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 This study explores the intricate dynamics of digital asset engagement, 

employing a Markov chain model to examine peer-influenced adoption (θ) 

and event-triggered abandonment (γ) across diverse network structures. 

The study gives hindsight into mixing time (time to stationarity) analysis, 

which represents the duration required to achieve a stationary 

distribution, and investigates its upper bound along with a revised linear 

programming proof. Simulations reveal the significant impact of network 

architecture on the spread of adoption and abandonment behaviors over 

time. Random networks typically demonstrate faster mixing, facilitating 

rapid information dissemination and market stabilization. In contrast, 

structured networks like small-world and scale-free exhibit more complex 

and often slower mixing patterns, showing distinct vulnerabilities or 

resilience based on the prevailing dynamic. Phase diagrams outline areas of 

sustainable adoption, critical decline, and swift abandonment, showcasing 

the long-term viability of various digital asset categories (such as Bitcoin-

like, Meme coin-like, and NFT-like) within these network landscapes. The 

research underscores the crucial influence of network structure on market 

efficiency, information flow, and the enduring sustainability of digital 

assets. Additionally, this study aims to provide practical insights for Web3 

project teams striving to cultivate sustainable asset ecosystems. 
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I. INTRODUCTION 

 

The ever-growing landscape of digital assets and 

Web3 technologies is introducing a rather positive 

skewed transformation in economic and social 

paradigms (Sergio and Wedemeier, 2025). From 

cryptocurrencies such as Bitcoin to non-fungible 

tokens (NFTs) and decentralized finance (DeFi) 

protocols, these innovations are likely changing the 

primary methods by which value is created, 
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exchanged, and governed (ElBahrawy et al., 2017; 

Saiedi et al., 2021). Considerably, a very crucial factor 

in their long-term sustainability and impact is 

understanding the dynamics of user participation, 

specifically how large numbers of people begin to use 

them within their communities, and the reason why 

they cease using them, which could be due to external 

events or the actions of their peers (Angorani, 2024). 

Unlike traditional market systems, this digital asset 

world is known to be interconnected in complex ways, 

and the identities of several participants are often not 

publicly known (Kimmerl, 2020). Therefore, it is 

necessary to consider the network itself as the most 

important element to truly understand why some 

succeed and others fail. This is what we intend to 

study in detail. We want to create a model to observe 

how people behave within different types of networks. 

Our goal is to discover how the structure of the 

network (Li et al., 2018), its time to reach a stable 

distribution (mixing time also the time to stationarity) 

(Gao and Greenhill, 2020; Ramkumar and 

Soleimanifar, 2024), the probability at which people 

adopt these assets, and the probability at which they 

abandon them interact with each other (Kimmel et al., 

2024; Kong, 2024; Fang et al., 2012). Ultimately, this 

will provide a better understanding that will 

contribute to the sustained growth and long-term 

usefulness of these new digital financial instruments. 

The examination of intricate systems, especially using 

the methods of network science, has provided 

significant understanding in various areas, from how 

social behaviors spread to how diseases propagate. 

Within this broad area, how things are adopted and 

then abandoned has been studied a lot (Ebizie et al., 

2022; Shahzad et al., 2024), often using tools like 

Markov chains and computer-based models. Early 

work on how a product becomes more valuable as 

more people use it showed this is very important for 

new digital platforms to grow at the start (Pesch et al., 

2021; Kremer et al., 2013). At the same time, research 

on how information spreads across different network 

types including, random, small-world, and scale-free 

networks, has shown how the way connections are 

organized affects how fast and how far things spread. 

These studies have found that networks where many 

people are connected in small groups and where it’s 

easy to get from one person to another quickly (small-

world networks) can help things spread globally very 

fast. Also, scale-free networks, which have a few very 

connected individuals linking many less connected 

ones, are good at spreading things because of these 

central hubs (Cipriani and Salvi, 2021; Blumberg et al., 

2024).  

More recently, these ideas have been used more and 

more in the new field of digital assets and blockchain. 

Researchers have started to see the adoption of 

cryptocurrencies as similar to how social behaviors 

spread, looking at how friends and the benefits of 

more users encourage people to join (Boralkar et al., 

2024; Nuwan et al., 2025). At the same time, the idea 

of people stopping their use, which wasn’t focused on 

in early growth models, has become more important, 

especially because digital asset markets change quickly 

and are affected by events. Studies have begun to 

think about how sudden price drops, security 

problems, or changes in rules can be 

key ”abandonment events” that can greatly change 

what users do (John et al., 2024; Hafid et al., 2024). 

While current studies give basic models for how 

networks work and how adoption and abandonment 

happen in different situations, there’s still a big need 

to fully understand how peer influence, regular 

adoption patterns, sudden abandonment events, and 

the specific structures of different network types 

interact in the unique and fast-changing world of 

digital assets (Allassak et al., 2024; Rodpangtiam et al., 

2024; Kajol et al., 2025). Moreover, the idea of people 

being hesitant to start using something again after 

they’ve stopped, which is important in real life, hasn’t 

been looked at much in current network models of 

digital asset use.  

Therefore, drawing from prior research in network 

science (Emunefe and Ugbene, 2024; Osanakpa and 

Ugbene, 2025; Kayoh and Ugbene, 2023; Ugbene and 
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Utoyo, 2024b; Ugbene and Agwemuria, 2024; Ugbene 

and Utoyo, 2024a; Ugbene and Ajuremisan, 2025) and 

combinatorial algebra (Ugbene and Makanjuola, 2012; 

Ugbene et al., 2013; Ugbene and Mbah, 2015; Ugbene 

et al., 2019, 2022), this paper sets out to investigate the 

developing patterns of how digital assets are adopted 

and then abandoned within different kinds of 

network frameworks. The study will use Markov 

chain theory as a tool to assess how stable user 

involvement is. It will also examine how interactions 

with other users and events happening outside the 

network influence the time it takes for the system to 

settle into a balanced state, as well as how significant 

these assets will remain over time. Furthermore, this 

research also aim to provide useful advice for teams 

working on Web3 projects about how to encourage 

lasting growth and ensure their systems continue to 

function effectively within these decentralized 

environments. 

 

II. METHODS AND MATERIAL 

 

We propose a discrete-time Markov chain model to 

analyze the adoption and abandonment of digital 

assets. This model draws inspiration from 

epidemiological compartmental processes (Ahn and 

Hassibi, 2014) and social contagion theory but is 

tailored to reflect the unique characteristics of digital 

asset propagation. The model considers a connected, 

undirected network   with    agents (nodes), where 

each agent's peers are represented by the set   . The 

network's structure is described by the adjacency 

matrix   . 

Agents can be in one of two states: non-adoption 

(abandonment), denoted as "        ̄", or adoption, 

denoted as "       ̄". The system's state at time     is 

represented by  

                              

Here,          indicates that agent   has adopted 

the digital asset at time  , and           indicates 

abandonment or non-adoption. The model assumes 

that the probability of (re)adoption for each agent is 

independent of others, given the current system state. 

That is, for any two configurations             , 

                   ∏ 

 

   

        

                                                

Also, an agent remains in the non-adoption state if 

none of its peers are adopters. Adoption may occur 

due to influence from any adopting neighbor, with 

each influence happening independently with 

probability  . Adopters may abandon the asset with 

probability  , unless immediately re-influenced by 

peers.  

However, static probability assumptions often fail to 

capture the dynamic behavioral patterns observed in 

real-world digital asset ecosystems. Both 

abandonment and adoption probabilities exhibit 

temporal variations driven by external stimuli, 

sentiment evolution, and market dynamics. Adoption 

rates may decay as initial hype diminishes (e.g., for 

NFTs) or grow due to positive feedback and network 

effects (e.g., for Bitcoin). The abandonment 

probability   may follow a uniform distribution and 

increase due to asset depreciation, loss of trust, or 

negative external events. Alternatively, abandonment 

might spike due to abrupt external events, such as 

scandals. This behavior can be modeled using a 

sigmoid function, such that 

                  
 

                                      

Here, the peak likelihood of abandonment is 

represented by     , while    denotes the rate of 

change in the transition, and    signifies the moment 

when a notable event or shock first occurs. To 

represent increased participation, usage, or growing 

social interest (such as in the case of meme stocks), we 

employed an adoption likelihood ( ) that also adheres 

to a uniform distribution. However, adoption patterns 

may also exhibit cyclical trends, particularly during 

anticipated events like cryptocurrency halving cycles. 

A cosine-based model effectively captures this 

periodic nature 

                               |   (
   

 
)|                   
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where, the baseline adoption influence is represented 

by   , while                , denotes the magnitude 

of fluctuation.    signifies the cycle's duration, which 

is 365 for yearly cycles. This formulation would result 

in a periodic Markov chain without a convergence 

time, reflecting the actual behavior of digital asset 

value over time. However, when considering the time 

to stationarity, we employ an aperiodic and 

irreducible Markov chain model, which can be 

concisely described as follows: 

                     

{
 
 

 
                                      

                                       

                                      

                                        

                                

                                                       (4) 

where the set of current adopters is denoted as     , 

which includes all nodes   where      . The 

transition matrix   of this Markov Chain is defined by 

the probability of moving from state   to state   in 

one time step, represented as               

         . Assuming time-homogeneity, this can 

be simplified to            . In this Markov chain 

model of peer-influenced digital asset adoption and 

abandonment, there exists an absorbing state where 

all network nodes are inactive, having abandoned the 

digital asset. Once this all-inactive state is reached, the 

network remains in this state indefinitely, as the 

model does not account for external factors or 

spontaneous adoptions that are independent of peer 

influence. As time advances, the probability 

distribution across the states          tends towards 

the completely inactive state. This implies that, given 

sufficient time, abandonment will ultimately prevail. 

However, this theoretical outcome may not always be 

practical in real-world scenarios. The reason is that 

the mixing time of the Markov chain, which 

represents the duration required to approach the 

absorbing state, can be exceedingly long, particularly 

in large-scale networks. As a result, analyzing the 

system's dynamic behavior becomes computationally 

intensive as the network size increases. Let      

represent the group of active (adopting) nodes at a 

given time  . Define 

                

as the probability that node   is actively using the 

digital asset at time  . Then, the evolution of       can 

be expressed as 

                                     

                                                                       

(5) 

Using the transition probabilities from the node-level 

adoption model in (4), we rewrite this as 

                                 

                                               

    where 

                

is the number of active neighbors of node   at time  . 

To simplify analysis, we approximate the discrete 

product term            using the expectation 

assuming independence of neighbors’ states: 

∏             

    

 ∏          

    

  

Thus, the approximated adoption probability 

dynamics become 

           (∏          

    

)        

 ∏ 

    

            

                 

where       denotes the approximated probability of 

node   adopting the digital asset at time   , also note 

that       is the approximate probability of the 

markov chain model, while        is exact. This 

approximated model operates over the continuous 

space         , which is computationally more 

tractable than the original discrete state space of size 

  . Following the approach of previous studies on 

dynamics of network systems (Chakrabarti et al., 2008; 

Ahn and Hassibi, 2014), define the nonlinear map 

                    with components 
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      (  ∏ 

    

      )             

It is straightforward to verify that the update rule in 

(7) satisfies 

                                

The map   captures the combined effects of 

abandonment (parameter  ) and peer-driven adoption 

(parameter  ) over the network, providing a nonlinear 

dynamical system perspective on digital asset adoption 

dynamics. 

     

2.1 Time to Stationarity and Partial Order on 

Probability Vectors 

The time to stationarity or stationary distribution 

convergence time (also mixing time) of the Markov 

chain           on the state space          is a key 

concept in understanding how quickly the chain 

converges to its stationary distribution. It is defined as 

follows (see also (Ruhi and Hassibi, 2015; Ahn and 

Hassibi,2014) ): 

                                            

where   is an arbitrary initial probability distribution 

over the states,   is the transition matrix of the 

Markov chain,   is the unique stationary distribution 

supported on the absorbing non-adoption state, and 

      denotes the total variation distance. To analyze 

the mixing time more effectively, we introduce a 

partial order    on the set of probability distributions 

over         . This partial order allows us to identify 

a maximal initial distribution   that attains the 

supremum in  (9). 

Definition 2.1 (Partial order    on probability 

distributions).  For two probability vectors      

   
 defined on         , we say 

                        ∑   

   

 ∑  

   

   

    

                                                        

where     means       for all        . Here,  

   denotes the probability assigned to state    by   . 

Intuitively, the sum ∑       corresponds to the 

probability that all nodes in the complement of the 

infected set      , denoted      , are healthy. 

Hence,       means the distribution   assigns 

higher probabilities to configurations with more non-

adoption nodes compared to   , for any given subset 

of nodes. Let        
 denote the unit vector with a 

  in the coordinate corresponding to state   and 

zeros elsewhere. Denote the non adoption and 

adoption states by               , respectively. 

Clearly,    
  is the maximal element and    

 the 

minimal element under   . Since    is absorbing in 

the Markov chain,    
 is the unique stationary 

distribution.  The key property of    is that it makes 

the transition operator    order-preserving: 

                                                                

To establish this property, we introduce the following 

lemma. 

Lemma 2.1.   Let            be  the matrix defined 

by 

     {
         
           

                                                                                     

Then, the matrix         has non-negative entries. 

Proof 

First, define the matrix            
  by 

      {
                      

           
                   

Where        is the set of nodes infected  in     

but not  in   .  We claim that        . Indeed, for 

    , either      or      for all  , so  

          . For    , we compute 

          ∑ 

 

      ∑  

     

           

              

 {
              
           

                   

which is the identity matrix. Hence,       . Next, 

consider the matrix product 
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            ∑ 

   

         ∑ ∑ 

       

  

    

 ∑ ∑ 

      

               

 ∑ 

   

           ∏  

       

     

              

 ∑ 

   

                          

   ∑                 

 ∑ 

   

                          

   ∑                                           

By algebraic manipulation, 

                    ∑                           

 ∑ 

   

                            

   ∑                    

 ∏ (                  
        )

       

            

Define the complement operator       . Using 

this notation, we rewrite the entries of        as 

            

                                                

Since all entries of        are non-negative, this 

establishes the order-preserving property of    under  

  . Thus, the partial order     allows us to 

characterize the monotonicity of the Markov chain 

dynamics and to bound the stationary distribution 

convergence time by examining extremal initial 

distributions. This is crucial in the analysis of peer-

driven digital asset adoption and abandonment where 

the state space size grows exponentially with the 

number of nodes. 

Lemma 2.2.  If              , then                . 

Proof 

By the definition of             , 

             ∑ 

 

          

 ∑ 

   

                                   

  

Also,              if               since 

both   and    are probability vectors (i.e.,   norm 

equals 1). Define a row vector           such that 

             . By \eqref{eq:23}, we know   

                     , and      . Therefore, 

          . That is,      is a conical 

combination of the rows of      except the  -th row. 

Thus,           if and only if           is a vector 

with non-negative entries. 

To show            , we check if           is 

non-negative. Since            and     , we 

have: 

                , 

which is non-negative because       has all non-

negative entries by Lemma (2.1). By Lemma (2.2), for 

any probability vector   such that           , it 

follows: 

∑ 

   

                 
    ∑ 

   

   
     

Recall the definition of stationary distribution 

convergence time: 

                                

       
    

                                     
  

 
                              

Hence, the stationary distribution convergence time 

satisfies: 

                                 

    {       
  

 
   } 

                              {     
  

 
     }                  

   

2.2 Upper Bound on the Stationary distribution 

Convergence time 

Here, we show that the digital asset adoption map ̃   , 

defined as in equation (8), provides an upper bound on 

the stationary distribution convergence time of the 

Markov chain. This leads to a practical bound.  We 

aim to find a lower bound for    
  

 
  to obtain an 

upper bound on         . Define a    dimensional 

column vector      for                       by: 

      ∏  
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We seek         such that               . 

Lemma 2.3.                  for all          . 

Proof.   Evaluate each entry of       : 

         

 ∑  

           

                                                 

 ∑ ( ∏  

      

              )

        

( ∏  

      

   

     )

 ∏                     

 

   

                                                         

Assuming disjoint support sets             , 

we observe: 

                                      

Let                .  Then: 

            ∏(                       )

 

   

 ∏(                           )

 

   

 ∏(                   )

 

   

(              

     )

                                                                    

Inequality (23) follows from the identity: 

                                  

                     

                                                                             

Define   ̂          as the state with only node   as an 

adopter. Then from (23): 

          ∏  

      

       ̂

 ∏ ∏(               ̂          ̂ )

 

         

 ∏                

      

∏(         

   

  )  ∏  

      

          ∏ 

   

      

 ∏  

      

   ̃     

    ̃                                                                                  

Since            ̃     and     is non-negative: 

   
 
                ̃                                     

Let us define the system matrix of the linearized 

adoption dynamics as            
   , which 

corresponds to the Jacobian of the function       

evaluated at the null state (i.e., no adoption). Consider 

the nonlinear update rule governing the evolution of 

adoption states: 

 ̃                    (  ∏ 

   

      )

         (  ∏ 

   

      )

          ∑   

    

                                                                                    

The derivation above provides an upper bound on the 

nonlinear influence function   ̃  using the linear 

transformation     , such that   ̃        . This 

bound enables a useful result on the convergence 

behavior of the adoption dynamics under the 

assumption that the matrix     is stable, meaning its 

spectral radius is strictly less than  . 

Theorem 2.1.  If      , then the stationary 

distribution convergence time satisfies          

       . 

Proof  

Assume          . Then, we analyze the decay of 

the adoption signal as follows: 
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    ̃      

 ∏ 

 

   

   ̃ 
         ∑ ̃

 

    

 

    

    √
 

 
∑ 

 

   

 ̃ 
          √   ̃      

   √          √         

                                                                             

To ensure the deviation is less than   , it suffices that: 

              
        

       
 

Hence, the upper bound on the stationary distribution 

convergence time is given by: 

        
        

       
 

which grows logarithmically with the size of the 

network, i.e.,                 .  

In scenarios where      , the iterative sequence 

 ̃      converges to a nontrivial fixed point    of the 

adoption map  ̃ , with     , as characterized in 

(Ann and Hassibi, 2014). This outcome reflects 

sustained participation across the network, contrasting 

the baseline Markov chain model, which ultimately 

stabilizes at the “no-adoption” absorbing state. The 

reason for this apparent discrepancy is that the   th 

component of   ̃      upper bounds the probability 

that node   is still active in digital asset adoption, 

starting from a configuration where only node   

participates initially. More formally, we have: 

    ̃ 
          

     
  

           ̄        ̂  

                             ̄         ̂                      

This inequality implies that if the digital adoption map 

 ̃ has a globally stable equilibrium at the origin, then 

the corresponding Markov process (modeling node-

level adoption states) will exhibit rapid convergence 

to the no-adoption state, i.e., fast mixing. Conversely, 

when the origin is unstable in the deterministic 

approximation  ̃, the system might sustain long-term 

adoption, but then this does not guarantee or imply 

any specific mixing behavior for the underlying 

stochastic model. 

2.3 Reformulated Proof via Linear Programming 

Building on the work of  Ahn and Hassibi (2014) 

regarding mixing times, our analysis indicates that a 

specific nonlinear function, denoted as  ̃   , sets a 

limit on how likely it is for any given participant in 

the network-based adoption process to adopt the 

digital asset. However, to show that the average time 

it takes for adoption to spread significantly is roughly 

proportional to the logarithm of the network size 

       , it is enough to prove a less strict condition. 

This condition is that a simplified, linear version of 

the system can act as a reliable upper limit. 

Remarkably, it's probable that this can be shown using 

a simpler argument based on linear programming. 

Let      be a mathematical representation (a row 

vector) of the probabilities of all possible adoption 

scenario within the networks at a specific times  .  

Here,        represents all the ways     participants 

can either have adopted     or not adopted     the 

digital asset. For any individual participant     in the 

network, the basic probability of them having adopted 

the asset at time     can be written, apparently as: 

      ∑   

             

    

where      signifies that node   has adopted the 

digital asset in state  . Define          

∑       , representing the mass associated with 

unobserved or external states. Now define the column 

vector of adoption probabilities and residual mass as: 

                            

We consider        as the adoption information we 

can see at a specific time  , while      remains the 

complete, underlying condition of the system that we 

cannot directly observe. Our aim is to develop a way 

to estimate the limit for       , which is what we 

expect to see at the next point in time, using only the 

information we currently have. To do this, let     be a 

basic vector that helps us focus on a specific part of 

the system's state. Let   be the transition matrix, 

which describes how the digital adoption process 

changes over time. We will also define a matrix   

that helps us connect the full underlying state to the 
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observable information. This matrix    starts with a 

column of all ones (representing the initial state 

where no one has adopted,   ), followed then by a 

systematic listing of every possible adoption statuses 

of each individual in the network across all    

possibilities. The detailed structure of    and how we 

find the upper limit can be mathematically expressed 

as: 

                            

We interpret      as observable adoption data at time 

 , whereas the full state distribution       represents 

the latent state of the system. Our goal is to construct 

an upper bound for        , the observable state at 

the next time step, based solely on current 

observations. To proceed, let        denote the 

standard basis (unit) vector corresponding to the  -th 

coordinate. Let   represent the transition matrix of 

the digital adoption Markov process. Define a matrix  

             that maps the full latent state to 

observable statistics. This matrix   contains a leading 

all-ones column (capturing     ) followed by a binary 

truth table encoding the adoption status of each node 

in all     configurations. The formal structure of    

and the derivation of the upper bound can be 

represented as: 

       {
           

                    
                            

We aim to optimize         for a specific node  , 

based on the values of               . This results in 

the following outcome. 

Lemma2.4 

                         ∑       
    

Proof 

For simplicity, we will omit the time index   and only 

indicate the time index for     in this proof from 

this point forward. 

   
         

           
         

     

      
   

   
 

              

     
 

   
   

          

                                                                                   

 

                         , if any entry 

of           , is strictly positive. This implies 

that           . Next, we evaluate      and 

  : 

                

 ∑  

           

                          ∑  

           

  

          

 {
                

                
                                   

The expression           is derived from (4), 

where    represents the number of neighboring 

adopters of node   . 

            ∑  

 

      

  

    ∑   

 

   

                             

We examine various    for (31), (32) and find that 

            to determine feasible    : 

{
 
 

 
         

    ̂          
   ̂             

   ̂             

                           

We assert that       
    

      
    defined by 

  
      

        
    for     , and   

    for  

     belongs to the feasible set.  For     , we 

have              : 

                       

   
  ∑   

 

 

   

                                    

For     ,  it holds that              : 

                            

   
  ∑   

 

 

   

                                 

Thus,    is included in the feasible set. 

   
         

       

    
 

   
   

              

     

          ∑   
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Applying Lemma (2.4) to each node gives us: 

                
                       

Furthermore, we can derive that the stationary 

distribution convergence time is         by 

modifying Theorem (2.1). 

   

2.4 Reluctant Re-Engagement Dynamics in Digital 

Asset Participation 

In this section, we will look at a Reluctant Re-

Engagement Model. This model is designed to 

understand why people might hesitate to rejoin a 

digital asset system, like a cryptocurrency network, 

after they have stopped using it. Unlike simpler 

models where users might immediately come back 

after leaving, this model introduces a time delay. This 

suggest that if a user leaves the system (abandons), 

they are not likely to be convinced to return in the 

very next period, even if many of their connections 

are quite still active users. To give a more formal 

explanation to this, let's say       represents whether 

user   is participating at a specific time  . The way 

these participation states change across the network is 

determined by the following probabilities: 

 [                   ]

 

{
 
 

 
 

            (     )          |       |    

              (     )          |       |    

      (     )         

        (     )                 

 

The model includes features where users don't usually 

rejoins after they stop participating, immediately. This 

reluctance to re-adopt right away makes the system 

less likely to quickly switch back and forth between 

using the asset and not using it. This leads to more a 

consistent long-term patterns, the estimated time for 

the network to reach a stable level of participation, 

which we can think of as the time it takes to settle 

into a steady state, is still within a limit of        . 

The main way we prove this settling time is similar to 

models where users rejoin immediately. The main 

change observed might  is in how we are going to 

calculate the expected outcome under certain 

conditions: 

      ̄            

 {
               ̄ 

         ̄ 
                                     

A feasible vector       
    

      
    may also be 

constructed with likely some components: 

  
      

      

   
                      

           

    

The way the system changes over time can be 

represented by matrix called  . This matrix is 

calculated by combining two main factors:       

multiplied by    
, which represents the baseline 

adoption process, and   multiplied by  , where    is a 

matrix showing the connections between every users 

in the network, this specific way of formulating the 

matrix guarantees that the system will eventually 

settle into a stable, long-term pattern of adoption.  

 

III. RESULTS AND DISCUSSION 

 

To test the model accuracy, a simulation  is designed 

herein, over a variety of network topologies. Central 

to the model is the incorporation of peer driven  and 

event driven adoption-abandonment probabilities, a 

mechanism that allows us to mimic the peer influence 

dynamics and event-driven behavior observed in real-

world markets. The parameter settings of the network 

and their functional forms were carefully chosen to 

reflect plausible empirical   patterns and theoretical 

justifications grounded in the behavior of digital asset 

(cryptocurrency and NFT) ecosystems (see Table 1). 

 

Table 1: Justification of Parameter Choices in the Peer-Driven Digital Asset Adoption Model

Parameter Value Justification 

           Balance sample realism/computational cost 

        Realistic power-law networks (few hubs). 
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Parameter Value Justification 

           Sparse random networks (avg degree    ). 

              Small-world with local clustering and few shortcuts. 

             Uniform connectivity (e.g., ring networks). 

Edge weights         Models varying influence strengths. 

 

We now present simulation results on the time to 

stationarity (mixing time) of various network 

topologies, specifically: Scale-Free, Small-World, 

Erdős–Rényi Random, Regular, as well as Directed 

and Weighted networks. The goal is to examine how 

different structural configurations influence the rate 

at which a Markovian adoption–abandonment process 

converges to its stationary distribution. To reduce 

computational complexity, we restrict the network 

size to            nodes. This constraint enables 

the modeling of     binary states representing 

individual agent choices (adopt or abandon), forming 

a state space of manageable size for simulation while 

preserving the essential dynamics of large-scale 

diffusion processes. We'll further explore how varying 

the event-driven sell-off probability (i.e., spontaneous 

abandonment) and peer-driven adoption probability 

(i.e., influence-based uptake) impacts the mixing time 

across these network structures. By doing so, we assess 

the sensitivity of mixing behavior to local decision-

making mechanisms in different topological contexts. 

 
Figure 1:  Mixing time across different network 

topologies with 45% sell off and 50% among 10 peers 

without re-engagement reluctance. 

     

Figure (1) displays the mixing times for various 

network topologies (small world, scale-free, random, 

regular, weighted, and directed) in the Markov chain 

network (equation (4)) simulating digital asset 

abandonment (45% sell-off) and adoption (50% hold) 

among ten peers (not too far apart from % of sell-off). 

The small world, scale-free, regular, and weighted 

network topologies exhibit the longest times to 

stationarity (mixing time), all at 1001 steps. This 

indicates that these networks take a significantly 

longer time to reach a stable, "mixed" state where the 

influence of the initial distribution of digital assets has 

dissipated. The directed network has a slightly shorter 

mixing time at 593 steps, while the random network 

shows a considerably faster mixing time at only 79 

steps. The implication of these mixing times for digital 

asset communities and markets is profound. For 

topologies with long mixing times (small world, scale-

free, regular, weighted), information and behaviors 

(like sell-offs or holds) will propagate slowly through 

the community. This means that trends, price changes, 

or significant events in the digital asset market will 

take a long time to fully permeate and affect all 

participants. Such slow mixing could lead to delayed 

responses to market shifts, potentially creating 

opportunities for arbitrage for those with early 

information, or conversely, leaving some community 

members exposed to losses for longer periods as 

negative trends slowly diffuse. In contrast, the rapid 

mixing of the random network implies that 

information and behaviors spread very quickly and 

uniformly throughout the community. This would 

lead to more efficient markets where prices and 

community sentiment adjust rapidly to new 

information, reducing opportunities for exploitation 

and potentially leading to faster price discovery. The 

directed network, with its intermediate mixing time, 

suggests a moderate speed of information propagation, 
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likely influenced by the specific directional 

relationships between peers. 

 
Figure 2: Mixing time across different network 

topologies with 20% sell off and 70% among 10 peers 

without re-engagement reluctance 

 

Building upon the previous analysis, figure 2  

illustrates the mixing times for the same network 

topologies, but under a different scenario: a 20% 

event-driven sell-off and a significantly higher 70% 

peer-driven hold of digital assets among ten peers. The 

stark difference between the hold and sell-off 

percentages is crucial here. Similar to the previous 

scenario, the small world, scale-free, regular, and 

weighted network topologies again exhibit the longest 

mixing times, all registering at 1001 steps. This 

reinforces the observation that these network 

structures inherently lead to protracted periods for the 

network to reach a stable equilibrium, irrespective of 

the specific sell-off/hold dynamics, provided the hold 

percentage is dominant. The directed network in this 

scenario also shows a very long mixing time of 1001 

steps, which is a notable increase from its previous 

mixing time of 593 when the hold and sell-off 

percentages were closer. In contrast, the random 

network once again stands out with a significantly 

shorter mixing time, albeit longer than before, now at 

410 steps. What this implies for digital asset 

communities and markets under this scenario, where 

holding behavior significantly outweighs selling, is 

that the large proportion of assets being held (70%) 

combined with the inherent characteristics of most 

network topologies (small world, scale-free, regular, 

weighted, and now also directed) leads to extremely 

slow information diffusion and behavioral shifts. Even 

with a high propensity to hold, the network's 

structural properties dictate how quickly the market 

reaches a consensus or stable state. This prolonged 

mixing time for most topologies suggests that, even 

when community sentiment is overwhelmingly 

geared towards holding, the market will still take a 

very long time to fully reflect this widespread 

sentiment or to effectively propagate any other 

significant market event. This could result in 

persistent price discrepancies or delayed market 

corrections, as information about the true supply and 

demand dynamics, or new fundamental information, 

takes a long time to permeate the entire community. 

The random network, while still the fastest to mix, 

now takes 410 steps, considerably longer than its 79 

steps in the previous scenario. This suggests that while 

randomness facilitates faster propagation, an extreme 

imbalance between sell-off and hold percentages can 

still slow down the overall mixing process even in 

highly interconnected random networks. In essence, 

with a strong hold sentiment, the market's natural 

tendency towards stability is significantly slowed 

down across almost all realistic network structures, 

potentially leading to prolonged periods of illiquidity 

or delayed price adjustments as information and 

behavioral shifts slowly ripple through the digital 

asset community. 

 
Figure 3: Mixing time across different network 

topologies with 75% sell off and 25% among 10 peers 

without re-engagement reluctance. 

 

In figure 3, we consider a third scenario, focusing on a 

high event-driven sell-off (75%) and a low peer-
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driven hold (25%) of digital assets among ten peers. 

The small world and regular network topologies once 

again exhibit identical mixing times, this time at 187 

steps. These values are significantly lower than the 

1001 steps observed in the previous two scenarios, 

indicating that when selling pressure is dominant, 

these network structures reach equilibrium much 

faster. The scale-free network also shows a 

considerably shorter mixing time at 75 units, a 

dramatic decrease from the previous 1001 steps. The 

weighted network and directed networks show the 

fastest mixing times at 12 and 10 units respectively, 

making them the most rapidly converging topologies 

under these conditions. The random network, while 

still relatively fast at 13 units, is no longer the absolute 

fastest, indicating that under extreme sell-off 

conditions, certain structured networks can become 

extremely efficient at disseminating information.  

Speaking further, it tells us that under a dominant 

sell-off environment is that information and behaviors 

related to selling will propagate much more rapidly 

across most network topologies compared to scenarios 

dominated by holding or balanced 

adoption/abandonment. The significantly reduced 

mixing times for small world, regular, and especially 

scale-free networks suggest that in a bear market or 

during a "panic selling" event, the market will reach a 

new equilibrium much quicker. This rapid mixing 

means that price discovery will be accelerated, and 

the impact of the sell-off will be felt across the entire 

community in a relatively short timeframe, leading to 

faster price depreciation and potentially quicker 

market capitulation. The weighted and directed 

networks, with their extremely low mixing times, 

would facilitate an almost immediate and widespread 

response to selling pressure, indicating that these 

structures are highly efficient at disseminating 

negative sentiment or information related to market 

downturns. The random network's continued quick 

mixing further supports the idea that less structured 

networks can quickly reach equilibrium, though in 

this case, it appears that very strong selling pressure 

can make even structured networks extremely 

efficient in disseminating negative sentiment. In 

essence, when sell-off behavior is dominant, the 

digital asset market, especially within small world, 

scale-free, regular, weighted, and directed network 

structures, will experience accelerated information 

flow and behavioral propagation. This would translate 

to quicker price adjustments and a more rapid 

establishment of a new, lower price equilibrium. 

Unlike the slow diffusion seen with strong holding 

behavior, a high sell-off percentage leads to a much 

more dynamic and rapidly responsive market 

environment, where collective actions quickly push 

the market towards a new state. 

 
Figure 4 : Mixing time across different network 

topologies with 25% sell off and 25% among 10 peers 

without re-engagement reluctance. 

 

It is evident from figure  4, that when the forces of 

selling and holding are in equilibrium (25% each, with 

an implied 50% "neutral" or other behavior), most 

structured networks (scale-free, small world, regular, 

weighted) still take an extremely long time to stabilize 

and reflect the true state of the market. This suggests 

that even with balanced forces, these complex 

networks inherently resist rapid information diffusion 

and behavioral convergence. For digital asset 

communities and markets, this implies that even 

minor events or shifts in sentiment could lead to 

prolonged periods of uncertainty and slow price 

discovery, as the network struggles to reach a new 

equilibrium. Trends, whether positive or negative, 

would propagate sluggishly, making it difficult for 

"faithfuls" (long-term holders or community members) 
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to quickly react or understand the true market 

consensus. The market would remain in a state of flux 

for extended periods, potentially leading to delayed 

reactions to news or fundamentals. Conversely, the 

random network, and to a lesser extent the directed 

network, would allow for quicker dissemination of 

information and behavioral shifts, leading to faster 

market adjustments. 

As in figure 5, when there's a 50/50 split between sell-

off and hold behaviors, the inherent slowness of 

mixing for scale-free, small world, and regular 

networks persists. This reinforces the idea that these 

common network structures are inherently resistant 

to rapid information flow and stabilization under 

conditions of balanced but high-activity (both selling 

and holding). For the digital asset market, this suggests 

that in periods of high indecision or balanced forces, 

these markets will struggle to find a stable equilibrium 

quickly. Prices and community sentiment would 

remain volatile and reactive over extended periods, 

making it challenging for both traders and the 

"faithful" to predict trends or understand the true 

underlying state of the market. The high mixing times 

imply that any shift in the market would take a 

substantial duration to be fully absorbed and reflected 

by the entire community.  Interestingly, the random 

network's mixing time significantly increases from 36 

to 123 steps when sell-off and hold percentages shift 

from 25% each to 50% each. This indicates that while 

random networks are generally faster to mix, higher 

activity levels (even if balanced) can still lead to 

slower overall convergence compared to extremely 

low activity. The weighted and directed networks, 

however, become relatively more efficient in this 

scenario, moving from 51 and 36 steps (for directed 

and random respectively, from Figure 4) to 63 and 59 

steps. While their absolute values increase for the 

random network, their relative efficiency compared to 

the 1001-step networks becomes even more 

pronounced. This suggests that in highly active, 

undecided markets, the specific structure of weighted 

and directed relationships can facilitate somewhat 

quicker information propagation compared to other 

structured networks, offering a glimmer of faster 

equilibrium in certain scenarios. 

    

Table 2:  Summary of Mixing Times Across Different 

Network Topologies and Scenarios 

Network 

Topology 

Mixing Time (Steps) 

 45% 

Sell, 

50% 

Hold 

20% 

Sell, 

70% 

Hold 

75% 

Sell, 

25% 

Hold 

25% 

Sell, 

25% 

Hold 

50% 

Sell, 

50% 

Hold 

Small 

World 

1001 1001 187 1001 1001 

Scale-Free 1001 1001 75 1001 1001 

Random 79 410 13 36 123 

Regular 1001 1001 187 1001 1001 

Weighted 1001 1001 12 1001 63 

Directed 593 1001 10 51 59 

 

For the markov chain with reluctant re-engagement 

of digital asset (see equation (38)), the mixing time 

stays uniform across different network topologies, it 

suggests that the constant, neighbor-independent 

abandonment rate is the dominant factor overriding 

the structural differences of the networks. This means 

the inherent topology of the community has little 

influence on how quickly the system reaches a stable 

state, likely because the consistent outflow from 

abandonment dictates the overall speed of change. For 

the community and market dynamics, this symbolizes 

that the "faithful" (long-term holders) are primarily 

affected by intrinsic, individual decisions to abandon 

assets, rather than by the influence of their peers or 

the structure of their social connections. The market, 

in turn, would experience a consistent, predictable 

decay or shift based on this underlying abandonment 

rate, with market dynamics being less responsive to 

peer-driven trends or network effects, and more 

driven by individual, event-triggered sell-offs.  Based 

on our analysis of mixing times of the markov chain 

(4), for the sustainability of digital assets and increased 
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utility in Web3 projects, the ideal network type and 

associated mixing time would be one that balances 

efficient information dissemination with a degree of 

stability. 

Given the goal of sustainability and increased utility, a 

random network appears to be the most advantageous 

to adapt. Its consistently lower mixing times across 

various scenarios, even in extreme sell-off or hold 

environments (though longer in high, balanced 

activity), indicate a faster propagation of information 

and quicker adaptation to new states. This means that 

positive news, utility updates, and community 

engagement would spread more efficiently, fostering 

adoption and loyalty. Conversely, negative events 

would also be processed and priced in more rapidly, 

leading to quicker market corrections and potentially 

less prolonged periods of uncertainty. Rapid mixing 

promotes market efficiency and allows for faster 

adaptation to changing conditions, which is crucial for 

the dynamic Web3 space. Below is a table summary of 

each network type's best fit in the Web3 and 

crypto/digital asset world: 

  

 

Table 3:   Network Topology Suitability in Web3 and Digital Asset Ecosystems 

Network 

Topology 

Best Suited For in Web3/Crypto/Digital Assets 

Scale-Free Ideal for platforms where a few highly connected "hubs" (e.g., influential community leaders, 

major exchanges, foundational protocols) are crucial for information dissemination and adoption. 

Excellent for viral growth and concentrated influence, but susceptible to single points of failure 

or manipulation if hubs are compromised. 

Small-

World 

Great for fostering rapid communication and community building, as everyone is connected to 

everyone else by a short chain of acquaintances. Efficient for propagating trends, coordinating 

actions, and building strong, interconnected communities around a digital asset. Good for organic 

growth and decentralized governance. 

Regular Suited for highly structured, predictable, and permissioned environments, such as private 

blockchain consortiums or tightly controlled enterprise DLT applications where consistent and 

uniform information flow among well-defined peers is paramount. Less ideal for open, dynamic 

public crypto communities due to rigidity and slow mixing. 

Random Highly effective for achieving rapid and efficient information diffusion and price discovery in 

open and dynamic markets. Promotes resilience against targeted attacks (no central points of 

failure) and ensures quick response to market events, leading to more stable long-term asset value 

by quickly absorbing new information. Ideal for broad, decentralized adoption. 

Directed Useful for modeling specific relationships where influence or transactions flow in one direction, 

such as payment channels, influencer marketing campaigns, or governance structures where 

proposals flow from proponents to voters. Can represent information asymmetry or hierarchical 

decision-making within a community. 

Weighted Essential for representing varying strengths of relationships or transaction volumes between 

participants. Excellent for analyzing liquidity pools, staking relationships, or the economic 

impact of different actors. Allows for more nuanced modeling of influence and resource flow, 

providing a deeper understanding of economic stability and market depth. 
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3.1 Periodic Adoption and Event-Driven 

Abandonment 

To model the fluctuating nature of asset adoption, we 

define the adoption rate as a periodic function that 

captures seasonal surges, such as those observed 

during events like Bitcoin halvings or tax deadlines. 

Specifically, the adoption rate      evolves as in 

equation (3), where         serves as the baseline 

rate of organic, steady-state adoption, and        

introduces a fluctuation amplitude of 10%. This range 

is consistent with historical increases in adoption 

during major crypto events. The period       is 

chosen to align the oscillation with annual cycles, 

thereby embedding temporal seasonality into the 

model. In contrast, abandonment is modeled as a 

response to external shocks, such as security breaches 

or market crashes. The abandonment rate      follows 

equation (2), with a maximum rate         , 

reflecting intense but temporary panic-driven sell-offs. 

The steepness parameter        ensures that this 

spike unfolds over approximately ten days, emulating 

the speed at which news spreads and behavioral 

contagion occurs. The shock is introduced at time 

      , mid-way through the simulation, to allow 

observation of the system's dynamics both before and 

after the disruptive event. 

 

Table 4: Justification of Parameter Choices in the Peer-Driven Digital Asset Adoption Model 

Parameter Value Justification 

   0.5 Baseline organic adoption rate. 

   0.1 Amplitude of seasonal adoption spikes (e.g., halvings). 

  365 Annual cycles (tax seasons, halvings). 

     0.3 Max abandonment during shocks (e.g., 30% sell-offs). 

   0.02 Shock ramp-up speed (    days) 

   100 Mid-simulation shock to test resilience. 

       200 Balance realism/computational cost. 

  0.1 Peer influence aligned with empirical data. 

      2 Realistic power-law networks (few hubs). 

      0.05 Sparse random networks (avg degree    ). 

        4, 0.1 Small-world with local clustering and few shortcuts. 

           4 Uniform connectivity (e.g., ring networks). 

Edge weights [0.1, 1] Models varying influence strengths. 

 

To explore how network topology shapes adoption 

and abandonment behavior, the simulation is done 

such that it generates networks consisting of        

    agents. This size is sufficient to yield emergent 

dynamics while keeping computational costs 

manageable.  In scale-free networks constructed using 

the Barabási-Albert model, each new node forms 

    edges preferentially, promoting the emergence 

of hubs and a power-law degree distribution, traits 

common in influencer-driven markets like 

cryptocurrency ecosystems.  In Erdős-Rényi random 

graphs, edges are added with probability       , 

resulting in sparse and decentralized connectivity. 

This mimics trustless blockchain environments with 

minimal centralized control. The Watts-Strogatz 

small-world networks use     as the number of 

initial neighbors per node, and a rewiring probability 

     . This setting strikes a balance between local 

clustering and global reach, closely resembling the 

structure of real-world social networks. For regular 

networks, a constant degree     is assigned to all 

nodes, offering a baseline scenario of uniform 

connectivity.  In the case of directed scale-free 

networks, the edge formation is guided by parameters 
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     ,      , and      , which collectively 

control the preferential attachment and reciprocity. 

These settings are inspired by follower networks such 

as Twitter, where reciprocal relationships are common 

but not universal. Finally, to incorporate 

heterogeneous influence, edge weights are sampled 

uniformly from the interval          , representing the 

varying strength of social ties, from casual followers to 

committed community members. The total simulation 

duration is set to         , corresponding to one 

year of daily updates. This will ensures that both 

seasonal adoption patterns and delayed shocks can be 

captured. 

As earlier discussed in the previous sections, the 

dynamics of adoption and abandonment in digital 

asset networks can be understood through transition 

probabilities that govern node-level behaviors. 

Specifically, Equation (4) encapsulates the 

mechanisms of adoption (  ) and abandonment (  ) 

for each node. These transitions are influenced by 

several parameters: the peer-driven adoption 

probability  , the abandonment probability  , and the 

number of adopting neighbors denoted by   . A 

particularly notable feature of this model is its 

allowance for re-adoption nodes that have abandoned 

can freely return to the adoption state (     ). 

 
Figure 6: Periodic adoption ( ) and Event-driven 

abandonment ( ) rate over time across an Erdős-Rényi 

network (      ) 

 

In figure 6, the dynamic interplay between periodic 

adoption ( ) and event-driven abandonment ( ) rates 

over a year in an Erdős-Rényi random network, is 

displayed. Initially, the adoption rate is very high, 

close to 1.0, while abandonment is negligible. Around 

day 75-80, there's a sharp decline in adoption and a 

corresponding rise in abandonment, indicating a 

significant sell-off or disengagement event. However, 

the network shows resilience, as adoption gradually 

recovers and abandonment subsides after this initial 

shock. A second, less severe dip in adoption and 

corresponding increase in abandonment occurs 

around day 250, but again, the network demonstrates 

a capacity for recovery. This suggests that in a random 

network, even with event-driven abandonment, the 

system can rebound and maintain a relatively high 

fraction of adopted nodes over time, indicating a 

robust and adaptable community. 

 
Figure 7:  Periodic adoption ( ) and Event-driven 

abandonment ( ) rate over time across a Watts-

Strogatz network (         ) 

 

The figure 7 shows the same dynamics but on a 

Watts-Strogatz small-world network. Here, the initial 

phase mirrors the Erdős-Rényi network with high 

adoption. However, the first abandonment event, 

occurring before day 100, is more pronounced and 

leads to a significant and sustained decline in adoption, 

with abandonment staying high for a prolonged 

period. While there are some fluctuations, the 

adoption rate struggles to recover to its initial levels. 

Towards the end of the year, the abandonment rate 

completely overtakes adoption, reaching 1.0 while 

adoption drops to 0. This indicates that in a Watts-
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Strogatz network, the impact of event-driven 

abandonment, especially when coupled with periodic 

adoption, can lead to a more severe and potentially 

irreversible decline in the fraction of adopted nodes. 

The "small-world" nature, with its short path lengths 

and high clustering, might facilitate the rapid and 

widespread propagation of abandonment behavior, 

making the network more vulnerable to collapse if 

negative events are sufficiently strong and sustained. 

In essence, while the Erdős-Rényi network shows 

resilience and recovery, the Watts-Strogatz network 

appears more susceptible to prolonged negative trends 

leading to complete abandonment over the observed 

period. 

 
Figure 8: Periodic adoption ( ) and Event-driven 

abandonment ( ) rate over time across a Barabási-

Albert network (   ) 

 

In figure 8, adoption starts high and abandonment low. 

Just after day 50, a significant decline in adoption is 

mirrored by a surge in abandonment. However, unlike 

the Watts-Strogatz network's eventual collapse, the 

Barabási-Albert network shows a more volatile and 

oscillating pattern in the mid-period. Adoption and 

abandonment rates fluctuate, crossing paths multiple 

times between roughly day 150 and day 300, 

indicating a period of intense competition between 

forces of growth and decline. There's no clear 

dominance of either rate, suggesting that the network 

is in a state of dynamic equilibrium where the "hubs" 

in the scale-free network might be both driving 

adoption and, when events occur, contributing to 

abandonment. Towards the latter part of the year, 

after day 300, the adoption rate seems to stabilize at a 

moderately low level, with abandonment also 

fluctuating but not reaching its initial high peaks. This 

suggests that while scale-free networks can experience 

significant volatility and dramatic shifts in sentiment, 

they might eventually settle into a more dynamic, 

albeit lower, equilibrium where neither adoption nor 

abandonment fully dominates, reflecting the complex 

influence of highly connected nodes on information 

spread and behavioral changes. 

 
Figure 9: Periodic adoption ( ) and Event-driven 

abandonment ( ) rate over time across a Regular 

network (Ring with    ) 

 

Similar to the other network types, in figure 9 

adoption starts high while abandonment is low. 

Around day 65, a rapid decline in adoption is met 

with a sharp increase in abandonment, mirroring the 

initial pattern seen across all analyzed network types. 

The unique characteristic of the regular network, 

however, is observed in the subsequent phase. After 

the initial crash, there's a period of significant 

volatility and oscillation where adoption and 

abandonment rates frequently cross and fluctuate, 

often appearing to mirror each other. This dynamic 

equilibrium persists for an extended period, roughly 

from day 150 to day 300, without either force 

decisively dominating. Towards the end of the year, a 

second, more pronounced surge in abandonment 

occurs, pushing the adoption rate down to near zero 

by day 365, indicating a complete shift in sentiment 
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and a full abandonment of the asset within this 

network structure. This suggests that while regular 

networks might initially resist a complete collapse by 

maintaining a prolonged period of oscillation, they are 

ultimately susceptible to widespread abandonment 

under sustained pressure, particularly if the initial 

events trigger a significant outflow that the rigid 

structure cannot effectively counter. 

 
Figure 10: Periodic adoption ( ) and Event-driven 

abandonment ( ) rate over time across a Directed 

network 

 

At the onset, figure 10, shows adoption rate is high, 

hovering around 0.6 to 0.7, while the abandonment 

rate is very low, near 0.3. Around day 100, a dramatic 

shift occurs: the adoption rate sharply declines, 

plummeting to near zero by approximately day 150. 

Simultaneously, the abandonment rate experiences a 

rapid surge, reaching its peak at 1.0 around day 150 

and remaining at that maximum level for the rest of 

the year. This distinct pattern in a directed network 

suggests that initial adoption is present but susceptible 

to a sudden and complete reversal. The directional 

links might facilitate a rapid and unidirectional flow 

of negative sentiment or information during an 

abandonment event, leading to a swift and total loss of 

adoption from which the network cannot recover. 

This highlights a vulnerability in directed networks 

where the influence structure can quickly lead to 

widespread abandonment once a critical threshold is 

crossed, without any subsequent recovery in adoption. 

 
Figure 11: Periodic adoption ( ) and Event-driven 

abandonment ( ) rate over time across a Weighted 

network 

  

Lastly, the initial pattern of figure 11, mirrors the 

other network types: high adoption and negligible 

abandonment. Before day 100, a sharp decline in 

adoption is observed, met by a corresponding surge in 

abandonment. However, what distinguishes the 

weighted network is the subsequent long period of 

volatile oscillation. From roughly day 100 to day 300, 

both adoption and abandonment rates fluctuate 

significantly, crossing over multiple times. The 

weighted connections likely mean that stronger ties 

between nodes have a more substantial impact on the 

propagation of sentiment, leading to more pronounced 

swings as adoption and abandonment forces battle for 

dominance. This creates a highly dynamic and 

unpredictable environment where the prevailing 

trend is not stable. Towards the end of the year, a 

second, more severe decline in adoption occurs, again 

accompanied by a rise in abandonment, although it 

doesn't reach 1.0 like in the Directed or Watts-

Strogatz cases. This suggests that while weighted 

networks can experience prolonged periods of 

instability and struggle to find a clear equilibrium 

under these dynamics, the varying strengths of 

connections might prevent a complete and sustained 

collapse of adoption, instead fostering continuous, 

albeit volatile, interaction between adopting and 

abandoning behaviors. 
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Figure 12:  Phase diagram of adoption stability 

landscape in Scale-Free Network 

 

The phase diagram in figure 12  17, illustrates the 

adoption stability landscape in the various network 

topologies, where the intensity of spread is color-

coded from green (low) to red (high). The x-axis 

represents the abandonment rate, while the y-axis 

denotes adoption levels. The landscape exhibits 

regions of varying stability, with higher adoption and 

lower abandonment rates typically associated with 

more stable, sustainable adoption (green), whereas 

higher abandonment rates and lower adoption lead to 

instability (red).   

The blue star, representing Bitcoin-like assets, is 

positioned in a region of high adoption and relatively 

low abandonment, indicating robust and stable 

adoption. This aligns with Bitcoin's dominant role in 

the cryptocurrency ecosystem, characterized by 

widespread acceptance and resilience to abandonment. 

The red circle, marking NFT-like assets, appears in a 

less stable region with moderate adoption but higher 

abandonment, reflecting their niche and often 

speculative nature. The purple diamond, denoting 

Meme coin-like assets, lies in an area of lower 

adoption and higher abandonment, highlighting their 

volatility and dependence on short-term trends.   

Bitcoin's dominance in these landscapes is evident 

from its placement in the most stable and sustainable 

region, underscoring its entrenched position as a 

foundational asset with enduring adoption. In contrast, 

NFT-like and Meme coin-like assets occupy more 

precarious zones, reflecting their susceptibility to 

rapid shifts in interest and higher abandonment rates. 

The vertical scale for "fraction still adopted" further 

reinforces Bitcoin's superior retention and staying 

power compared to the other asset types.  

 
Figure 13:  Phase diagram of adoption stability 

landscape in Small-World Network 

  

In all our analysis has illuminate behavioral regimens, 

for Directed and Weighted networks, their behavior 

often reflects subtle yet powerful influences on 

adoption and abandonment. When    , indicating 

a strong bias towards adoption, directed networks, 

particularly those with high in-degree variance, can 

exhibit a "winner-takes-all" dynamic, where the 

digital asset rapidly achieves and sustains high 

adoption, similar to the initial high adoption observed 

in their respective individual analyses. Conversely, 

when    , a strong out-degree correlation in 

directed networks can dramatically accelerate 

abandonment cascades, quickly driving adoption to 

near zero, as seen in the figure 10, where adoption 

completely collapses. In weighted networks, the ratio 

of strong to weak ties plays a pivotal role. A low ratio 

of strong ties might lead to abandonment patterns that 

decay exponentially, signifying a more contained and 
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predictable decline. However, a high ratio of strong 

ties can produce power-law decay in abandonment, 

suggesting that major shocks could disproportionately 

impact the network, leading to widespread and 

persistent disengagement. When    , both directed 

and weighted networks can exhibit prolonged periods 

of oscillation, as observed in figure 11, where the tug-

of-war between adoption and abandonment creates a 

volatile and uncertain landscape. 

 
Figure 14:   Phase diagram of adoption stability 

landscape in Random Network 

 

Regular networks, characterized by their uniform 

connections, tend to behave distinctly. In a high-

adoption environment (   ), regular networks can 

achieve and maintain strong adoption. However, 

when    , these networks display a protracted 

period of volatile oscillation between adoption and 

abandonment, as evidenced in figure 14. This suggests 

a struggle to achieve stability, where the rigid 

structure doesn't easily facilitate a decisive shift. 

Ultimately, when    , regular networks are highly 

susceptible to eventual widespread abandonment, 

with adoption plummeting to near zero after 

prolonged instability, reflecting a lack of inherent 

resilience to strong negative pressures. 

 
Figure 15:  Phase diagram of adoption stability 

landscape in Regular Network 

  

Random networks, due to their inherent structural 

disorder, demonstrate a more consistent and often 

faster response to changes in adoption and 

abandonment rates. In the sustainable adoption 

regime (   ), random networks rapidly achieve 

high adoption, albeit perhaps not reaching the initial 

peak levels seen in some structured networks, as 

suggested by figure 1, where adoption recovers but 

not fully. When    , the system can enter a 

metastable state where the network topology 

significantly influences survival, reminiscent of meme 

coins' fragile dynamics. However, random networks 

generally exhibit quicker mixing times, enabling faster 

resolution of such states compared to more structured 

networks. In the rapid abandonment regime (   ), 

random networks facilitate quick and relatively 

uniform disengagement, leading to widespread 

abandonment, as shown by their lower mixing times 

in various sell-off scenarios. 
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Figure 16:   Phase diagram of adoption stability 

landscape in Directed Network 

 

The Small-World network topology presents a 

paradox. While its shortcuts are highly effective at 

expediting initial adoption and spreading positive 

sentiment, as seen in the early high adoption in figure 

2, they simultaneously introduce a wide variance in 

abandonment. This "small-world paradox" implies that 

while some nodes might abandon orders of magnitude 

later than others due to the network's shortcuts, a 

critical collapse (   ) can lead to a rapid and almost 

complete shift towards abandonment, as the negative 

sentiment quickly propagates through these very same 

shortcuts, causing the system to reach near-zero 

adoption in the long run. 

 
Figure 17:   Phase diagram of adoption stability 

landscape in Weighted Network 

Finally, Scale-Free networks, with their hub-and-

spoke architecture, demonstrate unique characteristics. 

In the sustainable adoption regime (   ), adoption 

spreads rapidly and is retained, with the network 

stabilizing at over 80% adoption, mirroring the 

behavior of established cryptocurrencies like Bitcoin. 

A mere 5% of nodes (the hubs) in scale-free networks 

can dictate 95% of adoption and abandonment 

timelines, highlighting their immense influence. This 

means that a relatively small number of highly 

connected individuals or entities significantly control 

the market's direction. Conversely, removing just the 

top 1% of these influential nodes can decuple (10x) 

the abandonment for the entire network when    , 

showcasing extreme vulnerability to targeted shocks. 

When    , the system enters a highly volatile 

metastable state, as depicted in figure 8, where the 

struggle between adoption and abandonment can lead 

to prolonged oscillations due to the concentrated 

influence of the hubs. 

 

IV. CONCLUSION 

 

Our extensive analysis of digital asset adoption and 

abandonment dynamics within Markov chain 

networks has provided significant insights into the 

intricate relationship between network topology and 

market behavior. The investigation into mixing times 

consistently demonstrated that highly structured 

networks such as scale-free, small-world, and regular 

networks generally exhibit prolonged periods to reach 

a stationary state, suggesting slower information 

diffusion and delayed market equilibrium. Conversely, 

random networks, and under specific conditions, 

weighted and directed networks, often displayed 

considerably faster mixing, indicating more efficient 

information propagation and quicker responses to 

shifts in adoption and abandonment rates. The 

inclusion of reluctant re-engagement further 

modulated these dynamics, emphasizing the 

persistence of abandonment in certain scenarios. 
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The simulation dynamics across various network types 

painted a nuanced picture: while some networks like 

the Watts-Strogatz small-world can experience rapid 

and near-total abandonment under specific conditions, 

others like the Barabási-Albert scale-free networks 

may enter prolonged periods of volatility and 

oscillation before potentially stabilizing at a lower 

equilibrium. The phase diagrams powerfully 

illustrated that sustainable adoption is typically 

achieved when adoption rates significantly outpace 

abandonment, a regime where Bitcoin-like assets 

consistently reside. Conversely, a balance between 

adoption and abandonment can lead to critical, 

topology-dependent metastable states, and a 

dominance of abandonment invariably results in rapid, 

widespread disengagement. This analysis strongly 

suggests that for the long-term sustainability and 

utility of digital assets in the Web3 space, adapting to 

network structures that facilitate faster mixing, such 

as a random network, would be highly beneficial, 

enabling quicker assimilation of positive 

developments and more rapid recovery from adverse 

events. The inherent properties of each network type 

dictate how resilient a digital asset community will be 

to external shocks and how efficiently information 

and sentiment will propagate, ultimately shaping the 

asset's market value and utility. 

      

4.1 Further Direction 

Future research should aim to validate these 

theoretical models with real-world digital asset 

market data, incorporating empirical evidence of peer-

to-peer interactions and event-driven abandonment 

triggers. Exploring more complex, dynamic network 

evolution models, where the network structure itself 

changes over time in response to adoption and 

abandonment, would provide richer insights. 

Additionally, investigating the impact of multi-asset 

interactions, regulatory interventions, and the role of 

sentiment analysis derived from social media on these 

dynamics could offer a more holistic understanding. 

Developing predictive frameworks that leverage 

network metrics to forecast adoption trends and 

identify potential vulnerabilities within digital asset 

ecosystems would also be a valuable extension of this 

work. 
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