
Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed under the

terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use,

distribution, and reproduction in any medium, provided the original work is properly cited

International Journal of Scientific Research in Science and Technology

Print ISSN: 2395-6011 | Online ISSN: 2395-602X (www.ijsrst.com)

doi :https://doi.org/10.32628/IJSRST

552

Web Scraping For Book Recommendation System
Rasha Shaikh

Department of Computer Engineering, Savitribai Phule University, Pune, Maharashtra, India

Article Info

Volume9, Issue 2

Page Number: 552-556

Publication Issue

March-April-2022

Article History

Accepted :03April2022

Published :20April2022

ABSTRACT

The purpose of a book recommendation system is to predict buyer's interest

and recommend books to them accordingly. Personal recommendation systems

have been emerged to conduct effective search which mine related books based

on user rating and interest. This paper proposed an effective system for

recommending books for online users by providing the data which not only

counts the ratings but also the users vote for the best books of 2022 along with

their genre by using web scraping. Web scraping, also known as web extraction

or harvesting, is a technique to extract data from the World Wide Web

(WWW) and save it to a file system or database for later retrieval or analysis.

Rather than using big data, smart data would work much better. The proposed

system used Beautiful Soup designed and selenium web drivers for scraping

HTML documents. Convenient Pythonic functions for navigating, searching,

and modifying a parse tree; a toolkit for decomposing an HTML file and

extracting desired information via html parser. The required data was

successfully scraped or extracted and saved in csv file. Further a book

recommendation model needs to be build using this dataset.

Keywords:

Web scraping, Beautiful Soup, Selenium, Web Drivers, HTML Parser, Data

Extraction.

I. INTRODUCTION

Web scraping is a method used to get great amounts of

data from websites and then data can be used for any

kind of data manipulation and operation on it.

For this technique, we use web browsers. You usually

do not have the built-in option to get that data you

want. That is why we use Web Scraping to automate

the process of getting that data and not having to do it

manually. Web Scraping is the technique of

automating this process so that instead of manually

copying the data from websites.

This is accomplished either manually by a user or

automatically by a bot or web crawler. Due to the fact

that an enormous amount of heterogeneous data is

constantly generated on the WWW, web scraping is

widely acknowledged as an efficient and powerful

technique for collecting bigdata. To adapt to a variety

of scenarios, current web scraping techniques have

become customized from smaller ad hoc, human-

aided procedures to the utilization of fully automated

http://www.ijsrst.com/

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 9 | Issue 2

Rasha Shaikh Int J Sci Res Sci & Technol. March-April-2022, 9 (2) : 552-556

553

systems that are able to convert entire websites into

well-organized data set.The purpose of this study is to

scrape the best books of 2022 data from the

Goodreads website for book recommendation system

and convert it into a structured data which can be

further used for analysis and building

recommendation system.

II. METHODS AND MATERIALS

There are two essential modules of a web scraping

program – a module for composing an HTTP request,

such as Urllib2 or selenium and another one for

parsing and extracting information from raw HTML

code, such as Beautiful Soup or Pyquery. Here, the

Urllib2 module defines a set of functions to dealing

with HTTP requests, such as authentication,

redirections, cookies, and so on, while Selenium is a

web browser wrapper that builds up a web browser,

such as Google Chrome or Internet Explorer, and

enables users to automate the process of browsing a

website by programming. Regarding data extraction,

Beautiful Soup is designed for scraping HTML and

other XML documents. It provides convenient

Pythonic functions for navigating, searching, and

modifying a parse tree; a toolkit for decomposing an

HTML file and extracting desired information via

lxml or html5lib.In the proposed study, I have used

both the methods for retrieving data.

Web data was scrapped utilizing Hypertext Transfer

Protocol (HTTP) and through a web browser. The

process of scraping data from the Internet can be

divided into two sequential steps; acquiring web

resources and then extracting desired information

from the acquired data. Goodreads website was used

to scrape best books of 2022 data along with it’s Book

Title, Author name, Ratings and Genre.

Important libraries like requests, beautifulsoup and

selenium were imported. The program was started by

composing a HTTP request from goodreads website.

This request was formatted in either a URL

containing a GET query. Once the request was

successfully received and processed by the goodreads

website, beautiful soup was used to parse the text

retrieved from the website.Book Title ,Author Name

and Ratings were retrieved using find_all function.

A. CHALLENGES ENCOUNTERED

In the pursuit of finding the genre of a book, I

stumbled upon a hurdle. My program was flaky while

locating the genre element. It passed for some books

and for some others it failed. We may classify this

problem under the category of 'False

Negative'.Although the genre of the book was

present, the program result displayed it not to be

present, thereby failing.My locator strategy being

correct, the problem baffled me at the beginning.I

decided to dig down to find the Root Cause.Since the

strategy of 'requests' was headless, I could not

visualize the real problem.At this juncture, Selenium

WebDriver came to the rescue.

B. LITTLE ABOUT SELENIUM WEBDRIVER

Selenium WebDriver provides implementations that

can help us visualize the proceedings of the program

like I would do manually, also it is more powerful

when it comes to parsing the DOM and applying

waiting mechanisms.Changing the implementation

for the extracting the genre part from 'requests and

Beautiful soup' to 'Selenium WebDriver'.

C. BUILDING BLOCKS

I used CHROME as a browser and XPATH as our

locator strategy. I also exploited the powers of Fluent

Wait which would help us wait for the 'Genre’

element to be located for a certain time.

D. BOOK GENRE EXTRACTION PROGRAM

FLOW / MODULES

i. Storing Book URLs: Using Requests, hit the URL

of the Good Reads Page. Parse the response

HTML using Beautiful Soup ‘html parser’. Find

the number books present in the list using

locators of beautiful soup’s findAll method.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 9 | Issue 2

Rasha Shaikh Int J Sci Res Sci & Technol. March-April-2022, 9 (2) : 552-556

554

Iterate using a For Loop over the number of

books to extract the ‘anchor tag’ thereby pulling

the ‘href’ link of each book. Storing the book

URLs in an array. Code Snapshot captured below

in Fig. no.1:

Fig no.1

ii. Setting up Prerequisites for Selenium:

Downloading the required Chrome

Driver.Defining the Desired Capabilities and

Options for Chrome Driver: Page Strategy as

normal. Maximized State of the Chrome

Window. Incognito mode. Not loading images.

Most important, Headless Mode of Operation.

Code Snapshot captured below in Fig. No.2:

Fig no.2

iii. Go to Book URLs and extract Genres: Hitting the

Book URLs using looping mechanism.Looking

whether the Genre Element is Present.If the

Genre Element is not present, then find the ‘sign-

in’ pop up.If the pop up is present, then refresh

the page to bypass the pop up.Post refreshing,

looking for the Genre Element with the new

locator.Conditioning and waiting throughout,

either looking out for the presence of pop up, or

the two locators of genre elements. Indicating

the user if no Genre is present for the book.

Capturing the Genre Text corresponding to the

Book URL. Repeating the above steps until the

Genre of all books are captured. Code Snapshot

Depicted Below in Fig.No.3 and Output in

Fig.no.4:

Fig no.3

Fig no.4

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 9 | Issue 2

Rasha Shaikh Int J Sci Res Sci & Technol. March-April-2022, 9 (2) : 552-556

555

III. RESULTS AND DISCUSSION

A dataframe was created with attributes as Book Title,

Author Name, Ratings and Genre using pandas

libraries. This dataframe was then converted into csv

file with hundred book details or hundred rows.Csv

file snapshot is shown in Fig.no.4:

Fig no.4

IV. CONCLUSION

While this project may not be as sophisticated as web

scrapers made by large corporations, there is enough

scope in this application to make a decent impact in

the world of book recommendation. By first scraping

and then utilizing a set of information like genre and

ratings, users may be recommended books based on

collaborative andcontentbased recommendation

techniques, that would help both the users and the

business. Users' search time for the right book may be

significantly reduced, thereby the saved time may be

invested in reading the recommended book.

V. REFERENCES

[1]. Saurkar, Anand V., Kedar G. Pathare and

Shweta A. Gode, An Overview On Web

ScrapingTechniques And Tools, International

Journal on Future Revolution in Computer

Science&Communication Engineering, pages

363-367, 2018.

[2]. Liu B., Sentiment Analysis and Subjectivity,

Handbook of Natural Language Processing,

pages 627- 666, 2010.

[3]. PratikshaAshiwal, S.R. Tandan, Priyanka

Tripathi and Rohit Miri, Web Information

Retrieval UsingPython and BeautifulSoup,

International Journal for Research in Applied

Science &EngineeringTechnology (IJRASET),

pages 335-339, 2016.

[4]. Rahul Dhawani, Marudav Shukla, Priyanka

Puvar, Bhagirath Prajapati, A Novel Approach

toWebScraping Technology, International

Journal of Advanced Research in Computer

Science and SoftwareEngineering, Volume 5,

Issue 5, 2015.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 9 | Issue 2

Rasha Shaikh Int J Sci Res Sci & Technol. March-April-2022, 9 (2) : 552-556

556

TABLE NO.1. Chronological Order: Discovery of problem navigating through them successfully

PROBLEM IMPLEMENTED SOLUTION

The Good Reads page throws the registration

pop-up, once the user has accessed around 10

books.

Using Selenium, I checked for the presence of a sign-in

pop-up on the page.

If a pop up was encountered, page refresh function of

selenium was invoked, resulting in the page being

displayed in its normal state, without the sign-in pop up

bothering us

Selector of the "Genre Element" changing on

page refresh

When the Good Reads page was refreshed, to deal with

the 'sign-in' pop-up, the program could no longer identify

that 'Genre Element' which it was seamlessly able to find,

pre-refresh.

On Printing the HTML code in the 'except' snippet, I

observed that the locator of the 'Genre Element' has

changed.

I handled this using programming conditional statements

on 'locators' - pre and post refresh.

Some Good Read books were in languages

other than English, and did not have a Genre

associated with it.

This is a special and rare occurrence on the Good Reads

page for a book not to have a Genre.

This was handled, using conditions statements.

Program was trying to find the Genre Element

before the entire page loads.

Selenium's Desired Capabilities allows to set the 'page-

strategy' to 'normal' which will allow the program to run

only after the page has fully loaded.

Program execution was slow To improve the speed of the program, Selenium helped us

to have some options with Chrome Browser, in which I

chose not to load images of the page, because Image takes

more time to load than text.

Secondly, Selenium also gives us the options to run the

Chrome Browser in Headless mode.

Both these helped us to fasten the execution by 50% with

regards to execution time.

