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ABSTRACT 

This paper proposes Idea and importance of a swarm of drones. In the study, 

inspired by the swarms in nature, drones look for the target by sensing the 

surrounding and communicating with each other for collision avoidance and 

effective co-ordination. The position for each drone is implemented using the 

particle swarm optimization algorithm as the swarm intelligence (A swarm-

based optimization algorithm), as well as a model for the drones to take the 

real-world environment into consideration. In addition, the system is processed 

in real time along with the movements of the drones. The effectiveness of the 

proposed system was verified through repeated test simulations studied from 

various studies, including a benchmark function optimization and air pollutant 

search problems. The results show that the proposed system is highly practical, 

accurate, and robust. 

Keywords: Swarm, Technology, PSO. 

 

I. INTRODUCTION 

 

The demand for autonomous aerial vehicles (AAV), 

commonly called drones, has largely increased in 

recent years due to their compactness and mobility, 

which enable them to carry out various tasks that are 

economically inefficient or potentially dangerous to 

humans effectively. For example, it is hard for 

humans to explore rugged mountain terrains, flooded 

areas, war zones or air pollution regions without 

drones. they have been used in various search 

applications, such as industrial building inspections, 

search and rescue operations and post-disaster area 

exploration autonomously. The search applications 

have one important factor in common search 

efficiency in quick time.  

Previous research has focused on improving the 

stand-alone performance andautomation of each 

drone, such as localization accuracy, communication 

robustness, and various sensors but not on co-

ordination with multiple drones. However, it is 

relatively expensive to handle a group of such high-

end drones. Additionally, it takes a long time for a 

single drone to cover a broad search space. Thus, 

previous studies showsthe decomposition of the 

search space or control a number of low-cost drones 

into several formation patterns. The previous research 

successfully demonstrating the feasibility of search-

by-drones, there is still room for improvement. The 

Important things, time and cost, it is not the best 

strategy to thoroughly scan every available location in 

the search space. so, it is more effective for drones to 
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conduct a brief survey first and successively progress 

to better locations by investigating the evidence of 

the surroundings and communicating with each 

other. We can find examples of this behaviour from 

nature, such as ants, bees, fish, birds, and so on. They 

show cooperative and intelligent behaviors to achieve 

complex goals, which is called swarm intelligence 

(SI). In the area of multi-robot path planning in 2-D 

space, there have been several studies of approaches 

based on swarm intelligence. However, there is 

difference between mobile robots in 2-D space and 

drones in 3-D space. Whereas mobile robots can stand 

stably without any posture control and only need to 

be controlled by position feedback, the postures and 

positions of drones can be controlled based on a 

certain dynamic model in order to hover stably. 

Therefore, in this paper, swarm system for quadcopter 

drones is proposed by integrating the position update 

rule of the swarm intelligence algorithm (PSO). In the 

proposed system, The Study of a swarm of more than 

10 drones was employed for a search mission. The 

swarm was controlled by a position update 

mechanism which included the swarm intelligence 

inspired from a well-known swarmbased optimization 

algorithm (PSO). 

 

II. LITERATURE SURVEY  

 

The Defense Advanced Research Projects Agency 

(DARPA) is experimenting with using a swarm of 

autonomous drones and ground robots to assist with 

military missions. In a video of a linear algorithm 

provides an effective method for maneuvering 

individuals in a swarm. By keeping velocity constant, 

the swarm of UAVs are realistically simulated. Recent 

test, DARPA showed how its robots analyzed two city 

blocks to find, surround, and secure a mock city 

building. 

DARPA conducted its test back in June 2019, in 

Georgia, featuring both drones and groundbased 

robots. The demonstration was part of DARPA’s 

offensive Swarm-Enabled Tactics (OFFSET) program, 

which is designed to eventually accompany small 

infantry units as they work in dense urban 

environments, and could eventually scale up to 250 

drones and ground robots.  

The Swarming Algorithms are used in the drones for 

the automated operations. The Particle Swarm 

Optimization Algorithm (PSO) and the Linear 

Optimization Algorithm are highly used algorithms 

today. PSO is focused on minimizing error between 

the drones and the target but changes the speed of 

UAVs. In addition to changing the drone’s direction 

to head toward the target. A linear algorithm provides 

an effective method for maneuvering individuals in a 

swarm. When applying PSO to real flying objects, the 

constant speed changes are the main drawback. 

Actual UAVs should maintain a constant velocity to 

operate in a stable and controlled manner to prevent 

chaos and collisions.  

Compared to the PSO, the PSO linear algorithm 

produces the most realistic results. The swarm does 

not have to move synchronously, and the UAVs move 

toward the target by minimizing the error in their 

position from the target. The error is minimized in a 

linear fashion since the velocity of the UAV remains 

constant. Linearity produces great results, and the 

simulated UAVs are able to find the target quickly 

and efficiently. The program also handles the UAVs 

as objects that occupy space. Each UAV has a 

threshold boundary distance, so they will avoid each 

other if they get too close. These movements allow 

the swarm to move toward a destination in space 

without collisions. 

 

III. DESCRIPTION 

 

There are three phases of operation. After take-off, 

they start a spread out phase for a fixed period of 

time. This first stage is used to place the drones in a 

good positions to start exploring the environment. 

This spread out of the drones in the environment is 

achieved by maximizing the minimum distance 

between them while at the same time flying within a 
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fixed radius of the take-off area, it can obviously be 

implemented in a distributed and local way. Once the 

spread out stage finishes, the drones start the 

monitoring phase. The behavior of the drones 

continues to be the same as in the spread-out phase, 

they try to maximize the minimum distance between 

them while moving, but in this state they are also 

sensing the environment seeking desired object’s 

values above a fixed alarm threshold. Also during this 

stage, the drones start broadcasting their sensed data 

through the communications channel so other agents 

of the system can receive it (at least those that are 

close enough to it). As soon as one of the drones 

detects an object above the threshold it enters the 

search stage. In this stage the plane starts 

collaborating with surrounding drones in order to 

find the object. As each plane is receiving the data 

sensed and broadcast by others surrounding it, it uses 

the data coming from the N nearest neighbors and its 

own sensing data to select a promising direction for 

continuing its search. 

 

IV. ALGORITHM 

 

Particle Optimization Algorithm:  

Srep 1: Start.  

Srep 2: Initialize the drone population by random 

positioning and velocity vectors.  

Srep 3: Evaluate the best position of each drone.  

Srep 4: Evaluate whether each drone’s position is 

better than previous position.  

Srep 5: If current position is true keep the position.  

Srep 6: If false assign new best position to the drone.  

Srep 7: Compute the velocity of each drone.  

Srep 8: Update the position each drones for 

searching desired object.  

Srep 9: Check whether the target found if not 

restart from.  

Srep 10: End. 

 

 

 

V. CONCLUSION AND RECOMMENDATIONS 

 

In the near future, our airspace will be populated by 

swarms of aerial robots, performing complex tasks 

that would be impossible for a single vehicle. This 

papers reviews work that could provide the 

fundamental algorithmic, analytic, perceptive, and 

technological building blocks necessary to realize this 

future. The research issues discussed in this survey 

paper span hierarchical integration of swarm 

synchronization control with safe trajectory 

optimization and assignment, and cooperative 

estimation and control with perception in the loop, 

offering the readers a broad perspective on aerial 

swarm robotics. In addition, we emphasize the 

importance of the three way tradeoff between 

computational efficiency, stability and robustness, 

and optimal system performance. To truly address this 

tradeoff, we argue that it is imperative to advance 

beyond methods that are currently being used in 

autonomous drones and general swarm robotics in 

order to realize long-term autonomy of aerial swarm 

systems. One important area of further study is to 

develop learning and decision-making architectures 

that will endow swarms of aerial robots with high 

levels of autonomy and flexibility. We argue that such 

architectures will ultimately lead to reduced risk and 

cost as well as long-term autonomous operations. To 

be successful, any such architecture must provide the 

framework for reasoning about the wide-ranging 

nature of uncertainties and modeling errors, ranging 

from known unknowns (e.g., sensor and actuator 

noise) to unknown unknowns (e.g., wind disturbance, 

hardware failures). All of these impact the safety and 

robustness of algorithms and system-level functions 

of swarm behaviors. Furthermore, computation and 

communication within a swarm must be fast enough 

to ensure stability under model changes and mission 

specifications at the various timescales and 

bandwidths within the system. For aerial swarms 

systems with highly uncertain environmental models, 

the role of highlevel planning, decision making, and 
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classification in flight in conjunction with low-level 

swarm control and estimation systems can be 

characterized mathematically through the properties 

of stability, convergence, and robustness. Various 

aspects of the swarm decision-making, control, and 

estimation should come in different timescales and 

hierarchical levels to exploit scalability and 

computational efficiency. An example of such 

characterization on stability would be a mathematical 

theorem correlating desired models and parameters to 

be updated on-line as well as their update or learning 

rates, to functions of various system features, such as 

sampling rate, swarm control law update rate, 

bandwidth of dynamics and communication, 

dimensions of dynamic systems, and properties of 

environmental uncertainties. This should also provide 

a guideline as to gauge how efficient and robust a 

particular swarm algorithm or system-level 

architecture is at achieving autonomy in aerial 

swarms. For example, distributed optimal planning 

requires robots to share their optimal solutions with 

their neighbors, up to a certain time horizon. Adding 

simultaneous target or task allocation to this problem 

further increases the required size of communicated 

information. It would be beneficial to combine such 

methods with on-line adaptation methods that can 

forecast the neighbors’ future behavior and would, in 

turn, effectively reduce communication requirements. 

The key idea is again combining formal mathematical 

analysis with the hierarchical and multi-modal 

decomposition discussed earlier. Another important 

area is to establish rigorous methodologies for fault 

detection, isolation, and recovery to handle various 

potential faults occurring at sub-system levels, 

individual system levels, and swarm levels. As swarms 

are deployed to a greater extent for aggressive or agile 

autonomous missions, it will become necessary to 

create the means to exert some form of adversarial 

control on swarms. Such counter-swarm techniques 

can also be used for civilian purposes, such as 

maintaining law and order and herding birds and 

animals away from environmental hazards such as 

floods or wildfires. 
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