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ABSTRACT 

In this paper, we studied about static analysis and losses of microwave isolated 

single stripline structure using conformal mapping method. Microstrip lines 

due to presence of two different dielectric boundaries does not support a pure 

TEM wave. It is assumed that only the fundamental mode will propagate, but 

the propagation constant, γ, is a nonlinear function of frequency. Due to the 

presence of two different dielectrics, the fringing fields experience an in-

homogenous dielectric leading to a discontinuity on the field. A parameter 

called effective permittivity (ϵeff ) is introduced, which is always lesser than 

the permittivity of the substrate as the fields exists both in air and the substrate. 

Due to the non-TEM nature of the fields, the effective permittivity is 

dependent on the frequency. This is due to the fact that more field lines will 

penetrate the substrate with increasing frequency thus increasing the effective 

permittivity. 

Keywords : MICs, Dispersion, Microwave, Conformal Mapping Method. 

 

1. Introduction 

 

Quasi-static method used for low-frequency analysis 

doesn’t predict the frequency dependence of the 

micro stripline transmission parameters. The 

deviation is due to the fact that hybrid modes get 

excited as frequency increases. The Quasi-static 

analysis does not take the higher order modes into 

account. The number of higher orders propagating 

modes increases with frequency [1-7]. 𝜖𝑒𝑓𝑓  varies 

significantly over frequency thus leading to distortion 

in pulse shapes. A typical variation is shown in Fig 1. 

The velocity of propagation varies with 𝜖𝑒𝑓𝑓 𝑎𝑠 𝑣 =

𝑐/√𝜖𝑒𝑓𝑓(𝑓) where c is the velocity of light in vacuum. 

If a pulse is made of different spectral components, 

then each frequency component will travel with 

different velocities thus leading to the pulse shape 

distortion. Large variations in  𝜖𝑒𝑓𝑓  are observed at 

wavelengths comparable to the transverse dimensions 

of the micro stripline. The variation in 𝜖𝑒𝑓𝑓  has a 

direct bearing on the 𝑍0  as well, making even 𝑍0  a 

frequency dependent parameter. As the frequency 

increases higher modes start to contribute 

significantly. 

http://www.ijsrst.com/
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Fig. 1 

 
Fig. 2 

 

Fig. 1. Variation of ϵeff with frequency for a microstrip 

of w = h = 1 and ϵr = 80 (water) [15]. Fig. 2. The region 

of analysis being divided into meshes 

 

2. Finite Difference Method (FDM) 

[8], [11] As we now know that the fundamental 

problem in finding 𝑍𝑜 for a given transmission line is 

the solution of either the Laplace equation. 

 

𝛻2𝜙 =
𝜕2𝜙

𝜕𝑥2
+
𝜕2𝜙

𝜕𝑦2
= 0   (1) 

or the Poisson's equation 

𝛻2𝜙 = −𝜌/𝜖 

An approximate solution for these equations can be 

obtained by using FDM. Well known basic techniques 

being the Newton's forward. Newton's backward 

difference formula and the central difference formula. 

For numerical computations. We divide the whole 

region of analysis into small discrete regions (a.k.a 

meshers), each intersection of horizontal and vertical 

line, representing a node at which the value of the 

potential is determined. The difference between the 

potential at a node A and the note P can be 

represented as a infinite series using Taylor's theorem 

𝜙𝐵 − 𝜙𝑃 = ∆𝑥
𝜕𝜙

𝜕𝑥
+
(∆𝑥)2

2!

𝜕𝜙

𝜕𝑥2
+
(∆𝑥)3

3!

𝜕3  𝑝ℎ𝑖

𝜕𝑥3
= ⋯ 

and similarly, between another node B and P 

𝜙𝐴 − 𝜙𝑃 = ∆𝑥
𝜕𝜙

𝜕𝑥
+
(∆𝑥)2

2!

𝜕𝜙

𝜕𝑥2
−
(∆𝑥)3

3!

𝜕3𝜙  

𝜕𝑥3
+⋯ 

Neglecting the higher order terms, 
𝜕𝜙

𝜕𝑥2
≈

𝜙𝐴+𝜙𝐵−2𝜙𝑃

(∆𝑥)2
    (2) 

(2) can be re-written using the notation shown in Fig 

2 
𝜕𝜙

𝜕𝑥2
≈

𝜙(𝑖+1,𝑗)+𝜙(𝑖−1,𝑗)−2𝜙(𝑖,𝑗)

(∆𝑥)2
  (3) 

Using the same argument. 
𝜕2𝜙

𝜕𝑥2
≈

𝜙(𝑖,𝑗+1)+ 𝜙(𝑖−1,𝑗)−2𝜙(𝑖,𝑗)

(Δ𝑥)2
   (4) 

Taking  Δ𝑥 = Δ𝑦 = ℎ and puttig (3) and (4) in (2) 

[𝜙(𝑖 + 1, 𝑗) + 𝜙(𝑖 − 1, 𝑗) + 𝜙(𝑖, 𝑗 − 1) + 𝜙(𝑖, 𝑗 +

1)] − 4𝜙(𝑖, 𝑗) = 0             (5) 

or 

𝜙(𝑖, 𝑗)

=  
[𝜙(𝑖 + 1, 𝑗) + 𝜙(𝑖 − 1, 𝑗) + 𝜙(𝑖, 𝑗 − 1) + (𝑖, 𝑗 + 1)]

4
 

 Looking at (5), we can infer that the potential 𝜙 at a 

point is being approximated in terms of the potentials 

at its four neighbouring points. The original Laplace 

equation has now been approximated by a set of 

linear equations. The bottleneck in FDM is the 

solution of the large set of simulatneous equations. 

 

There are two popular approaches to solve the 

simulataneous equations in FDM. 

Band Matrix Method: (5) is applied to all the free 

nodes in the solution region. The set of simulataneous 

equations are then formulated as a matrix equation 

AX = B 

where A is the sparse matrix representing the 

relationship between the nodal voltages, X is a 

column vector containing the variable representating 

the unknown nodal voltages, and B being the right-

hand side constants, which are obtained from the 

given boundary and initial conditions. The solution of 

the linear equation is then obtained by the use of 

Gauss-elimination method 
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X = A-1B    (6) 

Iterative method: One of the iterative methods is the 

successive over-relaxation method. Here we define 

the residual R(I,j) at the node. \ (I,j) denoting the 

error by which the value of 𝜙(𝑖, 𝑗) deviates from (33). 

𝑅(𝑖, 𝑗) =  𝜙(𝑖 + 1, 𝑗) + 𝜙(𝑖 − 1, 𝑗) + 𝜙(𝑖, 𝑗 − 1) +

𝜙(𝑖, 𝑗 + 1) − 4𝜙(𝑖, 𝑗)     (7) 

The value of the Residual at the kth iteration is then 

propagated to the next iteration using. 

𝜙𝑘+1(𝑖, 𝑗) = 𝜙𝑘(𝑖, 𝑗) +
Ω

4
𝑅𝑘(𝑖, 𝑗)    (8) 

The method is convergent for values 0< Ω < 2. and 

repaidly convergent for 1< Ω < 2(11). The optimum 

value of Ω usually found out on trial-and-error basis.  

 Any of these two methods can be used to 

determine the value of the potential . The value of  

will then be used to determine the value of the charge 

on the conductor. 

𝑄 = 𝜖𝑜𝜖𝑟 ∑∑(
𝛿𝜙

𝜕𝑛
)     (9) 

The double summation in (7) covers the entire cross 

section of the transmission line. 
𝜕𝜙

𝜕𝑛
  is approximated as 

𝜕𝜙

𝜕𝑛
=
𝜙(𝑖 + 𝑖, 𝑗) − 𝜙(𝑖, 𝑗)

Δ𝑥
 

The value of the capacitance is then C=Q/V, where 

the Vt is the voltage applied between the plates of a 

stripline. The air Capacitance Ca can be found out by 

putting 𝜖𝑟 = 1 𝑖𝑛 (7) 

 

The accuracy of FDM relies on the fineness of the 

mesh. Finer the mesh better will be accuracy of the 

solution. The algorithm usually starts with a coarse 

mesh and then advances to a finer net. Coupled lines 

usually need finer mesh as the field variations are 

significant at the edges of the strip. 

 

3. Dispersion Analysis 

The cutoff frequency above which the first 

longitudinal mode (TE) begins to contribute 

significantly is approximately given by (9) 

𝑓𝑇𝐸 = 𝑐/(4ℎ√𝜖𝑟 − 1)    (10) 

Operating the micro stripline above this 

frequency leads to what is known as modal 

dispersion. 10 shows that the effective range of 

quasi-static analysis reduces with increasing ϵr. This 

also means that the frequency range of operation 

decreases with increasing ϵr. 

 

Various analytical, empirical and semi-empirical 

methods are employed to study the dispersion effects. 

Some of them are: Spectral domain immittance 

method, The integral equation method, Finite 

difference techniques, Modal analysis, Method of 

lines, Planar waveguide model 

 

3.1. Spectral domain analysis 

In this method, a set of algebraic functions is formu-

lated relating the Fourier transform of the currents on 

the strip conductors to that of the fields at the 

dielectric interface in the plane of the conductor [2]. 

3.2. Method of Lines 

[17], [18] For a Partial Differential Equation, the 

principle lies in the discretization of all but one of the 

independent variables to obtain a set of ordinary 

differential equations or difference equations. The 

procedure is also known as "semidiscretization by the 

method of lines". Consider the scalar potential φ(e) and 

φ(h) satisfying the Helmoltz’ equation 

𝜕2𝜙(𝑒,ℎ)

𝜕𝑥2
+
𝜕2𝜙(𝑒,ℎ)

𝜕𝑦2
+ (𝑘2 − 𝛽2)𝜙(𝑒,ℎ) = 0 (11) 

We begin with discretizing the 𝑥 − 𝑎𝑥𝑖𝑠 , which is 

done by drawing N parallel lines along 𝑦 − 𝑎𝑥𝑖𝑠. Let 

the spacing between the lines be same and be equal to 

h. Now due to the discretization, the potential 𝜙 is 

now divided into a set of N value 𝜙1, 𝜙2, … , 𝜙𝑁) at the 

lines 𝑥𝑖 = 𝑥0 + 𝑖ℎ,= 1,2,… , 𝑁. The discretization then 

yields a set of N coupled ordinary differential 

equations 
𝜕2𝜙𝑖

𝜕𝑦2
+

1

ℎ2
 [𝜙𝑖−1(𝑦) − 2𝜙𝑖(𝑦) + 𝜙𝑖+1(𝑦)] +

(𝑘2 − 𝛽2)𝜙𝑖(𝑦) = 0, 𝑖 = 0, 1, … ,𝑁   (12) 

with the constant 𝑝1  and 𝑝2  representing the 

boundary conditions. We have (12) as 

ℎ2
𝜕2𝜙⃗⃗⃗ 

𝜕𝑦2
− [𝑃 − ℎ2(𝑘2 − 𝛽2)𝐼]𝜙⃗ = 0  (13) 
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where I is the identity matrix. The potential vector 𝜙⃗  

is then transformed using the orthogonalizing vector 

𝑇𝑡 such that 

𝑇𝑡𝜙⃗ = 𝑈⃗⃗  

Using this (12) will then be 

ℎ2
𝜕2𝜙𝑖
𝜕𝑦2

− [𝜆𝑖 − ℎ
2(𝑘2 − 𝛽2)𝑈𝑖 = 0, 𝑖 = 0, 1, … ,𝑁] 

where  𝜆𝑖𝑠 are the eigen values of P. The resulting 

uncoupled differential equations are then solved for 

𝜙. 

Due to the presence of the edge singularities 

in the strip conductors, there is usually a 

discretization error associated with it. This can 

however be minimized by ensuring that the edge 

conditions are met, which states that the strip should 

exceed the last 𝜑(ℎ) line by 
3ℎ

4
 and the last 𝜙(𝑒) line 

by 
ℎ

4
 [17]. These edge conditions are difficult to be met 

in the case of multiple conductor lines and strips 

with small strip dimensions. A modified method of 

lines has been suggested which transforms the given 

strip configuration to another dimension where the 

edge conditions can possibly be met. This is achieved 

by the use of some transformation functions [19]. 

 

4. Dispersion analysis for various microstrip line 

configurations 

The frequency dependence of the transmission 

parameters will be studied. Closed form expressions 

shall be provided wherever available for the 

dispersive effects on  𝑍0 and 𝜖𝑒𝑓𝑓 

4.1. Microstrip lines 

The Dispersion analysis is done in two ways. In the 

first category, an equivalent parallel plate model of 

the waveguide is used which is then used to analyse 

the frequency dependence. The following 

observations are made regarding the dispersive effects 

in the Microstrip (13). 

(i) The normalized phase velocity 𝑣𝑝/𝑣  is a 

monotonically decreasing function of 

frequency 

(ii) The normalized phase velocity and its first 

derivative at 𝑓 = 0 are given by 

𝑣̅𝑝 = 𝑣𝑝/𝑣|𝑓 = 0 =
1

√𝜖𝑒𝑓𝑓
 

and 

𝑑𝑣̅𝑝
𝑑𝑓

|
𝑓=0

= 0 

(iii) The normalized phase velocity and its first 

derivative as 𝑓 → ∞ are given by 

𝑣̅𝑝 =
𝑣𝑝

𝑣|𝑓→∞
=

1

√𝜖𝑟
 

and 

𝑑𝑣̅𝑝

𝑑𝑓
|
𝑓→∞

= 0 

The second being the solution of field problem in 

spectral domain and then using the power-current 

definition for 𝑍0. The Dispersion model is based on 

considering the microstrip as a Longitudinal-section 

Electric (LSE) (14). The procedure begins with 

modeling the given microstrip as an LSE with a 

modified structure to aid in analysis. The modified 

structure then is made to take the Zero-frequency 

electrical parameters. A transverse resonance analysis 

of the model relates 𝜖𝑒𝑓𝑓 is then obtained as (14). 

𝜖𝑒𝑓𝑓(𝑓) = 𝜖𝑟 −
𝜖𝑟−𝜖𝑒𝑓𝑓(0)

1+𝐺(𝑓/𝑓𝑝)
2  (15) 

where 

𝑓𝑝 =
𝑍0
2𝜇0𝑏

 

has quoted that G approaches unity according to the 

experimental results, but the modified expressions are 

[1]. 

𝑍0(𝑓) = 𝑍0𝑇 −
𝑍0𝑇−𝑍0(0)

1+𝐺(𝑓/𝑓𝑝)
2  (16) 

where  𝑍0𝑇 is twice the characteristic impedance of a 

stripline of width W and height 2h and 

𝐺 = √
𝑍0 − 5

60
+ 0.004𝑍0 

and 

𝑓𝑝(𝐺𝐻𝑧) = 15.66𝑍0/ℎ 

An alternative set of expression have been derived 

based on the coupling of the surface wave and the LSE 

modes. The expression is (15) 
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 𝜖𝑒𝑓𝑓(𝑓) = 𝜖𝑟 −
𝐾1(𝜖𝑟−𝜖𝑒𝑓𝑓(0))

1+𝐾2(𝑓/𝑓𝑝)
2    (17) 

where 

𝑓𝑝 =
𝑍0
2𝜇0𝑏

 

𝐾1 =
𝜖𝑟 − 𝜖𝐼𝐼
𝜖𝑟 − 𝐼

 

and 

𝐾2 =
𝜋2𝐾1 (𝜖𝑟 − 𝜖𝑒𝑓𝑓(0)) 𝜖𝑒𝑓𝑓(0) − 1)(𝜖𝑟 − 𝜖𝐼𝐼)

(𝜖𝑟 − 𝐼)
2𝜖𝑒𝑓𝑓(0)

 

and 

𝜖𝐼𝐼 = 𝜖𝑟 + (𝑠1 + 𝑠2 − 𝑎2/3)𝑘0
2 

𝑠1 = 3√𝜂2 + 𝜂1
3 + 𝜂2

2 

𝑠1 = 3√𝜂2 − 𝜂1
3 + 𝜂2

2 

and 

𝜂1 = 𝑎1/3 − 𝑎2
2/9 

𝜂2 = (𝑎1𝑎2 − 3𝑎0)/6 − 𝑎2
3/27 

 

𝑎𝑖 s are give by 

𝑎2 = (2𝑝 + 𝑞𝑝
2 − 𝑟)/𝑝2 

𝑎1 = (2𝑝𝑞 + 1)/𝑝
2 

𝑎0 = 𝑞/𝑝
2 

𝑝 = 𝑏/3 

𝑞 = (𝜖𝑟 − 𝐼)𝑘0
2 

𝑟 = (𝑏/𝜖𝑟)
2 

Another approach for dispersion analysis has been 

used in [36] using the so-called Logistic Dispersion 

Model (LDM) which makes use of the basic statement 

that the rate of increase of effective dielectric 

constant with frequency ∝ [Effective relative 

permittivity at the given frequency] × [Remaining 

f r a c t i o n a l  relative permittivity of the substrate] 

4.2. Coupled microstrip lines 

A semi-empirical dispersion model has been used for 

the modeling. The model consists of an equivalent 

coupled parallel-plate waveguide filled with the 

corresponding dielectric. This structure is then 

analysed in terms of the quasi-static line impedances 

and capacitances. The frequency dependence of these 

parameters are then assumed to be similar to that of a 

microstrip. 

Expressions similar to Gentsinger’s relations 

are given as [10]. 

𝜖𝑒𝑓𝑓
𝑖 (𝑓) = 𝜖𝑟 −

𝜖𝑟 − 𝜖𝑒𝑓𝑓
𝑖 (0)

1 + 𝐺(𝑓/𝑓𝑝)
2
 

where 

𝐺 = {
0.6 + 0.018𝑍00     𝑜𝑑𝑑 𝑚𝑜𝑑𝑒

0.6 + 0.045 𝑍0𝑒       𝑒𝑣𝑒𝑛 𝑚𝑜𝑑𝑒
 

and 

𝑓𝑝 = {
31.32𝑍00/ℎ    𝑜𝑑𝑑 𝑚𝑜𝑑𝑒

7.83 𝑍0𝑒/ℎ      𝑒𝑣𝑒𝑛 𝑚𝑜𝑑𝑒
 

Similar equations holds for 𝑍0𝑖 , which are (26) 

𝑍0𝑖(𝑓) =  
𝑍𝑇𝑖 − 𝑍0𝑖(𝑜)

1 + 𝐺(𝑓/𝑓𝑝)
2
 

where 𝑍𝑇𝑖  is the impedance of a coupled stripline 

with gap s and width of the strip w and spacing 

between the ground planes 2h. 

𝑍𝑇𝑖 =
60𝜋 𝐾(𝑘𝑖)

√𝜖𝑟 𝐾(𝑘𝑖
′)

 

where 

𝑘𝑖 =

{
 
 

 
 𝑡𝑎𝑛ℎ (

𝜋𝑊

4ℎ
)/𝑡𝑎𝑛ℎ (

𝜋(𝑊 + 𝑠)

4ℎ
)        𝑜𝑑𝑑  𝑚𝑜𝑑𝑒

𝑡𝑎𝑛ℎ (
𝜋𝑊

4ℎ
) 𝑡𝑎𝑛ℎ (

𝜋(𝑊 + 𝑠)

4ℎ
)        𝑒𝑣𝑒𝑛  𝑚𝑜𝑑𝑒

 

 

4.3. Suspended microstrip lines 

Suspended Microstrip lines are relatively 

low-dispersion lines, but the flowing observations 

hold (17). For a given W/b and a/b, the effects of 

dispersion are more pronounced as 𝜖𝑟 increases. For a 

given 𝜖𝑟 and a/b, the effects of dispersion decreases 

with W/b. For a given 𝜖𝑟  and W/b, no simple 

relationship exists between the dispersion effects and 

a/b. Dependence of the effects of dispersion on t is 

negligibly small. 

The following design equations are developed based 

on the modeling of the frequency dependence to 

match the Spectral-domain full-wave analysis (18) 

𝜖𝑒𝑓𝑓(𝑓) =
𝜖𝑒𝑓𝑓(0) + 𝐾𝜖𝜖𝑟

1 + 𝐾𝜖
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where 

𝐾𝜖 =∑(

4

𝑖=0

𝑐𝑖(𝜖𝑟, 𝑎/𝑏, 𝑤/𝑏))(𝑓/𝑓𝑝)
𝑖 

𝑓𝑝 =
𝑍0

2𝜇0(𝑎 + 𝑏)
 
𝑎

0.064
 

𝑐𝑖 s is given by (17). Dispersive effects of 𝑍𝑜 is given 

by (18) 

𝑍𝑜(𝑓) =
120𝜋(𝑎 + 𝑏)

𝑊𝑒(𝑓)√𝜖𝑒𝑓𝑓(𝑓)
 
𝑎

0.074
 

where 𝑊𝑒(𝑓)  is the width of the equivalent planar 

waveguide given by the solution of the equation 

∑𝐹𝑖(𝑊𝑒(𝑓)/𝜆

4

𝑖=0

)𝑖 = 0 

where 𝜆 is the free-space wavelength in cm. All the 

dimensions in cm. 

𝐹𝑜 = 𝑑0𝑊/𝜆 

𝐹1 = −𝑑0 − 2(
𝑊𝑒(0)

𝜆
− 𝑑1

𝑊

𝜆
)√𝜖𝑒𝑓𝑓 

𝐹2 = 2(1 − 𝑑1)√𝜖𝑒𝑓𝑓 + 4𝑑2
𝑊

𝜆
𝜖𝑒𝑓𝑓 

𝐹2 = −4(𝑑2 − 2𝑑3
𝑊

𝜆
√𝜖𝑒𝑓𝑓) 𝜖𝑒𝑓𝑓 

𝐹4 = −8𝑑3𝜖𝑒𝑓𝑓√𝜖𝑒𝑓𝑓 

and 

𝑊𝑒(0) =
120𝜋(𝑎 + 𝑏)

𝑍0√𝜖0
 
𝑎

0.064
 

expressions for d are given in (18). 

 

4.4. Inverted microstrip line 

[38] suggests the same set of expressions used in the 

previous subsection holds good for inverted 

microstrip lines as well. 

 

5. Conclusions 

Dispersion analysis for several microstrip lines are 

absent as closed-form expressions were not available 

for these. Dispersive effects on Dielectric and 

Conductor losses has also been omitted in the 

discussion. All the static equations given here were 

tested against various other transmission line 

calculators available. The equations were 

implemented as a part of the Microwave transmission 

line tool. An excellent reference for the various 

analysis equations is [39-41]. 
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