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Abstract – Mobile, Smartphone, Tablets, and other devices with built-in cameras are 

now widely available at affordable prices, allowing regular people to capture and share 

life's most important moments with the world. However, a novice photographer may 

not be pleased with the results after posting them online. It's possible that the 

photographer's subject of interest has been blocked off or walled off in some way. The 

authors write, "We provide a learning-based technique for removing unwanted barriers 

from a rapid succession of photographs obtained by a moving camera, such as window 

reflections, fence occlusions, or rainfall. It takes into account the relative velocity of 

the foreground and background. Inaccuracies in the flow estimate and brittle 

assumptions like brightness consistency may be accounted for thanks to the learning-

based layer reconstruction. We show how well training on synthetic data generalises to 

real-world photographs. Our research into many challenging reflection and fence 

removal scenarios has shown encouraging results, demonstrating the efficacy of the 

proposed approach. 

Keywords – Deep Convolutional Neural Network, Fence Removal, Flow Estimation, 

Dense Optical Flow 

 

 

I. INTRODUCTION 

We often have to snap pictures in less-than-ideal lighting, 

with obstacles like windows or other objects in the way. 

Reflections of inside items, for instance, may ruin a 

photograph taken via a window of the outside. Shooting 

through a fence or enclosure may be necessary if we want 

to photograph zoo animals (Fig. 1.1). Changing the 

camera’s location or plane of focus isn’t always adequate 

to eliminate such visual obstacles, and current 

computational methods still aren’t compelling when 

removing them from photographs. 

However, more advanced alternatives, like polarised 

lenses (to eliminate reflections), are out of reach for the 

average consumer. In this research, we provide a robust 

algorithm that enables a user to capture pictures through 

barriers like windows and fences while still capturing the 

area of interest as if the obstacles weren’t there. When 

using our technique, users need only create slight camera 

motion throughout the imaging process; all other 

processing is handled mechanically. 

Therefore, we tell the photographer to capture a series of 

images while gently moving the camera, much as they 

would do when capturing a panorama, rather than just 

one single shot. Our system then combines the space-time 

information to generate two images: one of the backdrop 

and one of the reflected or occluded content, based on 

changes in the movements of the layers caused by visual 

parallax. Although there are certain limitations to the 

scene that our arrangement imposes (for example, 

maintaining a relatively constant position while taking 

http://www.ijsrst.com/
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pictures), we found that frequent shooting settings are 

amenable to it. 

Motion parallax has been used before in layer 

decomposition. Instead, the fundamental contribution of 

our study is a more stable and accurate technique for 

motion estimation when obstacles are present. In our 

method, the first step is calculating sparse motion fields 

on the edges of pictures after receiving an input picture 

sequence. This is followed by a coarse-to-fine estimation 

of backdrop and obstacle layers before we apply 

interpolation to turn the sparse edge flows into more 

dense motion fields. 

We also demonstrate that a single framework can deal 

with reflections and physical occlusions. At first 

appearance, reflections and occlusions may seem quite 

different, and various approaches have been used to deal 

with each. While previous works have taken separate 

approaches to these issues, the method presented here 

takes a holistic view of the situation. Our system 

comprises mostly shared modules for these two issues, and 

with just minor adjustments, it outperforms prior methods 

that specifically addressed either subproblem. In this 

study, we consider both reflecting and occluding 

obstructions and explicitly select which kind is present in 

the picture to fine-tune the algorithm. 

We tested our technology in various realistic and natural 

settings. Instead of mimicking obstacles artificially via the 

blending or composting of pictures (as was widely done in 

prior work), we conduct controlled trials to capture real 

situations with ground truth decompositions for 

quantitative assessment. Our technique is automated, 

compatible with most smartphone cameras, and needs just 

free-form camera movement from the user to scan the 

area. As a result of our research, we have determined that 

five photographs were taken along a narrow.. 

When photographing via reflecting surfaces or 

obstructing objects, it might be challenging to get clear 

shots since the resulting photos will include both the 

subjects of interest and the barriers. To enhance the 

quality of images acquired in such situations or to enable 

computers to create a proper physical interpretation of the 

environment. 

Automatically deleting undesired reflections or occlusions 

from a single picture has been the subject of recent 

research [2, 8, 16, 17, 27, 38, 43, 45]. These techniques use 

ghosting signals [30] or learning-based approaches [8, 16, 

38, 43, 45] to recapture the original natural visuals. While 

excellent results have been shown, the task of 

differentiating the clean backdrop from occlusions is 

inherently ill-posed and sometimes needs a high-level 

semantic comprehension of the scene to do correctly. For 

photos that fall beyond the norm, the effectiveness of 

learning-based approaches drops dramatically. 

The central concept is to use the depth difference 

between the camera and the foreground, backdrop, and 

occluding items. Accordingly, the motion differences 

between the two layers may be seen in photos taken with 

a slightly moving camera [3, 9, 12, 21, 24, 34]. Several 

methods [1, 3, 6, 9, 12, 21, 24, 26, 31, 34] use these signals 

to remove reflections or fences from videos. Using a 

unified computational framework, Xue et al. [42] 

demonstrate outstanding results on several natural 

sequences and offer a method for removing obstructions. 

However, the formulation needs a computationally costly 

optimization procedure and is highly dependent on either 

the assumption of constant brightness or the accuracy of 

motion estimates. Current research [1] investigates model-

free approaches by using a general-purpose 3D-CNN to 

address these concerns. Unfortunately, when applied to 

real-world input sequences, CNN-based approaches 

cannot compete with the quality of the results obtained 

by optimization-based algorithms. 

A multi-frame obstacle removal technique that combines 

the best characteristics of the previous optimization- and 

learning-based approaches is presented in this thesis. 

Using an optimization-based strategy, the suggested 

method uses a coarse-to-fine system, alternating between 

dense motion estimates and background/obstruction layer 

reconstruction phases. The mindless motion is precisely 

described to bring back layer-specific information 

progressively. Our fusion network is readily transferrable 

to real-world sequences despite being trained on a lab 

dataset. Our results demonstrate that the proposed 

method beats current available algorithms on various 

demanding sequences and applications.” 
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In contrast to the optimization-based formulation of [26, 

42], our model is entirely data-driven and does not assume 

any classical properties of the scene, such as the scene’s 

brightness being constant, the flow field’s accuracy, or the 

surface’s being flat. When these conditions are not met, it 

might be difficult for traditional methods to rebuild 

distinct layers of background and foreground. The data-

driven strategies can learn from a wide variety of training 

data and accept erroneous results when these assumptions 

are not met. In this work, we provide a learning-based 

approach for recovering clean pictures from a given brief 

series of photos captured by a moving camera via 

obstructive features such as (1) windows, (2) fences, or (3) 

rainfall. 

II. RATIONALE FOR THE STUDY 

A small number of studies address the issue of improving 

vision in adverse weather conditions; this thesis generally 

deals with haze or fog and rain streaks. Several strategies 

have been developed for raindrop detection. Using 

principal component analysis, Kurihara et al. [12] study 

the form of raindrops and then try to match an area in the 

test picture to the raindrops they’ve learned. A strategy 

proposed by Roser and Geiger [17] is to compare a 

synthetically manufactured raindrop to a spot that could 

have a raindrop. Initially, it is assumed that the synthetic 

raindrops are spherical in cross-section, and subsequently, 

it is supposed that they are oblate in cross-section [18]. 

Since raindrops may come in various forms and sizes, 

these assumptions could work in certain situations, but 

they can’t be applied universally. Reflection and occlusion 

removal are two image processing challenges that have 

been studied in the past using a variety of approaches. 

Here, we conduct a literature review of the relevant 

research in these two fields. Reconstructing the backdrop 

and obstacle layers allows us to fine-tune optical flows to 

the final layer. The whole flow of our process is shown in 

Figure 2. Several layer decomposition issues, including 

reflection/obstruction/fence/rain removal, are amenable 

to our unified architecture. Without sacrificing generality, 

we present our approach through the reflection removal 

job. In the following sections, we discuss the three 

modules' specifics. 

III. PROBLEM STATEMENT 

Is there a technique of image processing which can 

remove undesirable reflections, Rain drop, fancy on a sean 

from a single digital image. 

IV. RESEARCH OBJECTIVES 

To answer our issue statement, this research has the 

following objectives: To develop an algorithm to remove 

undesirable reflections, Rain drop, fancy on a sean from a 

single digital image. 

V. PROPOSED METHODOLOGY 

A. Overview 

It’s not easy to separate the foreground from the backdrop 

in a video. Reconstructing the backdrop and obstacle 

layers allows us to fine-tune optical flows to the final 

layer. The whole flow of our process is shown in Figure 2. 

Several layer decomposition issues, including 

reflection/obstruction/fence/rain removal, are amenable 

to our unified architecture. Without sacrificing generality, 

we present our approach through the reflection removal 

job. In the following sections, we discuss the three 

modules' specifics. 

B. Initial Flow Decomposition 

As a foundational step in our approach, we begin by 

making predictions about the flow at the scene's coarsest 

level (l = 0), including the backdrop and reflection layers. 

Instead of guessing at complex flow fields, we suggest 

learning a single uniform motion vector for each layer. 

Two modules make up our first flow decomposition 

network: A layer flow estimator, and A feature extractor. 

C. Background Reconstruction 

Background and reflection reconstruction have the same 

purposes, but the two layers’ properties are quite 

different. In many shots, for instance, the backdrop layers 

will seem more prominent than they are. In contrast, 

reflection layers are often hazy and subdued. Therefore, 

we separately train a network to rebuild the backdrop and 

a separate network to reconstruct the reflection layer. 

Though they have a similar design, the parameters of 

these two networks are different. The network for 

reconstructing the reflection layer is identical to the one 

described below; we only explain the former here. 
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Fig 1: Overview of layer reconstruction module. 

While backdrop and reflection reconstruction serve 

similar purposes, their properties couldn’t be more 

different. Consequently, we replicate the reflection layer 

by separately training a network and then utilizing the 

latter to reconstruct the backdrop. These two networks 

have a similar topology, but their parameters are unique. 

We only cover the former as the network for 

reconstructing the reflection layer is the same as the one 

described below. 

D. Network Training 

We use a two-stage training process to increase 

consistency throughout training. The “initial flow 

decomposition network” is trained in the first step with 

the following loss: 

 

 

 

E. Synthetic Sequence Generation 

To train, we synthesize sequences since acquiring simple 

lines with ground-truth reflection and backdrop layers is 

challenging. We randomly choose the backdrop and 

reflection layers from the 91,000 plus sequences in the 

Vimeo-90k training set. At first, we apply random 

homography transformations to bend the sequences. The 

appendices expand on the topic of synthetic data 

production. 

 

Fig 2: Reflection sequence generation. 

 

Fig. 3: Obstruction sequence generation. 

First, we use randomization to choose a sequence that is 

unobstructed and one that has a fence or other obstacle. 

In a manner analogous to the development of the 

reflection sequence, we apply random homography and 

random cropping to two series, in addition to the ground-

truth alpha maps of the fences or obstacles. After that, we 

create a new sequence with railings or other barriers 

using an alpha blending technique. 

 

Fig. 4: Training Pairs Generated 
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Fig. 5: Training Pairs Generated 

 

Fig. 6: Initialization with Global Translation Vectors 

VI. REFLECTION AND BACKGROUND LAYER 

RECONSTRUCTION 

In Fig. 7, we demonstrate that the model applying a 

temporal mean or median filter for picture reconstruction 

does not perform well and frequently creates ghosting 

artifacts. On the other hand, the suggested image 

reconstruction network can correct alignment errors 

induced by the flow estimate in the preceding level and 

fuses the flow-warped pictures into artifact-free images. 

 

 

Fig. 7: Image Reconstruction Network 

Optimizing for the web rather than losing out on 

television is shown to be more accurate in noisy 

predictions in Figure 3.10. Regularizing sparse image 

gradient priors is one way TV loss aids the network in 

making smooth predictions. 

 

Fig. 8: Online Optimization with TV Loss 

VII. EXPERIMENTS & ANALYSIS 

We will give the most critical findings in this part, and 

the supplemental material will contain further 

discoveries. On a synthetic dataset consisting of one 

hundred sequences, each of which has five frames in 

succession, we evaluate the suggested technique compared 

to other existing methods for removing reflections. We 

create the findings for the approaches based on a single 

picture [8, 16, 38, 43, 45] on a frame-by-frame basis. A 

quantitative comparison of several approaches for 

removing reflections from synthetic sequences is shown 

in Table 1. 

Table 1: Quantitative Comparison  

 

We display the keyframe (on the left), the recovered 

backdrop (in the centre), and the reflection/occluder (on 

the right) for every sequence (right). As a means of 

quantitative comparison, we offer the NCC ratings of 

recovered backgrounds and reflections.  

At the beginning of each sequence, we display the 

keyframe on the left, the recovered backdrop in the 

centre, and the reflection and occlude states on the right 

(right). To facilitate quantitative comparisons, we present 
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the NCC scores of the restored backgrounds and 

reflections. 

 

Fig. 9: Quantitative evaluation of controlled sequences 

VIII. COMPARISONS AMONG TECHNIQUES 

Table 2: Quantitative evaluation of controlled sequences 

 

IX. ANALYSIS AND DISCUSSION 

We illustrate that uniform flow initialization is important 

by proving its significance, which demonstrates that it 

plays a vital role in our strategy. During the training of 

our model, the following configurations were utilised: 

deleting the initial flow decomposition network, in which 

the flows at the coarsest level are set to zero; and 

forecasting dense flow fields that vary geographically as 

the initial flows in the model. Both of these configurations 

were applied in conjunction with one another. In this 

section, we will investigate a number of significant design 

choices that were taken for the proposed framework. In 

addition, we provide an example of a scenario in which 

our solution is ineffective and propose a time estimate for 

its implementation. 

X. CONCLUSION 

Five nearby frames are fed into the technique, and the 

separation results for the reference frame are generated. 

Although our technique predicts each reference frame 

separately, yet provides temporally consistent results for 

the whole movie. We demonstrate how successfully the 

suggested technique separates the background and 

reflection layers while maintaining the input sequences' 

temporal coherency. In this work, we provide a unique 

method for removing reflections and obstacles from 

multiple images. One of our main contributions is using a 

convolutional neural network to recover flow-warped 

images' reflection and background layers. Since our 

method integrates optical flow predictions with coarse-to-

fine refining, it can effectively obtain the underlying 

clean picture from complex real-world sequences. With 

some tweaks to our design, our technology might be used 

for a wide variety of purposes, such as removing fences or 

raindrops. We also demonstrate that the visual quality 

may be improved by online testing sequences of different 

settings. Extensive quantitative examination and visual 

comparisons show that our strategy works well in a 

variety of settings. 
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