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 Integrated circuit (IC) piracy and overproduction are serious issues that 

threaten the security and integrity of a system. Logic locking is a type of 

hardware technique where additional key gates are inserted into the 

circuit. Here probability-based logic-locking technique to protect the 

design of a circuit. Our proposed technique, called “ProbLock”, can be 

applied to both combinational and sequential circuits through a critical 

selection process. We have to use filtering process to select the best 

location of key gates based on various constraints. Each step in the filtering 

process generates a subset of nodes for each constraint.  The Probability-

Based Logic-Locking Technique is a security measure that aims to protect 

the confidentiality and integrity of integrated circuits. This technique uses 

a combination of DSCH and MICROWIND tools to generate logic-locked 

designs that are resistant to reverse engineering attacks. The logic-locking 

process involves adding additional gates to the design, which are 

controlled by secret keys, and thereby obfuscating the original circuit's 

functionality. The probability-based approach introduces randomness in 

the process, making it difficult for attackers to determine the correct key. 

By using a stochastic algorithm, the locking mechanism generates a set of 

gates that have a probability distribution based on the secret key. The 

resulting design is then verified for correctness and functionality using 

MICROWIND tools.  This abstract presents a novel technique for 

generating logic-locked designs using DSCH and MICROWIND tools with 

a probability-based approach. The technique aims to provide increased 

security for integrated circuits, making them less vulnerable to reverse 

engineering attacks. The proposed technique is evaluated using simulations 

and experimental results, which demonstrate the effectiveness of the 

approach in preventing unauthorized access to sensitive information stored 

in the circuit. 
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I. INTRODUCTION 

 

The semiconductor industry is constantly changing, 

from the production of integrated circuits (IC)s to the 

complexity of their design. The industry has moved to 

a fabless model where most of the fabrication for a 

chip is outsourced to a less secure and less trusted 

environment. From intellectual property (IP) design 

to manufacturing, an IC has go to through an 

extensive process before it reaches the end user [1]. 

The supply chain stages are shown in Figure 1. First, 

the IP owner designs a module at the RTL level, gate 

level, and layout level. Multiple IP designs get 

integrated onto a single system on chip (SoC). Next, a 

foundry fabricates the IC die and an assembly will 

package the die with pins and wires into a complete 

package. The final package gets manufactured and 

distributed out to end users and consumers. These 

environments in the supply chain include testing and 

fabrication facilities that are necessary for the pipeline. 

Testing and fabrication facilities are usually 

outsourced to other countries where it is cheaper to 

finish the work. While this model does improve 

production costs and development, it has also led to 

the consequence of piracy, overproduction, and 

cloning. An IP owner does not have control over 

these un trusted facilities so IP piracy is a common 

issue. The chips are also vulnerable to various attacks 

that attempt to extract the design of the chip or other 

information from the device. Due to these security 

issues, researchers have developed techniques to 

counter these attacks. Other research topics including 

developing attacks to evaluate the security and 

privacy of ICs at different stages of the supply chain. 

 

 
Figure 1: IC Supply Chain Stages [1] 

 

The main threats in the IC supply chain are reverse 

engineering, IP piracy, and tampering [1]. The main 

goal of reverse engineering is to determine the design 

and behavior of the IP modules on an IC or SoC. 

Reverse engineering attacks will exploit the 

weaknesses and security vulnerabilities of an IC to 

recreate the original design of an IP. The reverse 

engineered design can then be used to sell counterfeit 

hardware on the black market. Reverse engineering 

can occur anywhere along the IC supply chain 

including the design house, foundry, testing site, and 

at the end user. Reverse engineering attacks are also 

usually destructive and sometimes require chemical 

and physical alteration of the IC to recover the design. 

IP piracy is another major concern in the IC supply 

chain. Facilities in the IC supply chain that use the IP 

illegally are violating piracy rules. Piracy usually 

includes overproduction and counterfeit production. 

A foundry with access to the IP from the designer can 

produce more ICs than what was ordered and sell the 

extra for profit. Adversaries at these sites can also 

clone or copy the design and sell that for profit as well. 

Tampering is the idea of modifying the design for 

other than its intended purpose. An attacker can 

accomplish this by inserting hardware Trojans that 

will exploit sensitive data on the IC and transmit that 

data to an outside party [2]. Trojans can also sabotage 

the IC by targeting critical path data such as power 

and timing modules on the circuit. 

 

This paper is organized in five sections. After this 

introduction, in Section II, literature survey discussed 

of the paper, section III about the Existing system, 

Section IV about Proposed System, as well as the 

novel feature of the proposed method. Finally, 

Sections V and VI provide the simulation results and 

the conclusions and Future work, respectively. 

. 

II. RELATED WORK 

Many techniques of logic locking have already been 

proposed and tested against certain attacks and on 

circuit benchmarks. One of the earliest logic-locking 
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techniques inserted key gates randomly into the 

circuit. This provided some security, but many 

attacks were developed to break this method. 

Another obfuscation technique was developed using 

logic-cone analysis in [3].  

Sections of a circuit can be grouped into logic cones 

by calculating the fan-in and fan-out values of a gate. 

Inserting key gates at certain logic cone areas will 

increase the security of the system. Logic-cone 

analysis is good for countering logic-cone attacks. 

Certain attacks will exploit these weak logic cones 

and try to discover the key to unlock the circuit. 

Logic-cone analysis is vulnerable to other types of 

attacks such as SAT and functional attacks. Strong 

logic locking (SLL) is another obfuscation technique, 

but it is also vulnerable to SAT attacks [4].  

SLL is based on interference graphs that show how 

inserted key gates interfere with each other. The 

interference graph shows the relationship between 

an inserted key gate and its surrounding key gates 

and wires. The interference graph shows if key gates 

are on a cascading path or parallel path, or if they do 

not interfere with each other at all. The interference 

graph along with other information makes it harder 

for an attacker to unlock the circuit even with SAT 

attack models. SLL was initially evaluated with a hill-

climbing attack where the bits of an initial random 

key guess is toggled to minimize hamming distance 

between circuit outputs and test responses. If a key 

produces a hamming distance of 0, the attack is 

considered successful. SLL was compared against 

random logic locking and a fault-based technique. It 

was shown that the hill-climbing attack was 

ineffective at determining the correct key value for 

all tested ISCAS ’85 benchmarks while also being able 

to break some of the random locked circuits.  

More recent techniques have been developed to 

counter SAT attacks and other related schemes. The 

obfuscation technique needs to be strong enough to 

resist certain attacks; otherwise the integrity of the 

IC would be compromised. The goal of an adversary 

during an attack is to determine the secret key to 

unlock the circuit or gain other important 

information from the system. SARLock was 

developed to make the SAT attack model inefficient 

[6].  

SARLock employs a small overhead strategy that 

exponentially increases the number of distinguishing 

input patterns (DIPs) needed to unlock the circuit. 

SARLock is very strong against SAT attacks since it 

uses the basis of the attack model to determine where 

to insert key gates. The input pattern and 

corresponding key values can be analyzed during the 

insertion process of the obfuscation technique. 

SarLock was evaluated using a SAT attack and 

calculating the number of DIPs needed to determine 

the correct key value to unlock a locked circuit.  

A subset of the ISCAS ’85 benchmarks were 

encrypted with SarLock and SLL and then evaluated 

with a SAT attack. SarLock proved that it was more 

effective against SAT attacks because it took a larger 

number of DIPs and more time to break the circuit. 

The SAT algorithm would run for hours to break a 

SarLock circuit, but it took less than a second for all 

SLL circuits. In 2017, TTLock was proposed, which 

resisted all known attacks including SAT and 

sensitization attacks [10].  

TTLock would invert the response to a logic cone to 

protect the input pattern. The logic cone would be 

restored only if the correct key is provided. The small 

change to the functionality of the circuit would 

maximize the efforts needed for the SAT attacks. The 

generalized form of stripping away the functionality 

of logic cones and hiding it from attackers is known 

as stripped-functionality logic locking (SFLL). 

However, the design of the TTLock did not account 

for the cost of tamper-proof memory, which could 

lead to high overhead in the re-synthesis process 

[11,12]. 

 Another group automated the general process of 

TTLock to identify the parts of the design that 

needed to be modified in an efficient way. They used 

ATPG tools to develop a scalable and more efficient 

way of protecting these patterns from attackers. 
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Overall, a 35% improvement in overhead was 

achieved with the automated process. Later, a 

modified version of SFLL was proposed based on the 

hamming distance of the key. This was referred to as 

SFLLhd [13].  

The hamming distance metric was used to determine 

which pattern to modify in the SFLL scheme. 

Depending on the type of attack, the hamming 

distance can be adjusted accordingly. In 2019, the 

idea of exploring high-level synthesis (HLS) with 

logic locking was proposed with SFLL-HLS [14].  

SFLL-HLS was proposed to improve the system-wide 

security of an IC. The design resulted in faster 

validation of design and higher levels of abstraction. 

The HLS implementation in this technique was used 

to identify the functional units and logic cones to be 

operated on with respect to SFLL. They observed low 

overhead and power results from their analysis. The 

strength of SFLL was evaluated in [13] where a SAT-

based attack was developed against SFLL-HLS and 

other SFLL techniques. Similar to most logic locking 

techniques, SFLL is vulnerable to strong SAT attacks. 

The group used synthesized RTL circuits, which were 

smaller than public benchmark suits from ISCAS ’85 

and ISCAS ’89. The SAT attack was able to determine 

the correct key within seconds for all of these 

benchmarks. Most recently in 2020, LoPher was 

developed as another SAT-resistant obfuscation 

technique [15].  

LoPher uses a block cipher to produce the same 

behavior as a logic gate. The basic component for the 

block cipher is configurable and allows many logic 

permutations to occur, which further increases the 

security of the system. In 2020, another group 

presented a scalable attack-resistant obfuscation logic 

locking technique (SARO) [16].  

SARO splits circuit benchmarks into smaller 

partitions and performs a systematic truth table 

transformation (T3) for each partition. The T3 

process is highly randomized and leads to highly 

altered structural and graphical representation of the 

circuit netlist. The first step of SARO is to partition 

the circuit into a smaller area and analyze the fan in 

the cone as well as the logic depth of a partition. The 

fans in cones that cover more inputs are more 

suitable for the functional transformation of the T3 

process. Similarly, a high logic depth allows for more 

random transformation in structural and graphical 

representation.  Depending on the type of logic gate, 

selected inputs, and key bit inputs, the T3 process 

transforms the boolean logic of a gate to add 

functional obfuscation to the design. The proper key 

value allows gate logic to function as normally 

designed. SARO was evaluated against a SAT attack, 

and for all encrypted ISCAS ’85 benchmarks, the SAT 

attack was unable to determine the correct key value. 

SARO is extremely effective against power attack 

schemes such as a SAT attack; however, it suffers 

from a high complexity and large overhead. The T3 

process has an exponential amount of functions to 

evaluate, and complexity can vary with number of 

inputs and key size. The area overhead of SARO is 

23%, which is twice as large as most presented 

obfuscation techniques. Many forms and variations of 

SAT attacks have been created in order to show the 

weaknesses of various hardware obfuscation 

techniques. Algorithms have been developed for SAT 

competitions, and the results can be used in a variety 

of applications including hardware obfuscation [17]. 

 These tools are used to evaluate the strength of logic 

locking techniques and can be used to bypass the 

security of integrated circuits. As a result, an anti-

SAT unit was developed as a general solution to the 

SAT attack [18].  

 

III.  PROBABILITY BASED LOGIC LOCKING 

 

Probability based logic locking or ProbLock is a novel 

functional logic locking technique based on filtering 

out nodes in a circuit to find the best location to insert 

key gates. The final stage of the filtering process uses 

the probability of gate outputs to determine where to 

insert key gates. ProbLock is an algorithm where the 

key gates are either XOR or XNOR gates and a key is 
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used to unlock the circuit. We used four constraints to 

determine the best candidate nodes to insert our XOR 

or XNOR key gate; longest path, non-critical path, 

low dependent nodes, and best probability nodes. The 

first three constraints find the set of nodes that lie on 

the longest path, non-critical path and have low 

dependent wires. The last constraint uses probability 

to find the set of nodes equal to the key length where 

we will insert the key gates. We chose the longest 

path and non-critical path constraint to avoid critical 

timing elements and to insert key gates on parts of the 

circuit that was being used the most. We chose the 

low dependent wires and probability constraint to 

determine locations where the output would be 

changed the most. This would make it harder for an 

attack to generate the golden circuit using an oracle 

based attack. Once we determine the location of the 

key nodes, we can insert key gates into the netlist and 

re-synthesize the circuit. In Equation 1 the candidate 

nodes are determined from a function of all four 

constraints. LP is the set of nodes on the longest paths 

while NCP is the set of nodes on non-critical paths. 

LD represents the set of low dependent nodes and P 

are the set of probability nodes 

 

Selected Nodes ⊂ P ⊂ LD ⊂ NCP ⊂ LP 

 

For our obfuscation technique, we decided to lock a 

set of combinational and sequential circuit netlists 

using the ISCAS ’85 and ISCAS ’89 circuit 

benchmarks [19] [20]. We obfuscated a total of 40 

benchmarks using ProbLock. For some of the 

constraints, we had to use an unrolling technique 

described in [21] to accurately filter out nodes. This 

unrolling technique was only used in sequential 

circuits to simplify the concepts of flip flops and other 

sequential logic. The sequential logic can be replaced 

by the main stage and a k number of sub-stages 

depending on the number of times unrolled. This 

results in a k-unrolled circuit that has the same 

functionality as the regular circuit. For this process, 

we generated a set of unrolled ISCAS ’89 benchmarks 

which we used in some constraint algorithms. We 

unrolled these circuits once to prevent inaccuracies in 

constraints such as the longest path and non-critical 

path. Finally, we integrated a custom low overhead 

anti-SAT block based on an established anti-SAT 

block method [24]. 

 

A.  LONGEST PATH CONSTRAINT 

 

The longest path constraint isolates a subset of nodes 

that lie on the longest paths in a circuit netlist. The 

subset of nodes is different for each circuit and is a 

function of the key length determined for each 

circuit. We represent the netlist of each benchmark as 

a directed acyclic graph (DAG) and perform the 

longest path analysis on each DAG. Each vertex in the 

DAG is a gate element from the netlist and each 

vector represents the wire connecting to the next gate 

element. Once the DAG is constructed for each 

benchmark, we calculated the longest paths of the 

DAG using a depth first search (DFS) technique. We 

then calculate the next longest path to generate a 

subset of nodes along the longest paths. Each unique 

node in the longest path gets added to a subset during 

each iteration until the size of the subset is bigger 

than two times the key length for that circuit. The 

structure of this theory is shown in Algorithm 1 

which uses the DFS in Algorithm 2. Figure 12 shows 

the longest path for the circuit to be 3 since there are 

3 gates between input A and output Y.  

The next longest path would also be 3 from input B to 

output Y. All of the nodes along both longest paths 

would be added to a subset of the longest path nodes. 

Once this subset of longest path nodes is determined, 

that subset gets used in the next filtering constraint. 

This subset can be adjusted to include more or fewer 

nodes depending on other filtering constraints. If 

more nodes are needed, this constraint is the first to 

be modified. We chose to use the longest path 

constraint to counter oracle guided attacks. Oracle 

guided attacks will query the IC with various inputs 

and observe the output. This gives the attacker 
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information about how the circuit behaves and the 

adversary can use this information to determine the 

secret key. We want to insert key gates where most of 

the logic and activity occur in the circuit. An oracle 

guided attack will most likely pass data through the 

longest paths of a circuit so we want to protect these 

parts of the IC by inserting key gates on the longest 

path 

 

 
 

Fig.1: Longest Path (in red) 

 

B. CRITICAL PATH CONSTRAINT  

The critical path constraint is similar to the longest 

path; however, rather than considering logic depth, 

we look at timing information. This constraint is 

essential, as adding gates on the critical path could 

break the circuit functionality or change timing 

specifications. We used Synopsys Design Compiler 

(DC) [22] to compile the benchmarks and calculate 

the critical paths.  In DC, the critical path of a circuit 

can be determined with several simple steps. First, the 

benchmark in Verilog format is imported into the 

software. Next, the delay timing and timing 

constraints are set for certain specifications. Finally, 

DC will calculate the critical path from a primary 

input to a primary output. The results are a set of 

nodes that represent the critical path. For this step, 

ProbLock calculates multiple critical paths and 

exports the data to be used in the filtering process. 

Figure 13 shows an example of the timing analysis of a 

basic circuit. The figure shows that the two critical 

paths lie from input C to output Y and from input D 

to output Y. The propagation timing for the critical 

path is 60ps as opposed to 65ps on the other paths. 

The nodes selected often overlapped with other 

constraints (e.g. the longest path was often the critical 

path), though oftentimes the critical path would 

involve gates with large fan out. Determining the 

critical path is largely technology-specific; different 

process design kits (PDKs) will have different timing 

information which can affect which paths are critical 

paths. We removed any nodes that were on the 

critical path from the set of nodes passed into this 

constraint. The resulting subset results in nodes that 

are on the longest, non-critical path. 

 

 
 

Fig.2: Critical Paths (in red) 

 

C.LOW WIRE DEPENDENCY  

 

Constraint The next constraint generates a subset of 

nodes that are connected to low dependent wires. The 

output wire of a gate is considered low dependent if 

the input wires to that gate have little influence on 

the value of output. This idea is modified from a 

technique called FANCI where suspicious wires can 

be detected in a Trojan infected design [25]. A 

functional truth table is created for each output wire 

of each gate in the circuit. The inputs of the truth 

table correspond to the inputs of the gate being 

analyzed. For each input column, the other columns 

are fixed and each row is tested with a 0 or 1 to 

determine the output. This results in two functions 

when setting the value to either 0 or 1. The boolean 

difference between these two functions results in a 

value between zero and one that can be further 

analyzed. The value for each input gets stored as a list 

for each output wire. We take the average value of 

the entire list to determine the dependency of an 

output wire.. This analysis can determine if certain 

inputs are low dependent or if they rarely affect the 

corresponding logic. Low dependent wires are weak 
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spots in the circuit so this constraint isolates those 

locations to improve the security 

 

D. BIASED PROBABILITIES CONSTRAINT  

The probability constraint focuses on reducing the 

effectiveness of the SAT attacks. In a SAT attack, a 

distinguishing input (DI) is chosen and the attacker 

runs through various key values, eliminating any 

which yields an incorrect output. Thus, to reduce the 

effectiveness of a SAT attack, the number of wrong 

keys produced for a given DI must decrease. This can 

be done by bringing the probability of any given node 

being 1 closer to 0.5, since any node which is biased 

towards 0 or 1 will propagate through to the output 

nodes, making it easier for SAT attacks to eliminate 

key values. Since a two-input XOR/XNOR has an 

output probability of 0.5, we can insert our key gates 

at nodes heavily biased towards 0 or 1 and "reset" the 

probability to 0.5. The algorithm used to obtain the N 

nodes with the most biased probabilities is shown in 

Algorithm 4. The output probabilities of a gate are 

dependent on the type of logic gate and the 

probabilities of its inputs.  

 

The probability of incoming input wires will 

influence how the output probability is calculated for 

each gate type. It is worth noting that while 

generating node probabilities for combinational 

circuits is trivial, sequential circuits pose a potential 

problem because of the D flip flops (DFFs). However, 

giving the DFF outputs a starting probability of 0.5 

and propagating running a few iterations (three is 

sufficient) will asymptotically approach the correct 

probability for the DFF node. 

 
 

(a) Pre-Insertion Probabilities  

 
  (b) Post-Insertion Probabilities 

Fig.3: Key Gate Insertion Probabilities 

 

An example of this is illustrated in Figure 3. Figure 3 

shows a sample circuit with each node annotated with 

the probability of that node being logic 1. The output 

shown is heavily biased toward logic 0, which makes 

it more susceptible to SAT attacks. Strategically 

adding a key gate, as shown in Figure 16 b brings the 

output probability closer to 0.5, reducing the 

effectiveness of the SAT attack. This idea of using 

probability calculations for logic locking is a novel 

concept that has not been tested yet. After the first 

three filtering constraints, the ProbLock algorithm 

has a set of nodes that lie on the longest path, non 

critical path and are low dependent. From this set of 

nodes, we generate a new subset equal to the bit size 

of the key value based on the biased probabilities of 

each node. The final set of nodes should produce the 

best location to insert key gates for a circuit netlist. 

This is the final step for the ProbLock algorithm that 

results in a low overhead locked benchmark. E. Anti-

SAT ProbLock is a low overhead logic locking 

technique that aims to counter SAT based attacks on 

integrated circuits. However, other anti-SAT 

techniques have been developed to be provably 

effective against newer SAT attacks. The lightweight 

anti-SAT block (ASB) in [26] is a modification of the 

regular anti-SAT block in [24] that reuses overlapped 

key gates from the logic locking technique in the new 

lightweight anti-SAT block. The regular ASB 

described in [24] is a low overhead module that can 

connect to wires and key inputs of the original locked 
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circuit. This block exponentially increases the attack 

time and iterations of a SAT attack. The ASB is 

composed of additional key gates and logic 

components that are integrated with the original logic 

of the locked circuit.  

The lightweight ASB minimizes overhead by creating 

an ASB that reuses the key gates from the original 

locked circuit and only adds the additional key gates 

to complete the full ASB. This method reduces the 

overhead of the ASB while maintaining the same level 

of security against SAT attacks. In Figure 17a, an 

example circuit is shown. Figure 17b shows the 

locked version of that circuit by inserting key gates 

E1, E2, and E3. In Figure 17c, the lightweight ASB 

implementation is shown by reusing key gates E1, E2, 

E3, and adding gates E4, E5, E6, G4, and G, to create 

the full ASB. For this specific example, the overhead 

is reduced by almost 50% and maintains the 

effectiveness against a full SAT attack. We used the 

same idea to integrate a strong anti-SAT solution into 

ProbLock. During the ProbLock algorithm, the best 

nodes are selected to be candidates for inserted key 

gates. After the key gates are established, the 

algorithm parses for patterns that would be suitable to 

construct a lightweight ASB. If a combination of key 

gates can be used to create a lightweight ASB, those 

nodes are flagged until later. Once all of the 

overlapped nodes are determined, the final step of 

ProbLock constructs a final locked circuit with an 

integrated ASB. 

 

IV. PROPOSED METHOD 

A. UNLOCKED CIRCUIT 

 
 

Fig.4 : Unclocked Circuit Design using DSCH Tool 

The use of NAND, NOR, and AND gates in an 

unclocked circuit does not directly involve 

probability, as these gates are deterministic in nature. 

However, the behavior of an unclocked circuit can be 

analyzed probabilistically by considering the 

probabilities of different input combinations and their 

corresponding output probabilities. 

 

B. LOCKING CIRCUIT 

 
 

Fig.5 : Locking Circuit Design using DSCH Tool 

 

Probability logic locking (PLL) is a technique used in 

digital circuit design to protect intellectual property 

by locking the circuit using a secret key. The idea is to 

modify the circuit such that it only works correctly 

when a specific input value, determined by the secret 

key, is provided. 

 

PLL can be implemented using different logic gates 

such as NAND, NOR, AND, and extra key gates. Here 

is an explanation of how PLL can be implemented 

using these gates: 

1. NAND Logic PLL: In this implementation, the 

circuit is modified by adding an extra NAND gate 

to each original gate. The extra NAND gate is 

connected to the original gate such that the 

output of the NAND gate becomes the input of 

the original gate. The secret key is used to control 

the inputs of the extra NAND gates. The extra 

NAND gates are connected in such a way that 

they cancel out the effect of the original gates 

when the wrong key is applied, and only the 

correct key combination can unlock the circuit. 
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2. NOR Logic PLL: In this implementation, the 

circuit is modified by adding an extra NOR gate 

to each original gate. The extra NOR gate is 

connected to the original gate such that the 

output of the NOR gate becomes the input of the 

original gate. The secret key is used to control the 

inputs of the extra NOR gates. The extra NOR 

gates are connected in such a way that they 

cancel out the effect of the original gates when 

the wrong key is applied, and only the correct 

key combination can unlock the circuit. 

3. AND Logic PLL: In this implementation, the 

circuit is modified by adding an extra AND gate 

to each original gate. The extra AND gate is 

connected to the original gate such that the 

output of the AND gate becomes the input of the 

original gate. The secret key is used to control the 

inputs of the extra AND gates. The extra AND 

gates are connected in such a way that they 

cancel out the effect of the original gates when 

the wrong key is applied, and only the correct 

key combination can unlock the circuit. 

4. Extra Key Gate PLL: In this implementation, an 

extra key gate is added to each input of the 

circuit. The extra key gate is a combination of 

different logic gates, such as NAND, NOR, AND, 

or XOR. The secret key is used to control the 

inputs of the extra key gates. The extra key gates 

are connected in such a way that they block the 

input signal when the wrong key is applied, and 

only the correct key combination can unlock the 

circuit. 

 

In summary, PLL is a technique used to protect 

intellectual property in digital circuit design. It 

involves modifying the circuit using extra gates such 

as NAND, NOR, AND, and extra key gates, which 

can only be unlocked using a secret key. 

 

 

 

 

V.  SIMULATION  RESULTS  

 

A. UNLOCKED CIRCUIT 

 

 
Fig.6: Design of Unlocked Circuit using DSCH Tool 

 
Fig.7: Showing Critical Path in DSCH Tool 

 
Fig.8: Timing Diagram on DSCH Tool 

        
Fig.9: Generated Layout in Microwind Tool 
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Fig10: Output Waveform showing in Microwind Tool 

 

B.LOCKING TECHNIQUE 

 

 
Fig.11: Design Circuit  using DSCH tool 

 

 
Fig.12: Showing Critical path in DSCH Tool 

 

 
Fig.13: Timing Diagram shwoing in DSCH 

 
Fig.14: Layout 

 
Fig.15: Layout Showing in Micro wind 

 

VI.  CONCLUSION AND FUTURE WORK  

 

Probability-based logic-locking techniques using 

DSCH and Microwind tools can provide an effective 

solution for protecting intellectual property and 

preventing unauthorized access to circuit designs. By 

adding additional logic gates with probabilistic 

behavior, these techniques make it difficult for an 

attacker to reverse engineer the design and reproduce 

it without the proper key. Overall, the use of 

probability-based logic-locking techniques offers a 

promising approach to enhancing the security of 

integrated circuits, particularly for applications that 

require high levels of confidentiality and intellectual 

property protection. However, it is important to note 

that these techniques may also introduce additional 

design complexity and potentially impact the circuit's 

performance and power consumption. Therefore, 

careful consideration and evaluation are necessary to 

ensure that the benefits of logic-locking outweigh any 

potential drawbacks.  
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VII. FUTURE SCOPE 

 

In the future, we intend to test the obfuscated 

benchmarks against known attacks and compare them 

to other logic locking techniques.  We will implement 

logic locking attacks such as SAT attacks and 

sensitization attacks.  Each attack will be executed 

against benchmarks obfuscated with ProbLock.  We 

will then run the same attacks on locking schemes 

such as SLL, logic cone locking, and SARLock.  We 

will evaluate how well each benchmark performs by 

measuring the overhead of the obfuscation technique, 

complexity of the technique, and execution time of 

the attack.  After running each attack scheme, we can 

compare and evaluate the true strength of ProbLock 

compared to other published logic-locking techniques.  
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