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 This study proposes an advanced deepfake detection framework that 

combines Convolutional Neural Networks (CNN) with Long Short-Term 

Memory (LSTM) networks to effectively identify manipulated video 

content. The CNN component is designed to extract detailed spatial 

features from individual video frames, capturing subtle visual cues 

indicative of tampering. Meanwhile, the LSTM module models temporal 

dependencies across sequential frames, enabling the detection system to 

analyze frame-to-frame variations and inconsistencies characteristic of 

deepfake videos. This hybrid architecture leverages the complementary 

strengths of CNNs and LSTMs to enhance classification accuracy beyond 

conventional single-model approaches. The proposed Adaptive-GAN 

system, evaluated on benchmark datasets, demonstrates superior 

performance with a generator loss of 0.035 and discriminator loss of 0.020, 

reflecting stable and robust training dynamics. It achieves an impressive 

97% accuracy, precision, recall, and F1-score, underscoring its 

effectiveness in distinguishing real from manipulated content. These 

results indicate that integrating spatial and temporal feature extraction 

substantially improves detection reliability, making the framework well-

suited for real-time applications in digital media forensics. By addressing 

challenges in deepfake identification, this research contributes to the 

development of trustworthy AI-driven tools that can safeguard 

information integrity and combat misinformation in increasingly complex 

multimedia environments. 

 

Keywords: Deepfake detection, Convolutional Neural Networks, Long 

Short-Term Memory, Adaptive-GAN, digital media forensics. 

 

 

Publication Issue : 

Volume 12, Issue 3 

May-June-2025 

 

Page Number : 

448-456 

 



International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 12 |  Issue 3 

Vishal Manishbhai Patel et al Int J Sci Res Sci & Technol. May-June-2025, 12 (3) : 448-456 

 

 

 
449 

I. INTRODUCTION 

 

The rapid advancement of artificial intelligence and 

deep learning technologies has led to significant 

breakthroughs in image and video synthesis. Among 

these innovations, deepfake technology—techniques 

that generate hyper-realistic manipulated media—has 

garnered widespread attention due to its potential for 

misuse. Deepfakes can convincingly alter or fabricate 

video content, making it increasingly difficult to 

distinguish between authentic and manipulated media. 

This poses serious risks to privacy, security, and trust, 

especially in contexts such as social media, politics, 

and legal evidence. Consequently, developing 

effective methods to detect deepfakes is imperative to 

preserve the integrity of digital content and protect 

users from misinformation. 

Traditional deepfake detection approaches have 

largely focused on analyzing individual frames or 

static images using convolutional neural networks 

(CNNs), which excel at extracting spatial features and 

visual patterns. While CNN-based models have shown 

promising results, they often overlook temporal 

dynamics inherent in videos, such as subtle 

inconsistencies or artifacts occurring across 

consecutive frames. Ignoring temporal information 

limits the model’s ability to capture complex 

manipulations that evolve over time, reducing 

detection robustness. 

To address these challenges, this study proposes a 

hybrid framework that integrates CNNs with Long 

Short-Term Memory (LSTM) networks, which are 

specifically designed to model sequential data and 

temporal dependencies. The CNN component extracts 

rich spatial features from each frame, while the LSTM 

network analyzes the sequence of these features to 

learn temporal patterns that differentiate genuine 

videos from deepfakes. This combination leverages the 

complementary strengths of both architectures, 

enabling a more comprehensive analysis of video data. 

Additionally, we introduce an Adaptive-GAN-based 

training approach that stabilizes the learning process, 

improves feature representation, and enhances 

classification accuracy. Experimental evaluations 

demonstrate that the proposed system achieves high 

precision, recall, and F1-score, indicating reliable and 

robust detection performance. 

By effectively capturing both spatial and temporal 

cues, this research contributes to advancing 

automated deepfake detection methods, which are 

critical in mitigating the growing threats posed by 

manipulated media. The proposed framework not only 

improves detection accuracy but also lays the 

groundwork for real-time applications in digital media 

forensics, thereby supporting efforts to maintain trust 

and authenticity in the digital era. 

 

II. LITERATURE STUDY 

 

The rapid evolution of deep learning and generative 

models has led to the proliferation of deepfakes, 

synthetic media generated by algorithms such as 

GANs (Generative Adversarial Networks). This 

phenomenon has raised significant concerns in media 

authenticity, social trust, and security. Consequently, 

deepfake detection has emerged as a critical research 

area within artificial intelligence, computer vision, 

and cybersecurity domains. This literature study 

presents a comprehensive review of recent 

contributions in deepfake detection from 20 selected 

works, categorizing them into architectural 

frameworks, ensemble models, surveys, dataset 

benchmarking, and societal implications. 

Wazid et al. [1] proposed a comprehensive framework 

focusing on the architectural and security aspects of 

deepfake mitigation. The study emphasizes the 

importance of layered architectures incorporating 

watermarking, blockchain, and deep learning 

classifiers for robust authentication. Furthermore, 

they discuss emerging challenges such as the lack of 

standardized datasets, ethical concerns, and the 

increasing sophistication of generative models. Their 

work highlights the interdisciplinary nature of the 



International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 12 |  Issue 3 

Vishal Manishbhai Patel et al Int J Sci Res Sci & Technol. May-June-2025, 12 (3) : 448-456 

 

 

 
450 

deepfake problem, urging collaboration between legal, 

technical, and policy-making entities. 

Sharma et al. [2] addressed catastrophic forgetting in 

deepfake detection by proposing a GAN-CNN 

ensemble model integrated with generative replay 

mechanisms. Their method preserves performance 

when exposed to evolving fake media distributions. 

Experimental results on social media images 

demonstrated that their model could maintain high 

accuracy over incremental training cycles, 

outperforming traditional CNNs. This work 

underscores the necessity for continual learning in 

dynamic detection environments. 

In a broader context, Gambín et al. [3] presented a 

forward-looking survey exploring both current and 

emerging trends in deepfake technologies. Their 

review spanned detection methods, attack vectors, 

and policy responses. A unique contribution of this 

work is the exploration of future threats, including 

the convergence of deepfakes with augmented reality 

and voice synthesis. They advocate for a multi-

pronged defense strategy combining detection tools, 

public awareness, and platform-level safeguards. 

Almars [4] focused on deep learning-based detection 

techniques, offering a classification of methods such as 

autoencoders, CNNs, and RNNs. Their comparative 

analysis of model architectures and training data 

revealed a trade-off between detection accuracy and 

computational efficiency. This study served as a 

foundational resource for researchers entering the 

field, particularly in understanding the evolution from 

handcrafted features to end-to-end deep learning 

models. 

Gong and Li [5] extended the discussion by 

emphasizing the role of datasets in benchmarking 

deepfake detection performance. They cataloged 

various public datasets such as FaceForensics++, 

Celeb-DF, and DFDC, highlighting their limitations in 

diversity, resolution, and real-world complexity. 

Moreover, they reviewed deepfake detection 

algorithms across four categories: spatial-based, 

frequency-based, temporal-based, and multimodal 

techniques. Their work bridges the gap between 

theory and practical implementation. 

Real-time detection has become increasingly relevant 

due to the integration of deepfake detection systems 

into consumer applications. Lanzino et al. [6] tackled 

this challenge by introducing a binary neural network 

(BNN) optimized for low-latency inference. Their 

model, named ―Faster Than Lies,‖ leverages reduced-

precision arithmetic to enable deployment on edge 

devices. Experimental evaluations showed that BNNs 

could detect manipulated videos with significant 

speedup and marginal trade-offs in accuracy. 

Pellicer et al. [7] introduced PUDD, a multimodal 

prototype-based approach that combines facial 

attributes, speech, and temporal dynamics to enhance 

robustness. Their technique is grounded in 

interpretable machine learning, using prototype 

vectors to explain classification decisions. PUDD 

achieved state-of-the-art performance on several 

multimodal benchmarks, demonstrating the advantage 

of combining visual and audio cues. 

A novel perspective was presented by Tan et al. [8], 

who examined the role of upsampling operations in 

CNN-based generative networks. Their study revealed 

that artifacts introduced during upsampling could be 

exploited for generalizable deepfake detection. By 

altering the generator’s architecture in GAN training, 

they were able to produce fakes that retained 

detectable inconsistencies. This line of research 

suggests a co-evolutionary approach—designing 

detection-aware generative models to enhance 

detection techniques. 

Lu and Ebrahimi [9] proposed a real-world assessment 

framework to evaluate the robustness of detection 

models under varied conditions such as compression, 

resolution scaling, and adversarial noise. Their 

findings indicate that many models perform well in 

controlled lab settings but degrade substantially in 

deployment scenarios. The study emphasizes the need 

for evaluation metrics beyond accuracy, such as 

robustness and generalizability. 
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Ba et al. [10] investigated forgery localization as a 

supplementary signal for deepfake detection. Their 

model integrates both global classification and local 

anomaly detection modules to uncover subtle facial 

manipulations. Visualizations of heatmaps revealed 

their method’s capability to focus on discriminative 

regions like the mouth and eye boundaries. Such 

hybrid strategies offer deeper insights into detection 

interpretability. 

Beyond technical advancements, Alanazi et al. [11] 

provided a sociopolitical perspective, examining the 

legislative implications and regulatory frameworks 

surrounding deepfake proliferation. They call for 

international cooperation to draft laws that balance 

free expression with harm mitigation, especially in 

political and financial domains. Their interdisciplinary 

approach contributes to understanding how policy can 

complement technology in addressing deepfakes. 

Qureshi et al. [12] presented a forensic-based 

taxonomy of deepfake detection tools, categorizing 

methods based on forensic traces like head pose, eye-

blinking, and inconsistencies in shadows and 

reflections. Their survey also included multimodal 

approaches that combine audio and video streams. A 

critical insight from their study is the importance of 

human-in-the-loop systems to validate and audit AI 

decisions in forensic contexts. 

Lyu [13] proposed mitigation strategies that extend 

beyond detection, focusing on content authentication 

and public education. He emphasized watermarking, 

digital signatures, and provenance tracking as 

preventive tools. His viewpoint paper advocates for a 

holistic approach involving technology developers, 

educators, and policymakers. 

Aloke and Abah [14] developed an ensemble deep 

learning model that aggregates predictions from CNN, 

LSTM, and attention mechanisms. Their ensemble 

significantly improved the detection accuracy of 

manipulated videos shared on social media. The study 

demonstrates the strength of hybrid architectures in 

capturing both spatial and temporal features. 

Kaur et al. [15] reviewed the challenges unique to 

video-based deepfakes, including frame rate 

inconsistencies, facial expression blending, and 

motion artifacts. They identified the lack of temporal 

coherence exploitation in many existing models and 

proposed integrating spatio-temporal modules for 

enhanced detection. This work contributes to the 

growing interest in video-level analysis rather than 

isolated frame classification. 

Heidari et al. [16] offered a systematic review of over 

100 deepfake detection papers. Their taxonomy 

organizes techniques based on data modality, feature 

extraction, and learning paradigm. One of their core 

findings is the transition from traditional machine 

learning to end-to-end deep neural networks, with a 

rising trend in transformer-based architectures. 

Nguyen et al. [17] discussed the dual role of deep 

learning in both generating and detecting deepfakes. 

Their survey addresses ethical paradoxes where 

similar tools that create fake content are also used to 

detect them. The authors propose ―dual-use aware‖ 

design principles to ensure responsible deployment of 

generative models. 

Kaushal et al. [18] explored the societal consequences 

of deepfake dissemination, particularly in the domains 

of politics, celebrity culture, and misinformation 

campaigns. Their study complements technical work 

by providing real-world case studies and response 

strategies adopted by governments and media 

platforms. 

Abdullah et al. [19] analyzed recent advances in 

image-based deepfake detection, focusing on 

transformer networks and attention mechanisms. 

They argue that vision transformers outperform CNNs 

in handling complex manipulations due to their global 

receptive field. Their experiments validate this claim 

using standard benchmarks. 

Seng et al. [20] proposed AI integrity solutions 

incorporating adversarial training and explainable AI 

for deepfake identification. Their research promotes 

transparency and trust in AI systems, particularly in 

applications such as journalism and content 
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moderation. They also stress the role of public-private 

partnerships in developing effective countermeasures. 

The reviewed literature reveals a dynamic and 

multidisciplinary effort toward deepfake detection. 

Technical innovations span from lightweight binary 

networks [6] and prototype-based detection [7] to 

ensemble models [2][14] and transformer-based 

frameworks [19]. Equally important are works that 

address data limitations [5], real-world robustness [9], 

and ethical governance [1][11][13]. As deepfakes 

continue to evolve in realism and accessibility, future 

research must prioritize generalizability, 

explainability, and societal alignment. Moreover, 

collaborations across academia, industry, and 

government are essential to ensure secure and 

trustworthy digital ecosystems. 

 

III. PROPOSED SYSTEM 

 

Figure 1 Overview of the proposed deepfake detection 

system using ADCGAN for dataset generation and a 

fine-tuned CNN-LSTM hybrid model for classification. 

 
Figure 1: Proposed System 

1. Dataset Acquisition 

The process begins with the collection of facial images 

from the Kaggle Real and Fake Face Detection dataset. 

This dataset consists of high-resolution face images 

categorized into two classes—Real and Fake—serving 

as the input for training and evaluation of the model. 

2. Pre-Processing 

Each image is resized to a standard dimension of 

224×224×3 to meet the input requirements of deep 

learning architectures. Preprocessing includes resizing, 

normalization (scaling pixel values to [0, 1]), and RGB 

conversion. These steps ensure consistency in input 

data and improve the efficiency and stability of model 

training. 

3. ADCGAN (Adaptive Conditional GAN) 

To address data scarcity and enhance diversity, the 

Adaptive Conditional Generative Adversarial 

Network (ADCGAN) is employed to generate 

synthetic facial images. Unlike traditional GANs, 

ADCGAN adapts its learning parameters to 

dynamically stabilize training, producing realistic fake 

and real face images conditioned on class labels. This 

step serves as a form of intelligent data enrichment, 

enhancing model robustness without traditional data 

augmentation. 

4. Generated Dataset Integration 

The synthetic images generated by ADCGAN are 

combined with the original dataset to create a more 

diverse and balanced training dataset. This enriched 

dataset includes both authentic and GAN-generated 

facial images, which helps the model learn complex 

feature patterns associated with deepfakes. 

5. Fine-Tuning CNN-LSTM Model 

The enriched dataset is used to fine-tune a hybrid 

CNN-LSTM architecture. The CNN layers extract 

spatial features such as texture, edges, and facial 

geometry. These features are then passed to LSTM 

layers, which model contextual and sequential 

patterns, even in static images, by capturing inter-

feature relationships. This hybrid approach 

strengthens classification performance, particularly in 

detecting subtle manipulations in fake faces. 
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6. Classification Output 

The final model predicts whether a given face image is 

Fake or Real. The performance of the model is 

evaluated using metrics such as accuracy, precision, 

recall, and F1-score. Results indicate the system 

achieves 97% accuracy, reflecting high precision and 

reliability in distinguishing between deepfake and 

genuine facial images. 

 

IV. RESULTS ANALYSIS 

 

The performance evaluation of the proposed CNN-

LSTM model integrated with Adaptive-GAN is 

presented and compared with existing state-of-the-art 

deepfake detection approaches. Figure 2 illustrates the 

initial dataset reading, highlighting balanced data 

distribution and preprocessing steps. Figures 3 and 4 

show the loss curves for DCGAN and the improved 

Adaptive-GAN (ADCGAN), respectively, where 

ADCGAN demonstrates a more stable convergence 

pattern, indicating enhanced synthetic feature 

learning. The baseline CNN model training plots and 

evaluation are depicted in Figures 5 and 6, establishing 

a reference point for accuracy and overfitting 

behavior. In contrast, Figures 7 and 8 display the 

training plots and evaluation results for the proposed 

CNN-LSTM model, revealing significantly improved 

convergence, reduced loss, and higher generalization 

on unseen data. Figure 9 presents the final testing 

outcomes, affirming the model’s strong classification 

capability. Table 1 provides a comparative analysis of 

various models based on accuracy (ACC), precision (P), 

recall (R), and F1-score (F1). The proposed model 

outperforms all baselines, achieving a consistent 97% 

across all evaluation metrics, surpassing high-

performing methods like PUDD [7] and Faster Than 

Lies [6]. This demonstrates the robustness of the 

CNN-LSTM hybrid architecture, reinforced by 

adaptive synthetic data augmentation via ADCGAN, 

in capturing both spatial and temporal artifacts of 

deepfakes. 

 
Figure 2: Dataset Reading 

 

 
Figure 3: DCGAN Loss 

 

 
Figure 4: ADCGAN Loss 

 

 
CNN Model Training Plots 
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Figure 5: CNN Model Evaluation 

 
Figure 6: Proposed CNN-LSTM Model 

 
Figure 7: Proposed Model Training Plots 

 
Figure 8: Proposed Model Evaluation 

 
Figure 9: Testing Results 

 

Table 1: Comparative Analysis 

Model ACC 

(%) 

P 

(%) 

R 

(%) 

F1 

(%) 

GAN-CNN 

Ensemble [2] 

91.2 90.5 90.8 90.6 

Faster Than Lies 

(Binary NN) [6] 

93.7 92.9 94.1 93.5 

PUDD 

(Prototype-

based 

Detection) [7] 

95 94.7 95.3 95 

Exposing the 

Deception [10] 

94.3 94 94.5 94.2 

Proposed CNN-

LSTM 

(Adaptive-

GAN) 

97 97 97 97 

 

V. CONCLUSION AND FUTURE WORK 

 

The proposed Adaptive-GAN model outperforms 

traditional GAN-CNN-LSTM systems in detecting real 

and fake images. With a low Generator loss of 0.035 

and Discriminator loss of 0.020, the model shows 

improved training stability and generates realistic fake 

samples. Achieving 97% in accuracy, precision, recall, 

and F1-score, the model demonstrates excellent 

performance in correctly identifying fake and real 

images, a major improvement over previous methods 

that achieved only 53% accuracy. These results 

highlight the model's efficiency and reduced error 
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rate, making it a strong candidate for deepfake 

detection tasks. Future enhancements should aim at 

improving generalization across varied datasets for 

broader real-world use. Incorporating more 

challenging fake images from advanced GANs like 

StyleGAN and ProGAN can further strengthen its 

capabilities. Moreover, integrating self-supervised 

learning can reduce the need for labeled data, 

increasing the model's adaptability. For deployment in 

real-time environments, especially for social media 

monitoring and forensic applications, optimization 

strategies are necessary to minimize computational 

costs and ensure practical performance. 
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