
Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed under the

terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use,

distribution, and reproduction in any medium, provided the original work is properly cited

International Journal of Scientific Research in Science and Technology

Print ISSN: 2395-6011 | Online ISSN: 2395-602X (www.ijsrst.com)

doi : https://doi.org/10.32628/IJSRST229149

448

The C Language Mini Project to Demonstrate a Simple Progress
Bar

Sakshi Satish Karanjkar, Dipali Mane, Balaji Chaugule

Department of Computer Engineering, Zeal College of Engineering and Research, Pune, Maharashtra, India

Article Info

Volume9, Issue 2

Page Number: 448-452

Publication Issue

March-April-2022

Article History

Accepted :03March2022

Published :10March2022

ABSTRACT

Creating a simple loader progress bar using some basic functions and loops in

the C programming language. This mini-project makes use of basic C concepts

and datatypes to print a pattern in such a way that with proper delay insertion,

the end result is a progress bar that indicates the loading process of any task. In

the early days, when graphics were not as appealing and fast as today, we used

to have two folders on the screen separated by some distance. While our files

were being copied, a piece of paper would fly off from the left folder and get

inserted into the right folder. Gradually, that pattern of representation was

replaced by the progress bar.

KEYWORDS: Core C Language, While Loop, Color Functions, Goto Function,

Programming Plane

I. INTRODUCTION

The C programming language is like a vast “sea”. The

founder of this programming language is Dennis

Ritchie. He has himself said that, even though he has

been a pioneer of giving the gift of C to this world, he

knows less than 10% of it. C language was originally

created to overcome the drawbacks of B and BCPL

languages. Though C is an old language, it is still

regarded as one of the core fundamental

programming languages. Other languages have

received help from C, the tools required for problem

solving in other programming languages have been

provided by C. This was a brief history of C

programming language.

II. CORE C PROGRAMMING LANGUAGE

If a person wants a complete walkthrough of C

language in a gist, here are the majority of the

concepts mentioned, which are covered by the C

programming language. First of all, the programmer

must know how to write a pseudo code. It includes

steps to approach the program in sentence format. It

may also include flowcharts. Next, one must learn

sequence which is nothing but proper sequential steps

to write a correct program. Then comes selection

which is a collection of a few conditional statements

like if...else, multiple if, etc. It is followed by Iteration

meaning loops or looping constructs. We mainly have

while, do-while, for, and nested for loops in C

language. To create menu-driven programs, the

switch case concept comes into picture. To organize

http://www.ijsrst.com/
https://doi.org/10.32628/IJSRST229149

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 9 | Issue 2

Sakshi Satish Karanjkar et al Int J Sci Res Sci & Technol. March-April-2022, 9 (2) : 448-452

449

records and databases as we do in stationary registers,

the next useful concept of arrays and string arrays is

implemented. The essence of C and CPP is pointers, a

very important concept that follows arrays. Next, we

have functions as a topic. By default, C has many in-

built functions like printf, scanf, getch, clrscr, strcpy,

etc. But we can also build our own functions in C. For

e.g. If we want prime numbers to be determined, if

we want factorial of a number, if we want to

determine whether a number or a string is a

palindrome or not, etc. The last three topics are

nothing but structure, preprocessor and file handling

which lay the foundations of any C mega-project.

This was a brief explanation about what C actually

does.

III. OVERVIEW OF EVERYTHING USED IN

PROGRESS BAR PROJECT

The above two images represent the C code of the

progress bar. In the first two lines, we have the hash

include statements. Hash is used as a pre-processor.

Whatever is written after the hash, which is usually a

header file, will be pre-complied by the compiler to

allow us the use of all the functionality that those

header files provide. The two files have a .h extension

to indicate that they are header files. Among those

two header files included, stdio stands for “standard

input/output” and conio stands for “Console

input/output”. Next, we have a text called //Progress

Bar by Sakshi, which is a single-line comment used in

C. Like all the other programming languages,

comments will not be executed. They are just for the

programmer’s reference. Then, we have void main().

Here, void is the return-type of main() which is a

function, main() function plays a crucial role in

executing the program and terminating it. Void

means nothing, we just want to display the progress

bar on our console, we don’t expect the function to

return any value back. That is the reason void is used

as the return type. The main function has a method in

which we write the actual code, the space between

two curly braces is called as that method.

Now we begin with the actual logic. The first step in

the method is variable declaration. Variables are

nothing but containers to hold a value depending

upon their datatype. Here, we have the int datatype

to store integer values which we have assigned to the

variables a, push and y respectively. There are two

functions clrscr(); and getch(); after variable

declaration. Clrscr function is used to clear the screen

for fresh outputs every time we compile and run the

program. The output of the correct code is achieved

but sometimes it gets displayed and the compilers

returns to the main blue window so fast that we are

unable to comprehend the output clearly. To make

the compiler wait, show us the output and return to

blue window only after pressing any key, getch

function is used. Now, we have arrived at something

called as the “gotoxy();” function. According to the

applied co-ordinate geometry in C programming, the

black output console is an X-Y Programming Plane

with bottom of the screen being the X-axis and left

side of the screen being the Y-axis. Naturally, the

origin will be at the bottom-left corner of the console.

In gotoxy(23,19), value of x-coordinate is 23 and that

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 9 | Issue 2

Sakshi Satish Karanjkar et al Int J Sci Res Sci & Technol. March-April-2022, 9 (2) : 448-452

450

of y-coordinate is 19. The cursor will hence move to

that location on the plane. Before the while loop, the

last statement is cprintf. The difference between

cprintf and printf is that cprintf supports textcolor

and textbackground properties whereas printf does

not. The message written in cprintf will be printed as

it is on the output console, by default in white

textcolor.

IV. WHILE LOOP (TO PRINT A BASE DOTTED

BAR OF BLUE COLOUR)

The while loop has the condition as while(a<=65).

The initial value of a is 10 which is incremented by 2

using a statement in the loop as a+=2. When the value

of a becomes greater than 65, while loop will be

terminated. For every value between 10 and 65 which

makes the while loop condition true, for as long as the

loop will get executed, everything written in that

loop will get executed as well. Text colour will be

blue, gotoxy(a,y) will result in multiple cursor

locations e.g. (10, 13) then (12,13) so on till (64,13).

At each of these locations, a small part of the base bar

will get printed in blue. Just because we have not

inserted a delay, the entire bar is visible instantly. The

way the bar is getting printed is because of cprintf

function where %c and %c are two placeholders of

character datatype and 177 is the ASCII value of the

dotted block.

The above image shows the base blue bar printed

using this while loop.

V. WHILE LOOP (TO PRINT THE FLOWING

GREEN BAR INDICATING THE LOADING

PROCESS)

First, let us understand which tasks we are

accomplishing using this second while loop and then

proceed accordingly. It is to be noted that this second

while loop will not get executed until the first while

loop is terminated as this loop is below the first loop

in the program. First task of the second while loop is

to create a loading message below the progress bar to

indicate that the process is still running. The second

task is to print a flowing progress bar of green colour

over the previous blue dotted one. The length of the

blue dotted bar and the green-lined bar will be the

same. The third and the last task is to generate a

percent count on the top-right corner of the previous

blue bar to indicate the percent of information

loading. The percent will start from 15% till 100%

and overwrite on the same location.

Now, as you can see in the second image containing

the code of the program, the second while loop has

the same condition as the first while loop. But, the

value of variable ‘a’ is now greater than 65 when it

exited the first while loop. We want the length and

position of both bars to be the same, hence, we need

to bring ‘a’ back to 10 and increment it till 65 again.

So, we write a=10 before the second while loop. Now

in the second while loop, to achieve the first task, we

do gotoxy(35,15) which will bring the cursor below

our progress bar. Then using

textcolor(YELLOW+BLINK) and cprintf function, we

have created “Loading!” message below the bar which

will be in yellow colour and will keep blinking till the

while loop terminates. To achieve the second task, we

have used the bar printing conditions from the first

while loop as it is with some minor changes. We have

kept the location same, just changed the colour of the

bar and the ASCII value from 177 to 186 to print line

bar. Also, because we have inserted delay(200), we

will not get a complete bar at once but parts of it after

regular intervals of time which is the entire essence of

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 9 | Issue 2

Sakshi Satish Karanjkar et al Int J Sci Res Sci & Technol. March-April-2022, 9 (2) : 448-452

451

this project. The third task of printing a percent count

on top of the bar can be done by initializing the value

of a push variable to 15, then incrementing it using

push+=3, such that when the entire green bar is

loaded, percentage count should be showing 100%.

But, it might happen that the count may not reach

100 but some value before or after 100. So, to handle

this condition, just before the loop terminates i.e at

a=64, we use selection that is the if statement to

increase the push value such that it becomes 100

before exiting the second loop. [1] After second loop

is terminated, we again go to the location of ‘Loading!’

and overwrite it with ‘Complete’ to indicate

completion of our task.

Finally, the pictures of how our project bar looks like

are below:

Fig 1: At 18% with Loading Message

Fig 2: At 30% without Loading Message because of

Blink

Fig 1 has green bar filling the blue one only till 18%.

It also has yellow colored text that is the Loading

message to indicate that the bar is still flowing. In Fig

2, the yellow Loading message seems to have

disappeared but it hasn’t. The blink property causes it

to blink until the loop finishes executing. Fig 3, Fig 4

and Fig 5 indicate the stages of progress bar

completion. The last image clearly shows the Loading

message being replaced by Complete message and bar

percent count to be 100%

Fig 3: At 51% with Loading Message

Fig 4: At 72% without Loading Message

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 9 | Issue 2

Sakshi Satish Karanjkar et al Int J Sci Res Sci & Technol. March-April-2022, 9 (2) : 448-452

452

Fig 5: At 100% with Complete Message

VI. CONCLUSION

Thus, a progress bar using C programming language

has been explained in this research paper. Some basic

functionalities of C language have also been explained.

The project is demonstrated with appropriate

illustrations and images.

VII. REFERENCES

[1]. The C Programming Language Research Paper,

Second Edition.

