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ABSTRACT 

To drive progress in the field of data science, we propose 10 challenge areas for 

the research community to pursue. Since data science is broad, with methods 

drawing from computer science, statistics, and other disciplines, and with 

applications appearing in all sectors, these challenge areas speak to the breadth 

of issues spanning science, technology, and society. We preface our 

enumeration with meta-questions about whether data science is a discipline. 

We then describe each of the 10 challenge areas. The goal of this article is to 

start a discussion on what could constitute a basis for a research agenda in data 

science, while recognizing that the field of data science is still evolving. 

Keywords: artificial intelligence, causal reasoning, computing systems, data life 

cycle, deep learning, ethics, machine learning, privacy, trustworthiness 

Although data science builds on knowledge from computer science, 

engineering, mathematics, statistics, and other disciplines, data science is a 

unique field with many mysteries to unlock: fundamental scientific questions 

and pressing problems of societal importance. 

In this article we enumerate 10 areas of research in which to make progress to 

advance the field of data science. Our goal is to start a discussion on what could 

constitute a basis for a research agenda in data science, while recognizing that 

the field of data science is still evolving. 

Before we plunge into this enumeration, we preface our discussion by raising, 

but not answering, a meta-question: Is data science a discipline? Answering this 

meta-question is still under lively debate, including within the pages of this 

journal. Herein, we suggest additional meta-questions to help frame the debate. 

 

I. INTRODUCTION 

 

Data science is a field of study: one can get a degree in 

data science, get a job as a data scientist, and get 

funded to do data science research. But is data science 

a discipline, that is, a branch of knowledge? If not yet, 

will it evolve to be one, distinct from other 

disciplines? Here are a few meta-questions on 

whether data science is a discipline. 

• Are there driving deep question(s) in data 

science? If so, what are they? Each scientific 

discipline (usually) has one or more ‘deep’ 

http://www.ijsrst.com/
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questions that drive its research agenda: What is 

the origin of the universe (astrophysics)? What 

is the origin of life (biology)? What is 

computable (computer science)? Does data 

science inherit its deep questions from all its 

constituent disciplines or does it have its own 

unique ones? 

• What is the role of the domain in the field of 

data science? Many academics have argued 

(Wing et al., 2018) that data science is unique in 

that it is not just about methods, but also about 

the use of those methods in the context of a 

domain—the domain of the data being collected 

and analyzed; the domain in which, from this 

data, a question is to be answered. Is the 

inclusion of a domain inherent in defining the 

field of data science? Other methods-based 

disciplines, such as computer science, 

mathematics, and statistics, are used in the 

context of other domains, and are 

correspondingly inspired by problems from 

these domains. Can one study data science, as we 

do in computer science, mathematics, and 

statistics, without studying it in the context of a 

domain? Is the (more integral?) way a domain is 

included in the study of data science unique to 

data science? 

• What makes data science data science? Is there a 

problem unique to data science that one can 

convincingly argue would not be addressed or 

asked by any of its constituent disciplines, for 

example, computer science or statistics? When 

should a set of methods, analyses, or results be 

considered data science, and not just methods, 

analyses, or results in computer science or 

statistics (or mathematics, etc.)? Or should all 

methods, analyses, and results in all these 

disciplines be considered part of data science? 

Data science as a field of study is still too new to have 

definitive answers to all these meta-questions. Their 

answers will likely evolve over time, as the field 

matures and as members of the contributing 

established disciplines share scholarship and 

perspectives from their respective disciplines. We 

encourage the data science community to ponder and 

debate these meta-questions, as we make progress on 

more concrete scientific and societal challenges raised 

by the preponderance of data, data science methods, 

and applications of data science. 

 

II. TEN RESEARCH AREAS 

 

So, let’s ask an easier question, one that also underlies 

any field of study: What are the research challenge 

areas that drive the study of data science? Here is a 

list of 10. They are not in any priority order, and 

some of them are related to each other. They are 

phrased as challenge areas, not challenge questions; 

each area suggests many questions. They are not 

necessarily the ‘top 10’ but they are a good 10 to start 

the community discussing what a broad research 

agenda for data science might look like. Given our 

discussion above, they unsurprisingly overlap with 

challenges found in computer science, statistics 

(Berger et al., 2019), social sciences, and so on. Given 

the author’s background, they are posed from the 

perspective of a computer scientist. The list begins, 

roughly speaking, with challenges relevant to science, 

then to technology, and then to society. 

 

1. Scientific Understanding of Learning, Especially 

Deep Learning Algorithms. 

As much as we admire the astonishing successes of 

deep learning, we still lack a scientific understanding 

of why deep learning works so well, though we are 

making headway (Arora et al., 2018; Balestriero & 

Baraniuk, 2018). We do not understand the 

mathematical properties of deep learning algorithms 

or of the models they produce. We do not know how 

to explain why a deep learning model produces one 

result and not another. We do not understand how 

robust or fragile models are to perturbations to input 

data distributions. We do not understand how to 

verify that deep learning will perform the intended 
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task well on new input data. We do not know how to 

characterize or measure the uncertainty of a model’s 

results. We do not know deep learning’s fundamental 

computational limits (Thompson et al., 2020); at what 

point does more data and more compute not help? 

Deep learning is an example of where 

experimentation in a field is far ahead of any kind of 

complete theoretical understanding. And, it is not the 

only example in learning: random forests (Biau & 

Scornet, 2015) and high-dimensional sparse statistics 

(Johnstone & Titterington, 2009) enjoy widespread 

applicability on large-scale data, where gaps remain 

between their performance in practice and what 

theory can explain. 

 

2. Causal Reasoning 

Machine learning is a powerful tool to find patterns 

and to examine associations and correlations, 

particularly in large data sets. While the adoption of 

machine learning has opened many fruitful areas of 

research in economics, social science, public health, 

and medicine, these fields require methods that move 

beyond correlational analyses and can tackle causal 

questions. A rich and growing area of current study is 

revisiting causal inference in the presence of large 

amounts of data. Economists are devising new 

methods that incorporate the wealth of data now 

available into their mainstay causal reasoning 

techniques, for example, the use of instrumental 

variables; these new methods make causal inference 

estimation more efficient and flexible (Athey, 2016; 

Taddy, 2019). Data scientists are beginning to explore 

multiple causal inference, not just to overcome some 

of the strong assumptions of univariate causal 

inference, but because most real-world observations 

are due to multiple factors that interact with each 

other (Wang & Blei, 2019). Inspired by natural 

experiments used in economics and the social 

sciences, as more government agency and commercial 

data becomes publicly available, data scientists are 

using synthetic control for novel applications in 

public health, retail, and sports (Abadie et al., 2010; 

Amjad et al. 2019). 

 

3. Precious Data 

Data can be precious for one of three reasons: the data 

set is expensive to collect; the data set contains a rare 

event (low signal-to-noise ratio); or the data set is 

artisanal—small, task-specific, and/or targets a limited 

audience. A good example of expensive data comes 

from large, one-off, expensive scientific instruments, 

for example, the Large Synoptic Survey Telescope, the 

Large Hadron Collider, and the IceCube Neutrino 

Detector at the South Pole. A good example of rare 

event data is data from sensors on physical 

infrastructure, such as bridges and tunnels; sensors 

produce a lot of raw data, but the disastrous event 

they are used to predict is (thankfully) rare. Rare data 

can also be expensive to collect. A good example of 

artisanal data is the tens of millions of court 

judgments that China has released online to the 

public since 2014 (Liebman et al., 2017) or the two-

plus-million U.S. government declassified documents 

collected by Columbia’s History Lab (Connelly et al., 

2019). For each of these different kinds of precious 

data, we need new data science methods and 

algorithms, taking into consideration the domain and 

the intended uses and users of the data. 

 

4. Multiple, Heterogeneous Data Sources 

For some problems, we can collect lots of data from 

different data sources to improve our models and to 

increase knowledge. For example, to predict the 

effectiveness of a specific cancer treatment for a 

human, we might build a model based on 2-D cell 

lines from mice, more expensive 3-D cell lines from 

mice, and the costly DNA sequence of the cancer cells 

extracted from the human. As another example, 

multiscale, spatiotemporal climate models simulate 

the interactions among multiple physical systems, 

each represented by disparate data sources drawn 

from sensing: the ocean, the atmosphere, the land, the 

biosphere, and humans. Many of these data sources 

http://history-lab.org/
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might be precious data (see Challenge no. 3). State-of-

the-art data science methods cannot as yet handle 

combining multiple, heterogeneous sources of data to 

build a single, accurate model. Bounding the 

uncertainty of a data model is exacerbated when built 

from multiple, possibly unrelated data sources. More 

pragmatically, standardization of data types and data 

formats could reduce undesired or unnecessary 

heterogeneity. Focused research in combining 

multiple sources of data will provide extraordinary 

impact. 

 

5. Inferring From Noisy and/or Incomplete Data. 

The real world is messy and we often do not have 

complete information about every data point. Yet, 

data scientists want to build models from such data to 

do prediction and inference. This long-standing 

problem in statistics comes to the fore as: (1) the 

volume of data, especially about people, that we can 

generate and collect grows unboundedly; (2) the 

means of generating and collecting data is not under 

our control, for example, data from mobile phone and 

web apps vary—by design—across different users and 

across different populations; and 3) many sectors, 

from finance to retail to transportation, embrace the 

desire to do real-time personalization. A great 

example of a novel formulation of this problem is the 

planned use of differential privacy for Census 2020 

data (Abowd, 2018; Hawes, 2020), where noise is 

deliberately added to a query result, to maintain the 

privacy of individuals participating in the census. 

Handling ‘deliberate’ noise is particularly important 

for researchers working with small geographic areas 

such as census blocks, since the added noise can make 

the data uninformative at those levels of aggregation. 

How then can social scientists, who for decades have 

been drawing inferences from census data, make 

inferences on this ‘noisy’ data and how do they 

combine their past inferences with these new ones? 

Machine learning’s ability to better separate noise 

from signal can improve the efficiency and accuracy 

of those inferences. 

6. Trustworthy AI 

We have seen rapid deployment of systems using 

artificial intelligence and machine learning in critical 

domains such as autonomous vehicles, criminal 

justice, health care, hiring, housing, human resource 

management, law enforcement, and public safety, 

where decisions taken by AI agents directly impact 

human lives. Consequently, there is an increasing 

concern if these decisions can be trusted to be correct, 

fair, ethical (see Challenge no. 10), interpretable, 

private (see Challenge no. 9), reliable, robust, safe, 

and secure, especially under adversarial attacks. Many 

of these properties borrow from a long history of 

research on Trustworthy Computing (National 

Research Council, 1999), but AI raises the ante 

(Wing, 2020): reasoning about a machine learning 

model seems to be inseparable from reasoning about 

the available data used to build it and the unseen data 

on which it is to be used; and these models are 

inherently probabilistic. One approach to building 

trust is through providing explanations of the 

outcomes of a machine learned model (Adadi & 

Berrada, 2018; Chen et al., 2018; Murdoch et al., 2019; 

Turek, 2016). If we can interpret the outcome in a 

meaningful way, then the end user can better trust 

the model. Another approach is through formal 

methods, where one strives to prove once and for all a 

model satisfies a certain property. New trust 

properties yield new tradeoffs for machine learned 

models, for example, privacy versus accuracy; 

robustness versus efficiency; fairness versus 

robustness. There are multiple technical audiences for 

trustworthy models: model developers, model users 

(human and machine), and model customers; as well 

as more general audiences: consumers, policymakers, 

regulators, the media, and the public. 

 

7. Computing Systems for Data-Intensive 

Applications 

Traditional designs of computing systems have 

focused on computational speed and power: the more 

cycles, the faster the application can run. Today, the 
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primary focus of applications, especially in the 

sciences (e.g., astronomy, biology, climate science, 

materials science), is data. Novel special-purpose 

processors, for example, GPUs, FPGAs, TPUs, are now 

commonly found in large data centers. Domain-

specific accelerators, including those designed for 

deep learning, show orders of magnitude performance 

gains over general-purpose computers (Dally et al., 

2020). Even with all these data and all this fast and 

flexible computational power, it can still take weeks 

to build accurate predictive models; however, 

applications, whether from science or industry, want 

real-time predictions. Distributing data, computing, 

and models helps with scale and reliability (and 

privacy), but then runs up against the fundamental 

limit of the speed of light and practical limits of 

network bandwidth and latency. Also, data-hungry 

and compute-hungry algorithms, for example, deep 

learning, are energy hogs (Strubell et al., 2019). Not 

only should we consider space and time, but energy 

consumption, in our performance metrics. In short, 

we need to rethink computer systems design from 

first principles, with data (not compute) the focus. 

New computing systems designs need to consider: 

heterogeneous processing, efficient layout of massive 

amounts of data for fast access, communication and 

network capability, energy efficiency, and the target 

domain, application, or even task. 

 

8. Automating Front-End Stages of the Data Life 

Cycle 

While the excitement in data science is due largely to 

the successes of machine learning, and more 

specifically deep learning, before we get to use 

machine learning algorithms, we need to prepare the 

data for analysis. The early stages in the data life cycle 

(Wing, 2019) are still labor intensive and tedious. 

Data scientists, drawing on both computational and 

statistical tools, need to devise automated methods 

that address data collection, data cleaning, and data 

wrangling, without losing other desired properties, 

for example, accuracy, precision, and robustness, of 

the end model. One example of emerging work in this 

area is the Data Analysis Baseline Library (Mueller, 

2019), which provides a framework to simplify and 

automate data cleaning, visualization, model building, 

and model interpretation. The Snorkel project 

addresses the tedious task of data labeling (Ratner et 

al., 2018). Trifacta, a university spin-out company, 

addresses data wrangling (Trifacta, 2020). 

Complementing these needs, commercial services 

already support later stages in the data life cycle, in 

particular, automating construction of machine 

learning models, for example, Cloud AutoML 

(Google, 2020) and Azure Machine Learning 

(Microsoft, 2020). 

 

9. Privacy 

For many applications, the more data we have, the 

better the model we can build. One way to get more 

data is to share data, for example, multiple parties 

pool their individual data sets to build collectively a 

better model than any one party can build. However, 

in many cases, due to regulation or privacy concerns, 

we need to preserve the confidentiality of each party’s 

data set. An example of this scenario is in building a 

model to predict whether someone has a disease or 

not. If multiple hospitals could share their patient 

records, we could build a better predictive model; but 

due to Health Insurance Portability and 

Accountability Act (HIPAA, 1996) privacy 

regulations, hospitals cannot share these records. We 

are only now exploring practical and scalable ways, 

using cryptographic and statistical methods, for 

multiple parties to share data, models, and/or model 

outcomes while preserving the privacy of each party’s 

data set. Industry and government are already 

exploiting techniques and concepts, for example, 

secure multiparty computation, homomorphic 

encryption, zero-knowledge proofs, differential 

privacy, and secure enclaves, as elements of point 

solutions to point problems (Abowd, 2018; Ion et al., 

2017; Kamara, 2014). We can also apply these 
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methods to the simpler scenario where a single 

entity’s data must be kept private prior to analysis. 

 

10. Ethics 

Data science raises new ethical issues. They can be 

framed along three axes: (1) the ethics of data: how 

data are generated, recorded, and shared; (2) the 

ethics of algorithms: how artificial intelligence, 

machine learning, and robots interpret data; and (3) 

the ethics of practices: devising responsible 

innovation and professional codes to guide this 

emerging science (Floridi & Taddeo, 2016) and to 

define institutional review board (IRB) criteria and 

processes specific for data (Wing et al., 2018). The 

ethical principles expressed in the Belmont Report 

(Belmont Report, 1979) and the Menlo Report 

(Dittrich & Kenneally, 2011) give us a starting point 

for identifying new ethical issues data science 

technology raises. The ethical principle of Respect for 

Persons suggests that people should always be 

informed when they are talking with a chatbot. The 

ethical principle of Beneficence requires a risk/benefit 

analysis on the decision a self-driving car makes on 

whom not to harm. The ethical principle of Justice 

requires us to ensure the fairness of risk assessment 

tools in the court system and automated decision 

systems used in hiring. These new ethical issues 

correspondingly raise new scientific challenges for 

the data science community, for example, how to 

detect and eliminate racial, gender, socioeconomic, or 

other biases in machine learning models. 

 

III. CLOSING REMARKS 

 

As many universities and colleges are creating new 

data science schools, institutes, centers, and so on 

(Wing et al., 2018), it is worth reflecting on data 

science as a field. Will data science as an area of 

research and education evolve into being its own 

discipline or be a field that cuts across all other 

disciplines? One could argue that computer science, 

mathematics, and statistics share this commonality: 

they are each their own discipline, but they each can 

be applied to (almost) every other discipline. 

What will data science be in 10 or 50 years? The 

answer to this question is in the hands of the next-

generation researchers and educators. To advance and 

study data science will take a commitment to learn 

the vocabulary, methods, and tools from multiple, 

traditionally siloed disciplines. Integrating and 

applying this knowledge takes patience, but can be 

exhilarating. To today’s undergraduates, graduate 

students, postdoctoral fellows, and early-career 

faculty and researchers: Through the data science 

research problems you choose to tackle, you will 

shape this field! 
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