their temporal 

progression. 

Following the training phase, the model undergoes 

testing on unseen data to evaluate its generalization 

performance. Once testing is complete, the predicted 

and actual frames are combined to generate animated 

GIFs, visually representing the nowcasting output 

over time. This not only provides an intuitive 

understanding of model performance but also serves 

as a valuable visualization tool for meteorological 

applications. 

Finally, a model evaluation phase is conducted using 

performance metrics such as Mean Squared Error 

(MSE), Root Mean Square Error (RMSE), Peak Signal-

to-Noise Ratio (PSNR), and Structural Similarity 

Index Measure (SSIM). These metrics assess the 

accuracy, visual quality, and structural integrity of the 

predicted temperature frames, confirming the model’s 

effectiveness in short-term weather prediction. 

 

IV. RESULTS ANALYSIS 

 

The results analysis highlights the effectiveness of the 

proposed Conv-LSTM model for enhanced 

temperature nowcasting through a series of 

comparative evaluations and visualizations. As shown 

in Figure 2, the data is initially read and processed for 

modeling, followed by baseline regressors—Linear 

Regression (Figure 3), Support Vector Regression 

(Figure 4), and K-Nearest Neighbor Regression (Figure 

5)—which provide a reference for performance 

comparison. These traditional methods are limited in 

capturing the spatiotemporal complexity of weather 

data. Figure 6 illustrates heat maps representing the 

spatial distribution of temperature across different 

time intervals. Figure 7 groups 20 hourly temperature 

frames into a single block, forming the input structure 

for the Conv-LSTM. Figure 8 presents the architecture 

of the proposed model. The model’s learning process is 

monitored using MSE and loss plots (Figures 9 and 10), 

showing stable convergence with minimal error. The 

comparison between actual and predicted temperature 

frames in Figure 11 demonstrates high visual and 

structural similarity, which is further visualized 

through nowcast animation frames in Figure 12. 

Quantitative results in Table 1 confirm the model’s 

superior performance, achieving an MSE of 0.00035, 

PSNR of 34.54, RMSE of 0.027, and SSIM of 0.9954, 

indicating high accuracy and structural fidelity in 

temperature prediction. 

 
Figure 2: Reading Data 

 
Figure 1: Linear Regression 

 
Figure 4: Support Vector Regression 
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Figure 5: KNN Regression 

 

 
Figure 6: Make Heat maps 

 
Figure 7: Make 20-Frames 1-Block 

 

 
Figure 8: Build Proposed Model 

 
Figure 9: Model MSE Plot 

 
Figure 10: Model Loss Plot 
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Figure 11: Actual Vs Predicted 

 

 
Figure 12: Nowcast Frames 

 

Table 1: Parameters 

Parameters Value 

MSE 0.00035 

PSNR 34.54 

RMSE 0.027 

SSIM 0.9954 

 

V. CONCLUSION AND FUTURE WORK 

 

In conclusion, traditional machine learning regression 

models fall short in accurately predicting temperature 

trends, as reflected by their low R²-score, low 

Explained Variance Score (EVS), and high error 

metrics such as MSE, MAE, and RMSE. These 

limitations underscore the need for advanced deep 

learning methods capable of modeling complex 

spatiotemporal patterns.  

The 3D-Conv-LSTM model addresses this challenge 

by integrating convolutional layers for spatial feature 

extraction with LSTM layers for temporal sequence 

learning. This hybrid approach significantly enhances 

temperature nowcasting performance, as evidenced by 

the achieved metrics: MSE of 0.00035, PSNR of 34.55, 

RMSE of 0.028, and SSIM of 0.9954, indicating high 

prediction accuracy and structural similarity with 

ground truth data. 
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