
Copyright © 2024 The Author(s): This is an open-access article distributed under the terms of the Creative

Commons Attribution 4.0 International License (CC BY-NC 4.0) which permits unrestricted use, distribution,

and reproduction in any medium for non-commercial use provided the original author and source are credited.

 International Journal of Scientific Research in Science and Technology

Available online at : www.ijsrst.com

Print ISSN: 2395-6011 | Online ISSN: 2395-602X doi : https://doi.org/10.32628/IJSRST

262

Implementation of Logic-Locking Technique Based on Probability

Using Back End Tool
P. Rajesh1, Sompalli Charan Sai2, Vellala Sai Sri Pranathi3, Udatha Kavya Sree4, Thippareddy

Asuvardhan Reddy5, A R Kushal6
1Assistant Professor, Department of Electronics and Communication Engineering, SV College of Engineering (SVCE), Tirupati, A.P. India
2, 3,4,5,6 UG Students, Department of Electronics and Communication Engineering, SV College of Engineering (SVCE), Tirupati, A.P. India

A R T I C L E I N F O

A B S T R A C T

Article History:

Accepted: 10 March 2024

Published: 20 March 2024

 Integrated circuit (IC) piracy and overproduction are serious issues that

threaten the security and integrity of a system. Logic locking is a type of

hardware technique where additional key gates are inserted into the

circuit. Here probability-based logic-locking technique to protect the

design of a circuit. Our proposed technique, called “ProbLock”, can be

applied to both combinational and sequential circuits through a critical

selection process. We have to use filtering process to select the best

location of key gates based on various constraints. Each step in the filtering

process generates a subset of nodes for each constraint. The Probability-

Based Logic-Locking Technique is a security measure that aims to protect

the confidentiality and integrity of integrated circuits. This technique uses

a combination of DSCH and MICROWIND tools to generate logic-locked

designs that are resistant to reverse engineering attacks. The logic-locking

process involves adding additional gates to the design, which are

controlled by secret keys, and thereby obfuscating the original circuit's

functionality. The probability-based approach introduces randomness in

the process, making it difficult for attackers to determine the correct key.

By using a stochastic algorithm, the locking mechanism generates a set of

gates that have a probability distribution based on the secret key. The

resulting design is then verified for correctness and functionality using

MICROWIND tools. This abstract presents a novel technique for

generating logic-locked designs using DSCH and MICROWIND tools with

a probability-based approach. The technique aims to provide increased

security for integrated circuits, making them less vulnerable to reverse

engineering attacks. The proposed technique is evaluated using simulations

and experimental results, which demonstrate the effectiveness of the

approach in preventing unauthorized access to sensitive information stored

in the circuit.

Keywords : DSCH and MICROWIND, Probability based Locking

Publication Issue :

Volume 11, Issue 2

March-April-2024

Page Number :

262-272

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 11 | Issue 2

P. Rajesh et al Int J Sci Res Sci & Technol. March-April-2024, 11 (2) : 262-272

262

I. INTRODUCTION

The semiconductor industry is constantly changing,

from the production of integrated circuits (IC)s to the

complexity of their design. The industry has moved to

a fabless model where most of the fabrication for a

chip is outsourced to a less secure and less trusted

environment. From intellectual property (IP) design

to manufacturing, an IC has go to through an

extensive process before it reaches the end user [1].

The supply chain stages are shown in Figure 1. First,

the IP owner designs a module at the RTL level, gate

level, and layout level. Multiple IP designs get

integrated onto a single system on chip (SoC). Next, a

foundry fabricates the IC die and an assembly will

package the die with pins and wires into a complete

package. The final package gets manufactured and

distributed out to end users and consumers. These

environments in the supply chain include testing and

fabrication facilities that are necessary for the pipeline.

Testing and fabrication facilities are usually

outsourced to other countries where it is cheaper to

finish the work. While this model does improve

production costs and development, it has also led to

the consequence of piracy, overproduction, and

cloning. An IP owner does not have control over

these un trusted facilities so IP piracy is a common

issue. The chips are also vulnerable to various attacks

that attempt to extract the design of the chip or other

information from the device. Due to these security

issues, researchers have developed techniques to

counter these attacks. Other research topics including

developing attacks to evaluate the security and

privacy of ICs at different stages of the supply chain.

Figure 1: IC Supply Chain Stages [1]

The main threats in the IC supply chain are reverse

engineering, IP piracy, and tampering [1]. The main

goal of reverse engineering is to determine the design

and behavior of the IP modules on an IC or SoC.

Reverse engineering attacks will exploit the

weaknesses and security vulnerabilities of an IC to

recreate the original design of an IP. The reverse

engineered design can then be used to sell counterfeit

hardware on the black market. Reverse engineering

can occur anywhere along the IC supply chain

including the design house, foundry, testing site, and

at the end user. Reverse engineering attacks are also

usually destructive and sometimes require chemical

and physical alteration of the IC to recover the design.

IP piracy is another major concern in the IC supply

chain. Facilities in the IC supply chain that use the IP

illegally are violating piracy rules. Piracy usually

includes overproduction and counterfeit production.

A foundry with access to the IP from the designer can

produce more ICs than what was ordered and sell the

extra for profit. Adversaries at these sites can also

clone or copy the design and sell that for profit as well.

Tampering is the idea of modifying the design for

other than its intended purpose. An attacker can

accomplish this by inserting hardware Trojans that

will exploit sensitive data on the IC and transmit that

data to an outside party [2]. Trojans can also sabotage

the IC by targeting critical path data such as power

and timing modules on the circuit.

This paper is organized in five sections. After this

introduction, in Section II, literature survey discussed

of the paper, section III about the Existing system,

Section IV about Proposed System, as well as the

novel feature of the proposed method. Finally,

Sections V and VI provide the simulation results and

the conclusions and Future work, respectively.

.

II. RELATED WORK

Many techniques of logic locking have already been

proposed and tested against certain attacks and on

circuit benchmarks. One of the earliest logic-locking

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 11 | Issue 2

P. Rajesh et al Int J Sci Res Sci & Technol. March-April-2024, 11 (2) : 262-272

263

techniques inserted key gates randomly into the

circuit. This provided some security, but many

attacks were developed to break this method.

Another obfuscation technique was developed using

logic-cone analysis in [3].

Sections of a circuit can be grouped into logic cones

by calculating the fan-in and fan-out values of a gate.

Inserting key gates at certain logic cone areas will

increase the security of the system. Logic-cone

analysis is good for countering logic-cone attacks.

Certain attacks will exploit these weak logic cones

and try to discover the key to unlock the circuit.

Logic-cone analysis is vulnerable to other types of

attacks such as SAT and functional attacks. Strong

logic locking (SLL) is another obfuscation technique,

but it is also vulnerable to SAT attacks [4].

SLL is based on interference graphs that show how

inserted key gates interfere with each other. The

interference graph shows the relationship between

an inserted key gate and its surrounding key gates

and wires. The interference graph shows if key gates

are on a cascading path or parallel path, or if they do

not interfere with each other at all. The interference

graph along with other information makes it harder

for an attacker to unlock the circuit even with SAT

attack models. SLL was initially evaluated with a hill-

climbing attack where the bits of an initial random

key guess is toggled to minimize hamming distance

between circuit outputs and test responses. If a key

produces a hamming distance of 0, the attack is

considered successful. SLL was compared against

random logic locking and a fault-based technique. It

was shown that the hill-climbing attack was

ineffective at determining the correct key value for

all tested ISCAS ’85 benchmarks while also being able

to break some of the random locked circuits.

More recent techniques have been developed to

counter SAT attacks and other related schemes. The

obfuscation technique needs to be strong enough to

resist certain attacks; otherwise the integrity of the

IC would be compromised. The goal of an adversary

during an attack is to determine the secret key to

unlock the circuit or gain other important

information from the system. SARLock was

developed to make the SAT attack model inefficient

[6].

SARLock employs a small overhead strategy that

exponentially increases the number of distinguishing

input patterns (DIPs) needed to unlock the circuit.

SARLock is very strong against SAT attacks since it

uses the basis of the attack model to determine where

to insert key gates. The input pattern and

corresponding key values can be analyzed during the

insertion process of the obfuscation technique.

SarLock was evaluated using a SAT attack and

calculating the number of DIPs needed to determine

the correct key value to unlock a locked circuit.

A subset of the ISCAS ’85 benchmarks were

encrypted with SarLock and SLL and then evaluated

with a SAT attack. SarLock proved that it was more

effective against SAT attacks because it took a larger

number of DIPs and more time to break the circuit.

The SAT algorithm would run for hours to break a

SarLock circuit, but it took less than a second for all

SLL circuits. In 2017, TTLock was proposed, which

resisted all known attacks including SAT and

sensitization attacks [10].

TTLock would invert the response to a logic cone to

protect the input pattern. The logic cone would be

restored only if the correct key is provided. The small

change to the functionality of the circuit would

maximize the efforts needed for the SAT attacks. The

generalized form of stripping away the functionality

of logic cones and hiding it from attackers is known

as stripped-functionality logic locking (SFLL).

However, the design of the TTLock did not account

for the cost of tamper-proof memory, which could

lead to high overhead in the re-synthesis process

[11,12].

 Another group automated the general process of

TTLock to identify the parts of the design that

needed to be modified in an efficient way. They used

ATPG tools to develop a scalable and more efficient

way of protecting these patterns from attackers.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 11 | Issue 2

P. Rajesh et al Int J Sci Res Sci & Technol. March-April-2024, 11 (2) : 262-272

264

Overall, a 35% improvement in overhead was

achieved with the automated process. Later, a

modified version of SFLL was proposed based on the

hamming distance of the key. This was referred to as

SFLLhd [13].

The hamming distance metric was used to determine

which pattern to modify in the SFLL scheme.

Depending on the type of attack, the hamming

distance can be adjusted accordingly. In 2019, the

idea of exploring high-level synthesis (HLS) with

logic locking was proposed with SFLL-HLS [14].

SFLL-HLS was proposed to improve the system-wide

security of an IC. The design resulted in faster

validation of design and higher levels of abstraction.

The HLS implementation in this technique was used

to identify the functional units and logic cones to be

operated on with respect to SFLL. They observed low

overhead and power results from their analysis. The

strength of SFLL was evaluated in [13] where a SAT-

based attack was developed against SFLL-HLS and

other SFLL techniques. Similar to most logic locking

techniques, SFLL is vulnerable to strong SAT attacks.

The group used synthesized RTL circuits, which were

smaller than public benchmark suits from ISCAS ’85

and ISCAS ’89. The SAT attack was able to determine

the correct key within seconds for all of these

benchmarks. Most recently in 2020, LoPher was

developed as another SAT-resistant obfuscation

technique [15].

LoPher uses a block cipher to produce the same

behavior as a logic gate. The basic component for the

block cipher is configurable and allows many logic

permutations to occur, which further increases the

security of the system. In 2020, another group

presented a scalable attack-resistant obfuscation logic

locking technique (SARO) [16].

SARO splits circuit benchmarks into smaller

partitions and performs a systematic truth table

transformation (T3) for each partition. The T3

process is highly randomized and leads to highly

altered structural and graphical representation of the

circuit netlist. The first step of SARO is to partition

the circuit into a smaller area and analyze the fan in

the cone as well as the logic depth of a partition. The

fans in cones that cover more inputs are more

suitable for the functional transformation of the T3

process. Similarly, a high logic depth allows for more

random transformation in structural and graphical

representation. Depending on the type of logic gate,

selected inputs, and key bit inputs, the T3 process

transforms the boolean logic of a gate to add

functional obfuscation to the design. The proper key

value allows gate logic to function as normally

designed. SARO was evaluated against a SAT attack,

and for all encrypted ISCAS ’85 benchmarks, the SAT

attack was unable to determine the correct key value.

SARO is extremely effective against power attack

schemes such as a SAT attack; however, it suffers

from a high complexity and large overhead. The T3

process has an exponential amount of functions to

evaluate, and complexity can vary with number of

inputs and key size. The area overhead of SARO is

23%, which is twice as large as most presented

obfuscation techniques. Many forms and variations of

SAT attacks have been created in order to show the

weaknesses of various hardware obfuscation

techniques. Algorithms have been developed for SAT

competitions, and the results can be used in a variety

of applications including hardware obfuscation [17].

 These tools are used to evaluate the strength of logic

locking techniques and can be used to bypass the

security of integrated circuits. As a result, an anti-

SAT unit was developed as a general solution to the

SAT attack [18].

III. PROBABILITY BASED LOGIC LOCKING

Probability based logic locking or ProbLock is a novel

functional logic locking technique based on filtering

out nodes in a circuit to find the best location to insert

key gates. The final stage of the filtering process uses

the probability of gate outputs to determine where to

insert key gates. ProbLock is an algorithm where the

key gates are either XOR or XNOR gates and a key is

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 11 | Issue 2

P. Rajesh et al Int J Sci Res Sci & Technol. March-April-2024, 11 (2) : 262-272

265

used to unlock the circuit. We used four constraints to

determine the best candidate nodes to insert our XOR

or XNOR key gate; longest path, non-critical path,

low dependent nodes, and best probability nodes. The

first three constraints find the set of nodes that lie on

the longest path, non-critical path and have low

dependent wires. The last constraint uses probability

to find the set of nodes equal to the key length where

we will insert the key gates. We chose the longest

path and non-critical path constraint to avoid critical

timing elements and to insert key gates on parts of the

circuit that was being used the most. We chose the

low dependent wires and probability constraint to

determine locations where the output would be

changed the most. This would make it harder for an

attack to generate the golden circuit using an oracle

based attack. Once we determine the location of the

key nodes, we can insert key gates into the netlist and

re-synthesize the circuit. In Equation 1 the candidate

nodes are determined from a function of all four

constraints. LP is the set of nodes on the longest paths

while NCP is the set of nodes on non-critical paths.

LD represents the set of low dependent nodes and P

are the set of probability nodes

Selected Nodes ⊂ P ⊂ LD ⊂ NCP ⊂ LP

For our obfuscation technique, we decided to lock a

set of combinational and sequential circuit netlists

using the ISCAS ’85 and ISCAS ’89 circuit

benchmarks [19] [20]. We obfuscated a total of 40

benchmarks using ProbLock. For some of the

constraints, we had to use an unrolling technique

described in [21] to accurately filter out nodes. This

unrolling technique was only used in sequential

circuits to simplify the concepts of flip flops and other

sequential logic. The sequential logic can be replaced

by the main stage and a k number of sub-stages

depending on the number of times unrolled. This

results in a k-unrolled circuit that has the same

functionality as the regular circuit. For this process,

we generated a set of unrolled ISCAS ’89 benchmarks

which we used in some constraint algorithms. We

unrolled these circuits once to prevent inaccuracies in

constraints such as the longest path and non-critical

path. Finally, we integrated a custom low overhead

anti-SAT block based on an established anti-SAT

block method [24].

A. LONGEST PATH CONSTRAINT

The longest path constraint isolates a subset of nodes

that lie on the longest paths in a circuit netlist. The

subset of nodes is different for each circuit and is a

function of the key length determined for each

circuit. We represent the netlist of each benchmark as

a directed acyclic graph (DAG) and perform the

longest path analysis on each DAG. Each vertex in the

DAG is a gate element from the netlist and each

vector represents the wire connecting to the next gate

element. Once the DAG is constructed for each

benchmark, we calculated the longest paths of the

DAG using a depth first search (DFS) technique. We

then calculate the next longest path to generate a

subset of nodes along the longest paths. Each unique

node in the longest path gets added to a subset during

each iteration until the size of the subset is bigger

than two times the key length for that circuit. The

structure of this theory is shown in Algorithm 1

which uses the DFS in Algorithm 2. Figure 12 shows

the longest path for the circuit to be 3 since there are

3 gates between input A and output Y.

The next longest path would also be 3 from input B to

output Y. All of the nodes along both longest paths

would be added to a subset of the longest path nodes.

Once this subset of longest path nodes is determined,

that subset gets used in the next filtering constraint.

This subset can be adjusted to include more or fewer

nodes depending on other filtering constraints. If

more nodes are needed, this constraint is the first to

be modified. We chose to use the longest path

constraint to counter oracle guided attacks. Oracle

guided attacks will query the IC with various inputs

and observe the output. This gives the attacker

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 11 | Issue 2

P. Rajesh et al Int J Sci Res Sci & Technol. March-April-2024, 11 (2) : 262-272

266

information about how the circuit behaves and the

adversary can use this information to determine the

secret key. We want to insert key gates where most of

the logic and activity occur in the circuit. An oracle

guided attack will most likely pass data through the

longest paths of a circuit so we want to protect these

parts of the IC by inserting key gates on the longest

path

Fig.1: Longest Path (in red)

B. CRITICAL PATH CONSTRAINT

The critical path constraint is similar to the longest

path; however, rather than considering logic depth,

we look at timing information. This constraint is

essential, as adding gates on the critical path could

break the circuit functionality or change timing

specifications. We used Synopsys Design Compiler

(DC) [22] to compile the benchmarks and calculate

the critical paths. In DC, the critical path of a circuit

can be determined with several simple steps. First, the

benchmark in Verilog format is imported into the

software. Next, the delay timing and timing

constraints are set for certain specifications. Finally,

DC will calculate the critical path from a primary

input to a primary output. The results are a set of

nodes that represent the critical path. For this step,

ProbLock calculates multiple critical paths and

exports the data to be used in the filtering process.

Figure 13 shows an example of the timing analysis of a

basic circuit. The figure shows that the two critical

paths lie from input C to output Y and from input D

to output Y. The propagation timing for the critical

path is 60ps as opposed to 65ps on the other paths.

The nodes selected often overlapped with other

constraints (e.g. the longest path was often the critical

path), though oftentimes the critical path would

involve gates with large fan out. Determining the

critical path is largely technology-specific; different

process design kits (PDKs) will have different timing

information which can affect which paths are critical

paths. We removed any nodes that were on the

critical path from the set of nodes passed into this

constraint. The resulting subset results in nodes that

are on the longest, non-critical path.

Fig.2: Critical Paths (in red)

C.LOW WIRE DEPENDENCY

Constraint The next constraint generates a subset of

nodes that are connected to low dependent wires. The

output wire of a gate is considered low dependent if

the input wires to that gate have little influence on

the value of output. This idea is modified from a

technique called FANCI where suspicious wires can

be detected in a Trojan infected design [25]. A

functional truth table is created for each output wire

of each gate in the circuit. The inputs of the truth

table correspond to the inputs of the gate being

analyzed. For each input column, the other columns

are fixed and each row is tested with a 0 or 1 to

determine the output. This results in two functions

when setting the value to either 0 or 1. The boolean

difference between these two functions results in a

value between zero and one that can be further

analyzed. The value for each input gets stored as a list

for each output wire. We take the average value of

the entire list to determine the dependency of an

output wire.. This analysis can determine if certain

inputs are low dependent or if they rarely affect the

corresponding logic. Low dependent wires are weak

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 11 | Issue 2

P. Rajesh et al Int J Sci Res Sci & Technol. March-April-2024, 11 (2) : 262-272

267

spots in the circuit so this constraint isolates those

locations to improve the security

D. BIASED PROBABILITIES CONSTRAINT

The probability constraint focuses on reducing the

effectiveness of the SAT attacks. In a SAT attack, a

distinguishing input (DI) is chosen and the attacker

runs through various key values, eliminating any

which yields an incorrect output. Thus, to reduce the

effectiveness of a SAT attack, the number of wrong

keys produced for a given DI must decrease. This can

be done by bringing the probability of any given node

being 1 closer to 0.5, since any node which is biased

towards 0 or 1 will propagate through to the output

nodes, making it easier for SAT attacks to eliminate

key values. Since a two-input XOR/XNOR has an

output probability of 0.5, we can insert our key gates

at nodes heavily biased towards 0 or 1 and "reset" the

probability to 0.5. The algorithm used to obtain the N

nodes with the most biased probabilities is shown in

Algorithm 4. The output probabilities of a gate are

dependent on the type of logic gate and the

probabilities of its inputs.

The probability of incoming input wires will

influence how the output probability is calculated for

each gate type. It is worth noting that while

generating node probabilities for combinational

circuits is trivial, sequential circuits pose a potential

problem because of the D flip flops (DFFs). However,

giving the DFF outputs a starting probability of 0.5

and propagating running a few iterations (three is

sufficient) will asymptotically approach the correct

probability for the DFF node.

(a) Pre-Insertion Probabilities

 (b) Post-Insertion Probabilities

Fig.3: Key Gate Insertion Probabilities

An example of this is illustrated in Figure 3. Figure 3

shows a sample circuit with each node annotated with

the probability of that node being logic 1. The output

shown is heavily biased toward logic 0, which makes

it more susceptible to SAT attacks. Strategically

adding a key gate, as shown in Figure 16 b brings the

output probability closer to 0.5, reducing the

effectiveness of the SAT attack. This idea of using

probability calculations for logic locking is a novel

concept that has not been tested yet. After the first

three filtering constraints, the ProbLock algorithm

has a set of nodes that lie on the longest path, non

critical path and are low dependent. From this set of

nodes, we generate a new subset equal to the bit size

of the key value based on the biased probabilities of

each node. The final set of nodes should produce the

best location to insert key gates for a circuit netlist.

This is the final step for the ProbLock algorithm that

results in a low overhead locked benchmark. E. Anti-

SAT ProbLock is a low overhead logic locking

technique that aims to counter SAT based attacks on

integrated circuits. However, other anti-SAT

techniques have been developed to be provably

effective against newer SAT attacks. The lightweight

anti-SAT block (ASB) in [26] is a modification of the

regular anti-SAT block in [24] that reuses overlapped

key gates from the logic locking technique in the new

lightweight anti-SAT block. The regular ASB

described in [24] is a low overhead module that can

connect to wires and key inputs of the original locked

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 11 | Issue 2

P. Rajesh et al Int J Sci Res Sci & Technol. March-April-2024, 11 (2) : 262-272

268

circuit. This block exponentially increases the attack

time and iterations of a SAT attack. The ASB is

composed of additional key gates and logic

components that are integrated with the original logic

of the locked circuit.

The lightweight ASB minimizes overhead by creating

an ASB that reuses the key gates from the original

locked circuit and only adds the additional key gates

to complete the full ASB. This method reduces the

overhead of the ASB while maintaining the same level

of security against SAT attacks. In Figure 17a, an

example circuit is shown. Figure 17b shows the

locked version of that circuit by inserting key gates

E1, E2, and E3. In Figure 17c, the lightweight ASB

implementation is shown by reusing key gates E1, E2,

E3, and adding gates E4, E5, E6, G4, and G, to create

the full ASB. For this specific example, the overhead

is reduced by almost 50% and maintains the

effectiveness against a full SAT attack. We used the

same idea to integrate a strong anti-SAT solution into

ProbLock. During the ProbLock algorithm, the best

nodes are selected to be candidates for inserted key

gates. After the key gates are established, the

algorithm parses for patterns that would be suitable to

construct a lightweight ASB. If a combination of key

gates can be used to create a lightweight ASB, those

nodes are flagged until later. Once all of the

overlapped nodes are determined, the final step of

ProbLock constructs a final locked circuit with an

integrated ASB.

IV. PROPOSED METHOD

A. UNLOCKED CIRCUIT

Fig.4 : Unclocked Circuit Design using DSCH Tool

The use of NAND, NOR, and AND gates in an

unclocked circuit does not directly involve

probability, as these gates are deterministic in nature.

However, the behavior of an unclocked circuit can be

analyzed probabilistically by considering the

probabilities of different input combinations and their

corresponding output probabilities.

B. LOCKING CIRCUIT

Fig.5 : Locking Circuit Design using DSCH Tool

Probability logic locking (PLL) is a technique used in

digital circuit design to protect intellectual property

by locking the circuit using a secret key. The idea is to

modify the circuit such that it only works correctly

when a specific input value, determined by the secret

key, is provided.

PLL can be implemented using different logic gates

such as NAND, NOR, AND, and extra key gates. Here

is an explanation of how PLL can be implemented

using these gates:

1. NAND Logic PLL: In this implementation, the

circuit is modified by adding an extra NAND gate

to each original gate. The extra NAND gate is

connected to the original gate such that the

output of the NAND gate becomes the input of

the original gate. The secret key is used to control

the inputs of the extra NAND gates. The extra

NAND gates are connected in such a way that

they cancel out the effect of the original gates

when the wrong key is applied, and only the

correct key combination can unlock the circuit.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 11 | Issue 2

P. Rajesh et al Int J Sci Res Sci & Technol. March-April-2024, 11 (2) : 262-272

269

2. NOR Logic PLL: In this implementation, the

circuit is modified by adding an extra NOR gate

to each original gate. The extra NOR gate is

connected to the original gate such that the

output of the NOR gate becomes the input of the

original gate. The secret key is used to control the

inputs of the extra NOR gates. The extra NOR

gates are connected in such a way that they

cancel out the effect of the original gates when

the wrong key is applied, and only the correct

key combination can unlock the circuit.

3. AND Logic PLL: In this implementation, the

circuit is modified by adding an extra AND gate

to each original gate. The extra AND gate is

connected to the original gate such that the

output of the AND gate becomes the input of the

original gate. The secret key is used to control the

inputs of the extra AND gates. The extra AND

gates are connected in such a way that they

cancel out the effect of the original gates when

the wrong key is applied, and only the correct

key combination can unlock the circuit.

4. Extra Key Gate PLL: In this implementation, an

extra key gate is added to each input of the

circuit. The extra key gate is a combination of

different logic gates, such as NAND, NOR, AND,

or XOR. The secret key is used to control the

inputs of the extra key gates. The extra key gates

are connected in such a way that they block the

input signal when the wrong key is applied, and

only the correct key combination can unlock the

circuit.

In summary, PLL is a technique used to protect

intellectual property in digital circuit design. It

involves modifying the circuit using extra gates such

as NAND, NOR, AND, and extra key gates, which

can only be unlocked using a secret key.

V. SIMULATION RESULTS

A. UNLOCKED CIRCUIT

Fig.6: Design of Unlocked Circuit using DSCH Tool

Fig.7: Showing Critical Path in DSCH Tool

Fig.8: Timing Diagram on DSCH Tool

Fig.9: Generated Layout in Microwind Tool

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 11 | Issue 2

P. Rajesh et al Int J Sci Res Sci & Technol. March-April-2024, 11 (2) : 262-272

270

Fig10: Output Waveform showing in Microwind Tool

B.LOCKING TECHNIQUE

Fig.11: Design Circuit using DSCH tool

Fig.12: Showing Critical path in DSCH Tool

Fig.13: Timing Diagram shwoing in DSCH

Fig.14: Layout

Fig.15: Layout Showing in Micro wind

VI. CONCLUSION AND FUTURE WORK

Probability-based logic-locking techniques using

DSCH and Microwind tools can provide an effective

solution for protecting intellectual property and

preventing unauthorized access to circuit designs. By

adding additional logic gates with probabilistic

behavior, these techniques make it difficult for an

attacker to reverse engineer the design and reproduce

it without the proper key. Overall, the use of

probability-based logic-locking techniques offers a

promising approach to enhancing the security of

integrated circuits, particularly for applications that

require high levels of confidentiality and intellectual

property protection. However, it is important to note

that these techniques may also introduce additional

design complexity and potentially impact the circuit's

performance and power consumption. Therefore,

careful consideration and evaluation are necessary to

ensure that the benefits of logic-locking outweigh any

potential drawbacks.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 11 | Issue 2

P. Rajesh et al Int J Sci Res Sci & Technol. March-April-2024, 11 (2) : 262-272

271

VII. FUTURE SCOPE

In the future, we intend to test the obfuscated

benchmarks against known attacks and compare them

to other logic locking techniques. We will implement

logic locking attacks such as SAT attacks and

sensitization attacks. Each attack will be executed

against benchmarks obfuscated with ProbLock. We

will then run the same attacks on locking schemes

such as SLL, logic cone locking, and SARLock. We

will evaluate how well each benchmark performs by

measuring the overhead of the obfuscation technique,

complexity of the technique, and execution time of

the attack. After running each attack scheme, we can

compare and evaluate the true strength of ProbLock

compared to other published logic-locking techniques.

 REFERENCES

1. Mellor, J.; Shelton, A.; Yue, M.; Tehranipoor, F.

Attacks on logic locking obfuscation techniques.

In Proceedings of the 2021 IEEE International

Conference on Consumer Electronics (ICCE), Las

Vegas, NV, USA, 10–12 January 2021; pp. 142–

149.

2. Forte, D.; Bhunia, S. Hardware Protection

through Obfuscation; Tehranipoor, M., Ed.;

Springer International Publishing:

Berlin/Heidelberg, Germany, 2017; pp. 1–349.

3. Lee, Y.; Touba, N.A. Improving logic obfuscation

via logic cone analysis. In Proceedings of the

2015 16th Latin-American Test Symposium

(LATS), Puerto Vallarta, Mexico, 25–27 March

2015; pp. 1–6.

4. Yasin, M.; Rajendran, J.J.V.; Sinanoglu, O.; Karri,

R. On Improving the Security of Logic Locking.

IEEE Trans. Computer-Aided Des. Integr.

Circuits Syst. 2016, 1411–1424. [CrossRef]

5. Amir, S.; Shakya, B.; Xu, X.; Jin, Y.; Bhunia, S.;

Tehranipoor, M.; Forte, D. Development and

Evaluation of Hardware Obfuscation

Benchmarks. J. Hardw. Syst. Secur. 2018, 142–

161. [CrossRef]

6. Yasin, M.; Mazumdar, B.; Rajendran, J.J.V.; Jin,

Y.; Sinanoglu, O. SARLock: SAT attack resistant

logic locking. In Proceedings of the 2016 IEEE

International Symposium on Hardware Oriented

Security and Trust (HOST), McLean, VA, USA,

3–5 May 2016; pp. 236–241.

7. Tehranipoor, F.; Karimian, N.; Kermani, M.M.;

Mahmoodi, H.; Sinanoglu, O. Deep rnn-oriented

paradigm shift through bocanet: Broken

obfuscated circuit attack. In Proceedings of the

2019 on Great Lakes Symposium on VLSI, Tysons

Corner, VA, USA, 9–11 May 2019; pp. 335–338.

[CrossRef]

8. Brglez, F.; Fujiwara, H. A Neutral Netlist of 10

Combinational Benchmark Circuits and a Target

Translator in Fortan. In Proceedings of the

International Symposium on Circuits and

Systems, Kyoto, Japan, 5–7 June 1985; pp. 663–

698.

9. Brglez, F.; Bryan, D.; Kozminski, K.

Combinational Profiles of Sequential Benchmark

Circuits. In Proceedings of the International

Symposium on Circuits and Systems, Portland,

OR, USA, 8–11 May 1989; pp. 1929–1934.

10. Yasin, M.; Mazumdar, B.; Rajendran, J.J.V.;

Sinanoglu, O. TTLock: Tenacious and traceless

logic locking. In Proceedings of the 2017 IEEE

International Symposium on Hardware Oriented

Security and Trust (HOST 2017), McLean, VA,

USA, 1–5 May 2017; p. 166.

11. engupta, A.; Nabeel, M.; Yasin, M.; Sinanoglu, O.

ATPG-based cost-effective, secure logic locking.

In Proceedings of the 2018 IEEE 36th VLSI Test

Symposium (VTS), San Francisco, CA, USA, 22–

25 April 2018; pp. 1–6.

12. Yasin, M.; Sengupta, A.; Thari Nabeel, M.;

Ashraf, M.; Rajendran, J.J.V.; Sinanoglu, O.

Provably-Secure Logic Locking: From Theory To

Practice. In Proceedings of the 2017 ACM

SIGSAC Conference on Computer and

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 11 | Issue 2

P. Rajesh et al Int J Sci Res Sci & Technol. March-April-2024, 11 (2) : 262-272

272

Communications Security, Dallas, TX, USA, 30

October–3 November 2017; pp. 1601–1618.

13. Yang, F.; Tang, M.; Sinanoglu, O. Stripped

Functionality Logic Locking With Hamming

Distance-Based Restore Unit (SFLL-hd) - 2013

Unlocked. IEEE Trans. Inf. Forensics Secur. 2019,

2778–2786. [CrossRef]

14. Yasin, M.; Zhao, C.; Rajendran, J.J.V. SFLL-HLS:

Stripped-Functionality Logic Locking Meets

High-Level Synthesis. In Proceedings of the 2019

IEEE/ACM International Conference on

Computer-Aided Design (ICCAD), Westminster,

CO, USA, 4–7 November 2019; pp. 1–4.

15. Saha, A.; Saha, S.; Bhattacharya, B.B.;

Chowdhury, S.; Mukhopadhyay, D. Lopher: Sat-

hardened logic embedding on block ciphers. In

Proceedings of the 2020 57th ACM/IEEE Design

Automation Conference (DAC), San Francisco,

CA, USA, 20–24 July 2020; pp. 1–6.

16. Abdulrahman, A.; Bhunia, S. Scalable Attack-

Resistant Obfuscation of Logic Circuits. arXiv

2020, arXiv:2010.15329.

17. Biere, A. Splatz, Lingeling, Plingeling,

Treengeling, YalSAT Entering the SAT

Competition 2016. Available online: fmv.jku.at/

papers/Biere-SAT-Competition-2016-solvers.pdf

(accessed on 5 October 2021).

18. Xie, Y.; Srivastava, A. Anti-SAT: Mitigating SAT

Attack on Logic Locking. IEEE Trans. Computer-

Aided Des. Integr. Circuits Syst. 2015, 38, 199–

207. [CrossRef]

19. Miskov-Zivanov, N.; Marculescu, D. Modeling

and Optimization for Soft-Error Reliability of

Sequential Circuits. IEEE Trans. Computer-Aided

Des. Integr. Circuits Syst. 2008, 27, 803–816.

[CrossRef]

20. Waksman, A.; Suozzo, M.; Sethumadhavan, S.

FANCI: Identification of Stealthy Malicious Logic

Using Boolean Functional Analysis. In

Proceedings of the 2013 ACM SIGSAC

Conference on Computer & Communications

Security, Berlin, Germany, 4–8 November 2013;

pp. 697–708.

21. Design Compiler Graphical. Synopsys. 2018.

Available online:

https://www.synopsys.com/implementation-and-

signoff/rtlsynthesis-test/design-compiler-

graphical.html (accessed on 5 October 2021).

22. Subramanyan, P.; Ray, R.; Malik, S. Evaluating

the security of logic encryption algorithms. In

Proceedings of the 2015 IEEE International

Symposium on Hardware Oriented Security and

Trust (HOST2015), Washington, DC, USA, 5–7

May 2015; pp. 137–143.

Cite this article as :

P. Rajesh, Sompalli Charan Sai, Vellala Sai Sri

Pranathi, Udatha Kavya Sree, Thippareddy

Asuvardhan Reddy, A R Kushal, "Implementation of

Logic-Locking Technique Based on Probability Using

Back End Tool ", International Journal of Scientific

Research in Science and Technology (IJSRST), Online

ISSN : 2395-602X, Print ISSN : 2395-6011, Volume 11

Issue 2, pp. 262-272, March-April 2024.

Journal URL : https://ijsrst.com/IJSRST52411241

https://ijsrst.com/IJSRST52411241

