
Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed 

under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-

commercial use, distribution, and reproduction in any medium, provided the original work is properly cited 

 
  

 

  

 

International Journal of Scientific Research in Science and Technology 

Print ISSN: 2395-6011 | Online ISSN: 2395-602X (www.ijsrst.com) 

doi : https://doi.org/10.32628/IJSRST 

 

 

 

25 

Study and Survey Available for Removing Fences, Reflections and 

Raindrops from image Pattern Recognition Techniques 
Arvind Singh1, Shailesh Kumar Singh2  

Research Scholar1, AP2, SHEAT COLLEGE OF ENGINEERING, VARANASI 384 

 

Article Info 

Volume 9, Issue 6 

Page Number : 25-31 

 

Publication Issue 

November-December-2022 

 

Article History 

Accepted : 01 Nov 2022 

Published : 04 Nov 2022 

Abstract – The "de-fencing" process consists of two stages: the first is to identify the 

fence zones, and the second is to fill in the gaps. Numerous approaches to video-based 

de-fencing have been put out for more than ten years. However, there aren't many 

single-image-based approaches suggested. We concentrate on single-image fence 

removal in this study. Due to inadequate content information, conventional techniques 

have weak and incorrect fence detection and inpainting. We mix cutting-edge 

techniques based on a deep convolutional neural network (CNN) with conventional 

domain expertise in image processing to address these issues. We need to collect both 

the relevant non-fence ground truth photos and the fence images for the training 

phase. As a result, we create synthetic representations of natural fences using actual 

photographs. Additionally, the performance of the CNN for detection and inpainting is 

enhanced by spatial filtering processing (such as a Laplacian filter and a Gaussian filter). 

Without any human input, our suggested technology can automatically identify a fence 

and produce a clear photograph. Our technique works well for a variety of fence 

photos, according to experimental data. 

Keywords – Deep Convolutional Neural Network, Fence Removal, Flow Estimation, 

Dense Optical Flow 

 

 

I. INTRODUCTION 

 

We often have to snap pictures in less-than-ideal lighting, 

with obstacles like windows or other objects in the way. 

Reflections of inside items, for instance, may ruin a 

photograph taken via a window of the outside. Shooting 

through a fence or enclosure may be necessary if we want 

to photograph zoo animals. Changing the camera’s 

location or plane of focus isn’t always adequate to 

eliminate such visual obstacles, and current computational 

methods still aren’t compelling when removing them 

from photographs. 

However, more advanced alternatives, like polarised 

lenses (to eliminate reflections), are out of reach for the 

average consumer. In this research, we provide a robust 

algorithm that enables a user to capture pictures through 

barriers like windows and fences while still capturing the 

area of interest as if the obstacles weren’t there. When 

using our technique, users need only create slight camera 

motion throughout the imaging process; all other 

processing is handled mechanically. 

Therefore, we tell the photographer to capture a series of 

images while gently moving the camera, much as they 

would do when capturing a panorama, rather than just 

http://www.ijsrst.com/
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one single shot. Our system then combines the space-time 

information to generate two images: one of the backdrop 

and one of the reflected or occluded content, based on 

changes in the movements of the layers caused by visual 

parallax. Although there are certain limitations to the 

scene that our arrangement imposes (for example, 

maintaining a relatively constant position while taking 

pictures), we found that frequent shooting settings are 

amenable to it. 

Motion parallax has been used before in layer 

decomposition. Instead, the fundamental contribution of 

our study is a more stable and accurate technique for 

motion estimation when obstacles are present. In our 

method, the first step is calculating sparse motion fields 

on the edges of pictures after receiving an input picture 

sequence. This is followed by a coarse-to-fine estimation 

of backdrop and obstacle layers before we apply 

interpolation to turn the sparse edge flows into more 

dense motion fields. 

We also demonstrate that a single framework can deal 

with reflections and physical occlusions. At first 

appearance, reflections and occlusions may seem quite 

different, and various approaches have been used to deal 

with each. While previous works have taken separate 

approaches to these issues, the method presented here 

takes a holistic view of the situation. Our system 

comprises mostly shared modules for these two issues, and 

with just minor adjustments, it outperforms prior methods 

that specifically addressed either subproblem. In this 

study, we consider both reflecting and occluding 

obstructions and explicitly select which kind is present in 

the picture to fine-tune the algorithm. 

We tested our technology in various realistic and natural 

settings. Instead of mimicking obstacles artificially via the 

blending or composting of pictures (as was widely done in 

prior work), we conduct controlled trials to capture real 

situations with ground truth decompositions for 

quantitative assessment. Our technique is automated, 

compatible with most smartphone cameras, and needs just 

free-form camera movement from the user to scan the 

area. As a result of our research, we have determined that 

five photographs were taken along a narrow.. 

When photographing via reflecting surfaces or 

obstructing objects, it might be challenging to get clear 

shots since the resulting photos will include both the 

subjects of interest and the barriers. To enhance the 

quality of images acquired in such situations or to enable 

computers to create a proper physical interpretation of the 

environment. 

Automatically deleting undesired reflections or occlusions 

from a single picture has been the subject of recent 

research [2, 8, 16, 17, 27, 38, 43, 45]. These techniques use 

ghosting signals [30] or learning-based approaches [8, 16, 

38, 43, 45] to recapture the original natural visuals. While 

excellent results have been shown, the task of 

differentiating the clean backdrop from occlusions is 

inherently ill-posed and sometimes needs a high-level 

semantic comprehension of the scene to do correctly. For 

photos that fall beyond the norm, the effectiveness of 

learning-based approaches drops dramatically. 

The central concept is to use the depth difference 

between the camera and the foreground, backdrop, and 

occluding items. Accordingly, the motion differences 

between the two layers may be seen in photos taken with 

a slightly moving camera [3, 9, 12, 21, 24, 34]. Several 

methods [1, 3, 6, 9, 12, 21, 24, 26, 31, 34] use these signals 

to remove reflections or fences from videos. Using a 

unified computational framework, Xue et al. [42] 

demonstrate outstanding results on several natural 

sequences and offer a method for removing obstructions. 

However, the formulation needs a computationally costly 

optimization procedure and is highly dependent on either 

the assumption of constant brightness or the accuracy of 

motion estimates. Current research [1] investigates model-

free approaches by using a general-purpose 3D-CNN to 

address these concerns. Unfortunately, when applied to 

real-world input sequences, CNN-based approaches 

cannot compete with the quality of the results obtained 

by optimization-based algorithms. 

A multi-frame obstacle removal technique that combines 

the best characteristics of the previous optimization- and 

learning-based approaches is presented in this thesis. 

Using an optimization-based strategy, the suggested 

method uses a coarse-to-fine system, alternating between 
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dense motion estimates and background/obstruction layer 

reconstruction phases. The mindless motion is precisely 

described to bring back layer-specific information 

progressively. Our fusion network is readily transferrable 

to real-world sequences despite being trained on a lab 

dataset. Our results demonstrate that the proposed 

method beats current available algorithms on various 

demanding sequences and applications. 

In contrast to the optimization-based formulation of [26, 

42], our model is entirely data-driven and does not assume 

any classical properties of the scene, such as the scene’s 

brightness being constant, the flow field’s accuracy, or the 

surface’s being flat. When these conditions are not met, it 

might be difficult for traditional methods to rebuild 

distinct layers of background and foreground. The data-

driven strategies can learn from a wide variety of training 

data and accept erroneous results when these assumptions 

are not met. 

 

 

 

In this work, we provide a learning-based approach for 

recovering clean pictures from a given brief series of 

photos captured by a moving camera via obstructive 

features such as (1) windows, (2) fences, or (3) rainfall. 

II. MOTIVATION OF STUDY 

 

A small number of studies address the issue of improving 

vision in adverse weather conditions; this thesis generally 

deals with haze or fog and rain streaks. Several strategies 

have been developed for raindrop detection. Using 

principal component analysis, Kurihara et al. [12] study 

the form of raindrops and then try to match an area in the 

test picture to the raindrops they’ve learned. A strategy 

proposed by Roser and Geiger [17] is to compare a 

synthetically manufactured raindrop to a spot that could 

have a raindrop. Initially, it is assumed that the synthetic 

raindrops are spherical in cross-section, and subsequently, 

it is supposed that they are oblate in cross-section [18]. 

Since raindrops may come in various forms and sizes, 

these assumptions could work in certain situations, but 

they can’t be applied universally. Reflection and occlusion 

removal are two image processing challenges that have 

been studied in the past using a variety of approaches. 

Here, we conduct a literature review of the relevant 

research in these two fields. Reconstructing the backdrop 

and obstacle layers allows us to fine-tune optical flows to 

the final layer. The whole flow of our process is shown in 

Figure 2. Several layer decomposition issues, including 

reflection/obstruction/fence/rain removal, are amenable 

to our unified architecture. Without sacrificing generality, 

we present our approach through the reflection removal 

job. In the following sections, we discuss the three 

modules' specifics. 

1.3 Problem Statement 
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Is there a technique of image processing which can 

remove undesirable reflections, Rain drop, fancy on a sean 

from a single digital image. 

1.4 RESEARCH OBJECTIVES 

To answer our issue statement, this research has the 

following objectives: To develop an algorithm to remove 

undesirable reflections, Rain drop, fancy on a sean from a 

single digital image. 

III. LITERATURE REVIEW 

A. Multi-Frame Reflection Removal 

A small number of studies address the issue of improving 

vision in adverse weather conditions; this thesis generally 

deals with fog or haze and rain streaks (e.g. [2, 3, 24]). It 

has been suggested that many different approaches may 

be used to identify raindrops. Using principal component 

analysis (PCA), Kurihata et al. [12] study the form of 

raindrops and then try to match an area in the test picture 

with those of the learned raindrops. To avoid other areas 

locally identical to raindrops from being recognized as 

raindrops due to their transparency and diversity in form. 

Methods for determining whether or not a given patch 

contains a raindrop are proposed in [17] by Roser and 

Geiger. 

The artificial raindrops are modeled as spheres and then 

oblique spheres [18]. Since raindrops may come in various 

forms and sizes, these assumptions could work in certain 

situations, but they can’t be applied universally. 

If the other picture does not include raindrops that 

obscure the same backdrop scene, it will remove the 

raindrops by replacing the raindrop areas with the 

textures of the matching image parts. Instead of stereo 

images, Yamashita et al. [22] suggest a similar strategy 

based on a series of images. You et al. [25] offer a motion-

based approach to raindrop detection and a video-

completion technique to delete previously recognized 

raindrops. Some rain can be removed using these 

techniques, but it’s impossible to do so with a single 

photograph. 

This network has a three-layer CNN with 512 neurons per 

layer. This technique is effective, especially for little 

droplets and debris, but it cannot cleanly process huge, 

thick raindrops. The final photographs also seem blurry 

for some reason. All of these, we believe, can be traced 

back to the network’s low capacity and its inability to 

provide sufficient limits via its losses—the contrast of our 

findings with those obtained by other means. 

Our approach uses a GAN [4], which has lately gained 

traction for a picture in painting and completing issue 

solutions, as the network’s central node (e.g. [9, 13]). 

Similar to our approach, the discriminative network in [9] 

utilizes global and local evaluation. In contrast to our 

policy, however, the target areas are explicitly identified 

in the painted picture. This enables a local judgment 

(whether or not the local regions are sufficiently 

genuine). Hence, we cannot apply the current picture 

inpainting algorithms directly to our case. Pix2Pix [10] is 

another architecture with a similar goal: to convert one 

picture format into another. An adaptive GAN is 

proposed, which not only acquires the mapping from and 

a loss function to train the mapping from the input to the 

output picture. This is a generic mapping; it was not 

designed with raindrop removal in mind. 

Existing approaches often make use of natural picture 

priors [10, 12, 42] and changes in patterns among the 

reflection layers [22]. Some of these techniques, such as 

dense optical flow [42], homography [12], and SIFT flow 

[21], describe the motion fields in different ways. 

Improvements in this area include learning-based layer 

decomposition [1] and maximizing temporal coherence 

[26]. To achieve better performance on real-world 

sequences, our technique directly simulates the dense 

flow fields of the obstruction layers instead of just 

learning a generic CNN [1]. 

B. Remove Reflections From Individual Images 

Roser and Geiger [17] provide methods for identifying 

whether or not a particular patch includes a raindrop. [18] 

The artificial raindrops are initially designed as spheres 

and later as oblique spheres. Assumptions based on the 

fact that raindrops may occur in a broad range of shapes 

and sizes may work in some instances, but they cannot be 

applied generally. Yamashita et al. [23] used a stereo 

technique to identify and eliminate rain. Individual 

raindrops may be seen by the stereo cameras and the 
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distance between them and the glass surface. As a result, if 

there are no raindrops in the other picture, it will delete 

them by replacing them with identical image sections 

with no droplets. [22] Instead of stereo pictures, 

Yamashita et al. advise using a sequence of photographs. 

You and your colleagues offer motion-based raindrop 

recognition and a video completion method [25]. 

However, even if these methods remove some rain, they 

can’t be used in just one shot. 

Many different strategies have been proposed as potential 

solutions to remove reflections from a single image. The 

presently known solutions all make use of the defocus-

disparity signals from dual pixel sensors [28] and the 

ghosting effect [30], depth-of-field blurriness, and picture 

priors (either manually produced [2] or learnt from data). 

Despite the outcomes that were showed, removing 

reflections from a single image is still difficult due to the 

nature of this extremely poorly stated problem and the 

lack of motion cues. Instead, we make advantage of 

information about the motion of the camera to decouple 

the background and reflection layers of our image 

sequences. 

C. Occlusion & Fence Removal 

The goal of occlusion removal is to rid the scene of any 

captured impediments, such as a fence or raindrops, so 

that the picture or sequence may be more clearly 

appreciated. The existing algorithms that can identify 

fence patterns do so by making use of graph-cut [44], 

disparity maps [18], dense flow fields [42], or optical 

parallax [25]. One recent thesis [6] uses a CNN for fence 

segmentation and optical flow to retrieve the hidden 

pixels. Our technique trains deep CNNs for visual flow 

estimates and background picture reconstruction. Our 

recipe is not specifically tailored to eliminate fences but 

may be used for various similar problems. 

IV. FINISHING THE VIDEO 

Watermark/transcript removal video stabilization, full-

frame, and Object removal are only some of the many 

uses for video completeness, which seek to fill plausible 

material in missing portions of a video [14]. To put 

constraints on the content synthesis [13, 40] and provide 

results that are consistent over time, available algorithms 

estimate the flow fields. The difficulty of removing 

obstructions is analogous to that of finishing a film. There 

is no need for human intervention when masking 

selection when eradicating fences and other visual 

barriers from movies. 

V. DISCRETE-ELEMENT MODELING WITH 

LAYER-BY-LAYER DECOMPOSITION 

Inverse rendering [23, 29], relighting [7], standard 

estimation [15], depth [15], and Intrinsic image [4, 46], all 

use picture layers, and layer decomposition is an old issue 

in computer vision. Our technique is motivated by the 

evolution of the methodologies for this layer 

decomposition. 

VI. ONLINE OPTIMIZATION 

Learning from the test data has proven to be an effective 

technique for decreasing the domain disparity between 

the testing and training distributions. To cite a few 

examples: [5, 33] self-supervised losses, [19], and [5] 

online template modifications that impose geometric 

limitations. Our unsupervised loss explicitly quantifies 

how well each input frame is explained by the dense flow 

fields and the recovered obstruction. 

VII. CONCLUSIONS AND FUTURE WORK 

The basic idea works with image de-fencing and filling 

the gaps to recover lost image details. Among the methods 

for detection of fence, the canny method is the best 

method because it gives accurate results. Among all the 

methods for background reconstruction, analysis shows 

that Exemplar based method is best. As the future work, 

the quality of the final result will be improved by more 

accurate resolution; also the work can be done on the 

image having the blur effect after removing the fence. 
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