
Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed under the

terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use,

distribution, and reproduction in any medium, provided the original work is properly cited

International Journal of Scientific Research in Science and Technology

Print ISSN: 2395-6011 | Online ISSN: 2395-602X (www.ijsrst.com)

doi : https://doi.org/10.32628/IJSRST

410

Evaluation of Leet Speak on Password Strength and Security
Medhansh Garg

American Embassy School, New Delhi, India

Article Info

Volume 9, Issue 5

Page Number : 410-422

Publication Issue

September-October-2022

Article History

Accepted : 02 Oct 2022

Published : 14 Oct 2022

ABSTRACT

Making secure passwords is one of the biggest challenges in everyday life.

There are numerous rules and requirements making passwords complex and

hard to remember, and keeping track of which password is for which account is

a major hassle. According to an article from HelpNetSecurity, statistics show

that an alarming “78% of respondents required a password reset in their

personal life within the last 90 days” ("78% of people"). In recent years, leet

speak has become increasingly popular as a way to create memorable

passwords. Leet speak is a convenient method for users to create passwords that

meet password requirements in many services. But there has been increasing

debate on whether this approach is a secure and safe method or not. This paper

aims to solve this debate by effectively evaluating the strength of ordinary

passwords and leet passwords using various means. With the help of password

cracking or recovery tools and password strength classifiers, this paper will

compare the cracking time and strength scores of ordinary passwords and leet

converted passwords. The paper will begin with a background information

section explaining important concepts discussed in the paper, followed by the

methodology of the experiment, a presentation of the data along with the

evaluation of the results, and a conclusion at the end.

Keywords: Cyber Security, Password, Password Strength, Leet, Leet Speak

I. INTRODUCTION

Passwords are a form of providing authentication, a

way of proving that one is who that claim to be. The

use of secret words or phrases for the purpose of

authentication has existed since ancient times

("Password"). In ancient Rome, guards would require

people to say a watchword to prove their identity

(ibid).

Passwords have long prevailed as the most common

choice for user authentication. This is because they

are simple to implement, without the need for special

hardware; have to be entered precisely and correctly,

as even a minor error results in an entirely incorrect

password; are convenient for the user, as they don’t

require a user to carry an additional item with them;

http://www.ijsrst.com/

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 9 | Issue 5

Medhansh Garg Int J Sci Res Sci & Technol. September-October-2022, 9 (5) : 410-422

 411

protect user privacy, a password can be easily

swapped and replaced if compromised (ibid).

These are some of the things that other forms of

authentication, such as biometrics and physical

security keys, fail to address.

However, this does not mean that passwords are

perfect; they too have their flaws.

Primarily, making secure passwords. On the one hand,

they have to be long and complex to be safe, but on

the other hand, they must be simple enough to be

memorable. The balance between secure passwords

exists at the point where they are not easy to guess

but not hard to remember, and this point is quite hard

to arrive at.

Having long and complex passwords increases the

likelihood of a user repeating the same password for

multiple accounts or storing the password in a clear

text written form electronically or physically,

increasing the chances of them being discovered. It

also often results in a user forgetting their password

and being compelled to change it to something more

simple yet unsafe.

There exist many techniques to combat this

widespread issue, such as the Correct Horse Battery

Staple Method, Revised Passphrase Method, Bruce

Schneier Method, etc. (Schneier).

One such method in the debate is leet speak. Some

sources claim that it is a viable and safe method of

producing passwords, whereas others claim that it has

little to no effect on password strength.

Leet Speak

Leet speak (a.k.a. “l337 speak”), derived from the

word “elite” (used to refer to hackers), was first seen

in the 1980s on bulletin board systems (BBS)

(TechTarget Contributor). BBSs are servers that allow

for the public communication and exchange of files

and messages between users through the use of a

terminal application, similar to modern forums such

as Reddit or Quora ("Bulletin board"). Originating

with hackers and techies, leet speak found its way to

the mainstream culture with the rise of “Doom and

Doom II”, a fairly influential game in the video game

industry (TechTarget Contributor). Leet speak is the

process of creatively replacing certain letters in a

word or phrase with numbers or symbols that

resemble the original letter (ibid).

Common examples of this are leet → 1337, noob →

n00b, hacker → hax0r (ibid).

With the rise of restrictions on passwords, many have

resorted to leet speak to meet all the requirements of

uppercase letters, lowercase letters, numbers, and

symbols. Users find leet speak as a convenient way of

meeting password requirements while making them

easy to

remember. Meeting these requirements gives users a

sense of assurance that their password is strong and

safe, but this sense of security may not always be true

(). Password requirements and strength meters don’t

take many things into account such as common

unsafe password habits: using names, birthdates,

favorite items, or common passwords (“123456”,

“password123”, “qwerty”). Thus it is not enough to say

that a password containing leet is secure just because a

strength meter said so.

Password Security

Password security is important to protect online

accounts and prevent unauthorized access. There is a

lot of thought and effort that goes into managing and

maintaining the security of passwords.

One of the methods used is password hashing. To

protect passwords from being compromised in the

event of a data breach, they are stored as password

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 9 | Issue 5

Medhansh Garg Int J Sci Res Sci & Technol. September-October-2022, 9 (5) : 410-422

 412

hashes (Jung). These are scrambled texts that are

returned by passing a password through an incredibly

complex function called a hash function (ibid).

Password hash functions have several criteria that

they have to meet before they can be considered safe

enough: they must be non-reversible, they must be

deterministic, and even a small change in the input

must result in an entirely new output (ibid).

Non-reversible hashes mean that there is no inverse

function that will output the decrypted password

when given a hash as an input (ibid). This is

impossible in practicality so hash developers aim to

make hash functions as complex as possible and make

it impractical and infeasible to find the original

password from just the hash (ibid).

Deterministic hash functions are functions that for

the same input, the function will output the same

exact hash every time (ibid). Collisions are passwords

that result in the same exact hash, and although there

will always be collisions, hash developers aim to make

it as difficult as possible to find them (ibid).

During the password creation stage, a user creates a

cleartext password which is stored as a hash in a

database (ibid). Then when the user wants to log in to

their account, they present the password in cleartext

which is hashed using the same algorithm used during

the creation stage, and if the two hashes match

perfectly, the passwords are the same and the user is

granted access to the account (ibid). However, this

approach alone is vulnerable to brute force attacks

(ibid).

A brute force attack is an attack where a malicious

actor tries to gain access to a system by trying every

possible combination of passwords, keys, or other

authentication factors ("Brute Force"). This type of

attack is usually conducted by automated software

that can try thousands or even millions of different

combinations very quickly.

Brute force attacks can be very difficult to defend

against because they can be conducted very quickly

and with little effort (ibid). The best defense against a

brute force attack is to use strong authentication

factors that are difficult to guess, such as long

passwords or passphrases, and to limit the number of

attempts that can be made to gain access to a system

(ibid).

Another method used to combat brute force attacks is

password salts (Jung). This method is more effective

against offline brute force attacks than online ones

(ibid). Offline brute attacks work by somehow

obtaining the password hash, and trying every

possible combination to match the hash (ibid). Offline

attacks are generally more effective than online ones

because many services have a lock-out mechanism,

where after a certain number of incorrect attempts,

the service either locks the account or notifies the

user (ibid). With offline attacks, this risk is mitigated.

To combat offline attacks, security professionals use

random salts that are appended to the password at the

time of creation (ibid). When the password is hashed,

it is hashed with a random salt, which is also stored

separately elsewhere (ibid). When the user attempts

to log in, the stored salt is re-appended to the

provided cleartext password and if the hash of the

user-provided password plus salt matches the stored

hash, then the user is granted access (ibid). This

nearly mitigates the offline attack risk because it is

nearly impossible to verify the password without

knowing the associated salt (ibid).

These methods and techniques help mitigate many

issues and significantly reduce the likelihood of

leaking a password, but they are not foolproof. The

best way to maintain security is to start at the source,

making strong passwords. There are many ways to

evaluate the strength of a password: online services

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 9 | Issue 5

Medhansh Garg Int J Sci Res Sci & Technol. September-October-2022, 9 (5) : 410-422

 413

often use password strength meters, there exist

machine

learning-based password strength classifiers, and

password entropy can be used to calculate the

complexity of a password.

 Many users also opt to use password generators that

use algorithms to develop long, complex, and

incredibly safe passwords, however, these are often

nearly impossible to remember, so users choose to use

a password manager alongside the generator ("Is it

Safe"). Many password managers now feature a

password generator that can automatically save the

password to the manager for different accounts (ibid).

Password managers are generally considered to be

incredibly safe, however, it is important to use

popular ones as they tend to be more secure (ibid).

Some examples of popular managers include NordPass,

DashLane, 1Password, etc. (ibid).

There is also a tool that allows people to deep scan the

web for mentions over their password or credentials

(Hunt). Created by Microsoft Regional Director, Troy

Hunt, the “Have I Been Pwned” site allows users to

enter any credential and scan online password lists,

credential leaks, and more for the entered credentials

(ibid). Although the site sounds suspicious and

insecure, it has been researched and evaluated by

many researchers and security professionals (ibid). It

is used by governments, organizations, individual

users, etc. (ibid). The website’s code is also open-

source through the .NET Foundation (ibid).

Methodology Zxcvbn

To test and compare the strength of regular passwords

and leet combined passwords, I used a tool called

“zxcvbn” (zxcvbn). This tool allows one to estimate

the strength of a password using an algorithm that

returns valuable information: a strength score (0 - 4),

estimates of how long it would take to crack, and

feedback for improving the password.

Before using the zxcvbn tool, I first downloaded a list

of passwords from Daniel Miessler (Miessler). I then

used the following command “sed -ne '/[^0-9]/p'

passwords.txt > passwords_sifted.txt” to sift through

the passwords and remove any password containing

only numbers, storing the remaining passwords into a

passwords_sifted.txt file. This was because number

passwords cannot be converted to leet. The resultant

file had 834792 passwords.

I then wrote a script to convert these sifted passwords

into leet format. To create the script, I formulated a

character map, mapping each alphabet to a set of leet

symbols and characters obtained from GameHouse

(Craenen). The character map is as follows:

I then used the leet_converter.py script (attached in

the appendix) to convert the letters in each password

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 9 | Issue 5

Medhansh Garg Int J Sci Res Sci & Technol. September-October-2022, 9 (5) : 410-422

 414

to a randomly chosen leet alternative, however not all

letters were converted to increase the realisticness of

the generated passwords. The script created a

passwords_leet.txt file which contains the leet-

converted passwords.

The passwords_leet.txt file and the

passwords_sifted.txt file were then fed into a strength

testing script, password_strength.py (attached in the

appendix). The password_strength.py script uses the

zxcvbn library to assess and evaluate each password in

the two files provided and outputs the data into two

new files, called password_normal_strength.txt (for

non-leet passwords) and password_leet_strength.txt

(for leet passwords) (insert citation). The results found

that almost all leet passwords had lower strength

scores than their non-leet counterparts.

There were a few exceptions where the leet password

had been heavily modified to the point where it no

longer easily resembled the original. I found that, in

the original word list, approximately 52.3% of the

passwords had been given a score of 3 or above, and

about 82.4% of these passwords had been given a

score of 2 or below when converted to leet.

Hashcat

To test the strength of the two types of passwords

using Hashcat, I chose to conduct a brute force attack

against every password (Hashcat). However, before I

could use Hashcat to crack the passwords, I needed to

convert them into hashes. So I composed a script to

convert each password into a hash using the SHA-1

hashing algorithm, called hash_converter.py (attached

in the appendix). After which I ran a brute force

program to crack the passwords. The program lasted

3673.324 seconds and was able to crack 12.98% of the

leet converted passwords, and it lasted 3774.213

seconds and was able to crack 13.01% of the original

passwords.

Entropy Values

Entropy measures the complexity of a password by

assessing the number of passwords that can be

generated given a character pool, and it is calculated

by multiplying the password length by the log base 2

of the character pools (E = L * log2(R)) (Szczepanek).

A character pool is the type of characters such as

lowercase letters, uppercase letters, numbers, special

characters, etc. Each character pool corresponds to

the number of characters in that pool. The table

shown below demonstrates this:

Lowercase Letters [a-z] 26

Uppercase Letters [A-Z] 26

Numbers [0-9] 10

Special Characters [“!”, “””, “"”,

“#”, “$”, “%”, “&”, “’”, “'”, “(“, “)”,

“*”, “+”, “,”, “-”, “.”, “/”,“:”, “;”,

“<”, “=”, “>”, “?”, “@”, “[“, “\”,

“]”, “^”, “_”, “`”, “{“, “|”, “}”,” “~”,

“ ”]

35

The value of R in the formula is the sum of the

numbers corresponding to the character pools that are

present in the password. For example, the password

“password123” would have an R value of 36 whereas

“Password123” would have an R value of 62. Using

this formula, I programmed a python script to

multiply the length of each password by the log base

of the R value of the password and stored the results

in the following files, password_normal_entropy.txt,

and password_leet_entropy.txt. I found that

approximately 82.9% of the leet passwords had a

higher entropy value than their original counterparts,

and 5.7% of the normal passwords had a higher

entropy value than their leet-converted counterparts.

II. RESULTS AND DISCUSSION

 zxcvbn

(Given a

score of

Hashcat

(Percent

cracked)

Entropy

(Greater

value than

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 9 | Issue 5

Medhansh Garg Int J Sci Res Sci & Technol. September-October-2022, 9 (5) : 410-422

 415

3 and

above)

the

counterpart

)

Normal 52.3% 13.01% 5.7%

Leet 22.4% 12.98% 82.9%

As the table above demonstrates, zxcvbn

demonstrates that leet speak has an adverse effect on

password strength, and password entropy

demonstrates that it significantly benefits the

password complexity. However, I think Hashcat’s

results hold the greatest weightage and most

accurately portray the conclusion among the three

methods as this method best demonstrates the process

of hackers. Hashcat’s results demonstrate that it was

able to crack more normal passwords but by a

minuscule margin. I believe that that margin can be

attributed to the margin of error, because, given

another dataset, the percentage cracked could be

reversed. The conclusion that can be drawn from the

results overall is that leet speak has a minimal effect

on the security of passwords as hackers are aware of

these techniques and have developed programs that

allow for them to circumvent these tricks and

techniques. Leet speak may be able fool password

strength meters in many websites but it is not a viable

method to increase the security or strength of

passwords.

III. REFERENCES

[1]. "Brute Force Attack: Definition and Examples."

kaspersky, www.kaspersky.com/resource-

center/definitions/brute-force-attack. "Bulletin

board system." Wikipedia,

en.wikipedia.org/wiki/Bulletin_board_system.

Craenen, Roald. "L33T SP34K CH34T SH33T."

GameHouse,

[2]. www.gamehouse.com/blog/leet-speak-cheat-

sheet/.

[3]. Hashcat. Hashcat, hashcat.net/hashcat/.

[4]. Hunt, Troy. "Who, what & why." Have I Been

Pwned, haveibeenpwned.com/About. "Is it Safe

to Use Random Password Generators?" Best

Reviews, password-

managers.bestreviews.net/faq/is-it-safe-to-use-

random-password-generators/.

[5]. Jung, Jason. "What is Password Hashing and

Salting?" Okta, 7 May 2021,

www.okta.com/uk/blog/2019/03/what-are-

salted-passwords-and-password-hashing/.

[6]. Miessler, Daniel. "10-million-password-list-top-

1000000.txt." text file. "Password." Wikipedia,

en.wikipedia.org/wiki/Password. Accessed 21

July 2022. Schneier, Bruce. "Choosing Secure

Passwords." Schneier on Security, 3 Mar. 2014,

[7]. www.schneier.com/blog/archives/2014/03/choo

sing_secure_1.html.

[8]. "78% of people forgot a password in the past 90

days." Help Net Security, 11 Dec. 2019,

www.helpnetsecurity.com/2019/12/11/forgot-

password/. Accessed 1 Aug. 2022.

[9]. Szczepanek, Anna. "Password Entropy

Calculator." Omni Calculator, 13 Apr. 2022,

www.omnicalculator.com/other/password-

entropy.

[10]. TechTarget Contributor. "leet speak (leet)."

WhatIs, Aug. 2016,

www.techtarget.com/whatis/definition/leet-

speak-leet-leetspeak-leetspeek-or-hakspeak.

Accessed 1 Aug. 2022.

[11]. Zxcvbn. Version v4.4.2. Github, 7 Feb. 2017,

github.com/dropbox/zxcvbn.

Cite this article as :

Medhansh Garg, "Evaluation of Leet Speak on

Password Strength and Security", International

Journal of Scientific Research in Science and

Technology (IJSRST), Online ISSN : 2395-602X, Print

ISSN : 2395-6011, Volume 9 Issue 5, pp. 410-422,

September-October 2022. Available at doi :

https://doi.org/10.32628/IJSRST229567

Journal URL : https://ijsrst.com/IJSRST229567

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 9 | Issue 5

Medhansh Garg Int J Sci Res Sci & Technol. September-October-2022, 9 (5) : 410-422

 416

Appendix

leet_converter.py:

Import necessary

modules import random

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 9 | Issue 5

Medhansh Garg Int J Sci Res Sci & Technol. September-October-2022, 9 (5) : 410-422

 417

Creating the character map with letters corresponding to leet speak characters

Because not all letters are always converted to leet, each letter also

corresponds to the same letter twice to create a weighted probability of a letter

being converted. char_map = {

"a" : ["a", "a", "4", "@"],

"b" : ["b", "b", "13", "8", "I3", "l3"],

"c" : ["c", "c", "(", ""],

"d" : ["d", "d", "|)", "[)", "cl",

"c1"], "e" : ["e", "e", "3"],

"f" : ["f", "f", "ph"],

"g" : ["g", "g", "9"],

"h" : ["h", "h", "#", "/-/"],

"i" : ["i", "i", "1",

"!"], "j" : ["j", "j"],

"k" : ["k", "k", "|<"],

"l" : ["l", "l", "1", "|", "|_"],

"m" : ["m", "m", "/\\/\\", "/V\\", "|V|"],

"n" : ["n", "n", "/\\/", "/V"],

"o" : ["o", "o", "0", "()",

"ø"], "p" : ["p", "p"],

"q" : ["q", "q"],

"r" : ["r", "r"],

"s" : ["s", "s", "$", "5"],

"t" : ["t", "t", "+",

"7"], "u" : ["u", "u"],

"v" : ["v", "v", "\\/"],

"w" : ["w", "w", "\\/\\/", "VV",

"vv"], "x" : ["x", "x", "><"],

"y" : ["y", "y", "`/"],

"z" : ["z", "z", "2", "7_"]

}

Opening the sifted passwords file and reading it into the text_original

variable text_original = open("./passwords_sifted.txt", 'r').read()

text_leet = ""

Looping through ever character in the original text to convert to leet

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 9 | Issue 5

Medhansh Garg Int J Sci Res Sci & Technol. September-October-2022, 9 (5) : 410-422

 418

from zxcvbn import zxcvbn

password_normal_str = open("./passwords_sifted.txt", 'r').read()

password_leet_str = open("./passwords_leet.txt", 'r').read()

password_normal = password_normal_str.split("\n")

password_leet = password_leet_str.split("\n")

password_normal_strength = open("./password_normal_strength.txt", 'a')

password_leet_strength = open("./password_leet_strength.txt", 'a')

try:

for passwd in password_normal:

password_normal_strength.write(str(zxcvbn(passwd)));

password_normal_strength.write("\n")

except:

pass

try:

for passwd in password_leet:

password_leet_strength.write(str(zxcvbn(passwd)));

password_leet_strength.write("\n");

except:

pass

password_strength.py:

for char in text_original.lower():

If the character is a letter and exists in the char map, then choose a random

leet character

if char in char_map:

leet_chars = char_map[char]

leet_char = random.choice(leet_chars)

If the character is not a letter (numbers or symbols), then keep it the same

else:

leet_char = char

Append the leet characters to the transformed leet text

text_leet += leet_char

Opening the passwords_leet.txt file and writing the newly converted passwords to

this file

text_leet_file = open("./passwords_leet.txt", 'w')

text_leet_file.write(text_leet)

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 9 | Issue 5

Medhansh Garg Int J Sci Res Sci & Technol. September-October-2022, 9 (5) : 410-422

 419

import hashlib

Open files containing the normal and leet passwords

password_normal_str = open("./passwords_sifted.txt", 'r').read()

password_leet_str = open("./passwords_leet.txt", 'r').read()

Split the passwords by "\n" into an array of passwords

password_normal = password_normal_str.split("\n")

password_leet = password_leet_str.split("\n")

Create two files that will contain the hashes

password_normal_hash = open("./password_normal_hash.txt", 'a')

password_leet_hash = open("./password_leet_hash.txt", 'a')

For each password in the normal password list, hash it using sha1 and write it to

the normal password hash file

for passwd in password_normal:

hash_object = hashlib.sha1(bytes(passwd, 'utf-8'))

hex_dig = hash_object.hexdigest()

password_normal_hash.write(hex_dig + "\n")

For each password in the leet password list, hash it using sha1 and write it to the

leet password hash file

for passwd in password_leet:

hash_object = hashlib.sha1(bytes(passwd, 'utf-8'))

hex_dig = hash_object.hexdigest()

password_leet_hash.write(hex_dig + "\n")

import os

password_normal_hash_str = open("./password_normal_hash.txt", 'r').read()

password_leet_hash_str = open("./password_leet_hash.txt", 'r').read()

password_normal_hash = password_normal_hash_str.split("\n")

password_leet_hash = password_leet_hash_str.split("\n")

hash_converter.py:

hashcat_cracker.py:

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 9 | Issue 5

Medhansh Garg Int J Sci Res Sci & Technol. September-October-2022, 9 (5) : 410-422

 420

from asyncio.proactor_events import _ProactorBaseWritePipeTransport

import math

from operator import truediv

from sre_parse import SPECIAL_CHARS

from tokenize import Special

import math

password_normal_str = open("./passwords_sifted.txt", 'r').read()

password_leet_str = open("./passwords_leet.txt", 'r').read()

password_normal = password_normal_str.split("\n")

password_leet = password_leet_str.split("\n")

password_normal_entropy = open("./password_normal_entropy.txt", 'a')

password_leet_entropy = open("./password_leet_entropy.txt", 'a')

for passwd in password_normal:

has_uppercase = False

has_lowercase = False

has_numbers = False

has_symbols = False

pool_size = 0

for character in passwd:

entropy_calculator.py:

character_set = "?a"

os.system("echo \"\" > passwd_normal_hashcat.txt")

os.system("echo \"\" > passwd_leet_hashcat.txt")

for passwd in password_normal_hash:

os.system("echo \"" + passwd + "\" > passwd.txt")

os.system("hashcat -m 100 -a 3 passwd.txt " + ("?a" * passwd.len()) + " >>

passwd_normal_hashcat.txt")

os.system("echo \n" + passwd + "\n >> passwd_normal_hashcat.txt")

for passwd in password_leet_hash:

os.system("echo \"" + passwd + "\" > passwd.txt")

os.system("hashcat -m 100 -a 3 passwd.txt " + ("?a" * passwd.len()) + " >>

passwd_normal_hashcat.txt")

os.system("echo \n" + passwd + "\n >> passwd_leet_hashcat.txt")

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 9 | Issue 5

Medhansh Garg Int J Sci Res Sci & Technol. September-October-2022, 9 (5) : 410-422

 421

if

character.isuppe

r():

has_uppercase =

True pool_size +=

26 break

for character in passwd:

if

character.islowe

r():

has_lowercase =

True pool_size +=

26 break

for character in passwd:

if

character.isdigi

t(): has_numbers

= True pool_size

+= 10 break

SPECIAL_CHARS = "!”\"#$%&’'()*+,-./:;<=>?@[\]^_`{|}~ "

if any(character in SPECIAL_CHARS for character in

passwd): has_symbols = True

pool_size += 35

entropy = len(passwd) * math.log(pool_size, 2)

print(passwd + ": " + str(entropy))

password_normal_entropy.write(str(entropy) +

"\n")

for passwd in

password_leet:

has_uppercase = False

has_lowercase = False

has_numbers = False

has_symbols = False

pool_size = 0

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 9 | Issue 5

Medhansh Garg Int J Sci Res Sci & Technol. September-October-2022, 9 (5) : 410-422

 422

for character in passwd:

if

character.isuppe

r():

has_uppercase =

True pool_size +=

26 break

for character in passwd:

if character.islower():

has_lowercase =

True pool_size += 26

break

for character in passwd:

if

character.isdigit

(): has_numbers =

True pool_size +=

10 break

SPECIAL_CHARS = "!”\"#$%&’'()*+,-

./:;<=>?@[\]^_`{|}~ "

if any(character in SPECIAL_CHARS for character in

passwd): has_symbols = True

pool_size += 35

entropy = len(passwd) * math.log(pool_size,

2)

print(passwd + ": " + str(entropy))

password_leet_entropy.write(str(entropy) +

"\n")

