
Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed under the 

terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, 

distribution, and reproduction in any medium, provided the original work is properly cited 

 

 
  

 

  

 

International Journal of Scientific Research in Science and Technology 

Print ISSN: 2395-6011 | Online ISSN: 2395-602X (www.ijsrst.com) 

doi : https://doi.org/10.32628/IJSRST 

 

 

 

 

 

 

1082 

Study of Static Analysis and Losses of Microwave Isolated Single Stripline 

Structure Using Conformal Mapping Method 
Dr. Arvind Kumar1, Santosh Bishwakarma2, Dr. K. B. Singh3 

1 Department of Physics, D. A. V. College, Siwan, J. P.  University, Chapra, Bihar, India. 
2 Research Scholar, University Department of Physics, J. P. University, Chapra, Bihar, India. 

3 P.G. Department of Physics, L. S. College, Muzaffarpur, Bihar, India. 

 

 

 

Article Info 

Volume 8, Issue 3 

Page Number : 1082-1087 

 

Publication Issue 

May-June-2021 

 

Article History 

Accepted : 10 June 2021 

Published : 30 June 2021 

ABSTRACT 

 

In this paper, we studied about static analysis and losses of microwave isolated 

single stripline structure using conformal mapping method. Millimeter waves 

are extensively being used for Radar and Wireless communication. Wireless 

communication includes wireless computer networks, voice and data networks 

etc., Transmission lines forms an integral part of these Microwave Integrated 

Circuits (MICs) and Monolithic Microwave Integrated Circuits (MMICs). One 

major constraint on the transmission lines for their use in MICs is that they 

have to be planar. Microstrip lines, slot lines and coplanar structures are used 

as the fundamental blocks in building these circuits. All these structures are 

planar, their characteristics being controlled by their dimensions in that plane. 

Keywords : MICs, Dispersion, Microwave, Conformal mapping method. 

 protocol, Reliable communication, Topology. Spur gear assembly, 

Electromagnetic Induction  

 

I. INTRODUCTION 

 

Over the years various static and dispersion models 

have been developed for the analysis of striplines. 

Various models for the analysis of these structures 

have been consolidated here. We shall begin with a 

brief introduction on the classic methods employed 

for the static and dispersion analysis of the various 

strip line configurations. We shall then proceed with 

the static and dispersion analysis of the individual 

striplines mentioned above. We shall conclude with a 

section on the various design equations that can be 

used during the stripline design process. 

 

II. Static analysis 

 

Static analysis of striplines involves the analysis of 

the transmission structure at frequency, f = 0. 

The analysis is carried out to find the vital 

parameters of the transmission lines viz., 

Characterisitc impedance(Z0), Effective dielectric 

permittivity (ϵeff ),  and the  phase velocity (vp). 

These three parameters are related to the Capacitance 

(C) of the structure [1-2]. We know that the wave 

propagates through a medium with velocity v = 
1

√µ𝜖.
 If the medium is not free space but a 

http://www.ijsrst.com/
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uniform dielectric, then the velocity of propagation is 

given by (1). 

𝑣 = 𝑣0/√𝜖𝑟   (1) 

where 𝑣0 = 1√𝜇0𝜖0 is the free-space velocity and 𝜖𝑟 

is the relative permit. 

𝑍 =
𝑉0

𝐼0
=

𝑉𝑜

𝑄𝑣
=

1

𝐶𝑣
   (2) 

where C is the capacitance between the conductors 

per unit length. The electrostatic capacitance used in 

independent of the operating frequency and depends 

only on the static field configuration in the 

transmission line [3]. If the substrate is thin in terms of 

wavelength and the strip width is also narrow 

compared to the wavelength, and high dielectric 

substrates are used, then static analysis its lef can be 

enough [4], [5].  

Substituting the dielectric by air (ϵr = 1), we have 

𝑍𝑎 =
1

𝐶𝑎𝑣𝑎
                            (3) 

where Ca is the capacitance per unit length of 

the transmission line with dielectric replaced by air. 

Dividing (3) and putting ϵr = C/Ca we get 

𝑍 =  
𝑍𝑎

√𝜖𝑟
    (4) 

[2] Open transmission lines like Microstrip lines are 

examples of mixed dielectric problem and as such 

can’t support TEM waves. To aid in the analysis of 

these structures, a new quantity called ’effective 

dielectric constant’ is defined under quasi-static 

approximation. This quantity is defined as 

𝜖𝑒𝑓𝑓 =
𝐶

𝐶𝑎
    (5) 

The expressions for the phase velocity and 

characteristic impedance Z then follows 

𝑣 = 𝑣𝑎/√𝜖𝑒𝑓𝑓    (6) 

𝑍 = 𝑍𝑎/√𝜖𝑒𝑓𝑓    (7) 

Propagation constants calculated using (5) - (7) 

give results accurate enough for most of the 

practical cases [2]. 

The electrostatic capacitance is found by the solution 

of a two-dimensional Laplace Equation 

𝜕2𝜙

𝜕𝑥2 +
𝜕2𝜙

𝜕𝑦2 = 0  (8) 

The solution of (8) would then give us the field 

within the structure. The total charge can be found 

out by using Gauss law 

𝑄 = 𝜖𝑜𝜖𝑟 ∬ 𝐸. 𝑑𝑆  (9) 

The integration in (9) being carried out over the 

entire surface of the transmission structure.  The 

determination of the characteristic impedance Z0 

proceeds with first finding the capacitance C of the 

transmission line and then using that in (5) to find 

the effective dielectric constant and then putting it 

into (6) and (7) to find out phase velocity and 

characteristic impedance respectively. 

We will now discuss the theoretical aspects of the 

static analysis techniques namely, The Conformal 

map- ping method, The Variational method, and The 

Finite Difference method. 

 

3. The Conformal Mapping method 

A mapping w = f (z) defined on a domain D is 

called conformal at z = z0 if the angle between any 

two curves in D intersecting at z0 is preserved by f . 

Such a mapping is known as Conformal mapping 

(a.k.a Angle-preserving mapping). If f (z) is 

analytic in domain D and 𝑓′(z0) /= 0, then f is 

conformal at z = z0. The criterion for analyticity 

is that: if u(x, y) and v(x, y)  satisfy the Cauchy-

Reimann equations 
𝜕𝜇

𝜕𝑥
=

𝜕𝑣

𝜕𝑦
 and  

𝜕𝜇

𝜕𝑦
=

𝜕𝑣

𝜕𝑥
 at all points 

in domain D, then the function 𝑓(𝑧) = 𝑢(𝑥, 𝑦) +

𝑗𝑣(𝑥, 𝑦) is analytic everywhere in D provided u(x,y) 

and v(x,y) are continious and has first-order partial 

derivatives. 



International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 8 | Issue 3 

Dr. Arvind Kumar et al  Int J Sci Res Sci & Technol. May-June-2021, 8 (3) : 1082-1087 

 

 

 
1084 

 
Fig. 1. A system of curves 

 
Fig. 2. The system of curves after conformal mapping 

 

The reason we can apply conformal mapping to solve 

Laplace equations follow directly from a result in 

Complex analysis, which states that: If f is an 

analytic function that maps from a domain D to 

D'
 

and if W is harmonic in D'
 

, then the real 

valued function    w(x, y) = W (f (z) is harmonic 

in in D [6]. 

 

[3], [2] Consider the solution of a two-dimensional 

Laplace equation ∆2𝜙  = 0 for the system of 

conductors shown in Fig 1 with the boundary 

conditions as 𝜙  = 𝜙1  on S1 and 𝜙  = 𝜙2  on S2. The 

principle behind conformal mapping approach is to 

transform the given system of conductors to a 

different complex plane where it may be easier to 

solve the given laplace equation. This technique gives 

an upper bound on Z0. Let us consider a conformal 

transformation W given by (10) 

W = F (z) = F (x + jy) = u + jv  (10) 

where  

𝑢 = 𝑢(𝑥, 𝑦) 

and 

𝑣 = 𝑣(𝑥, 𝑦) 

Assuming a Transverse Electromagnetic Mode (TEM), 

we shall define the gradient operator as ∇𝑡 

∇𝑡𝑢 =
𝜕𝑢

𝜕𝑥
 
a𝑥

ℎ1
+ 

𝜕𝑢

𝜕𝑦
 
a𝑦

ℎ2
  (11) 

and 

∇𝑡𝑣 =
𝜕𝑣

𝜕𝑥
 
a𝑥

ℎ1
+  

𝜕𝑣

𝜕𝑦
 
a𝑦

ℎ2
  (12) 

The scale factors ℎ1 and  ℎ2 are given by 

1

ℎ1
2 = (

𝜕𝑢

𝜕𝑥
)

2

+ (
𝜕𝑢

𝜕𝑦
)

2

 

1

ℎ2
2 = (

𝜕𝑢

𝜕𝑥
)

2

+ (
𝜕𝑣

𝜕𝑦
)

2

 

1

ℎ1
2 =

1

ℎ2
2 =

1

ℎ2
= |

𝑑𝑤

𝑑𝑧
|

2

 

where the last step directly follows from the Cauchy-

Reimann equations. Laplace equation in 𝑢𝑣 plane is 

given by 
𝜕

𝜕𝑢

 ℎ2

ℎ1

𝜕𝜙

𝜕𝑢
+

𝜕

𝜕𝑣

 ℎ1

ℎ2

𝜕𝜙

𝜕𝑣
=

𝜕2𝜙

𝜕𝑢2 +
𝜕

𝜕𝑣2 = 0  (13) 

The above result shows that the potential function 𝜙 

satisfies the same Laplace equations in 𝑢𝑣 co-ordinate 

systems. The same result has been shown in a slightly 

different way in [7]. 

The energy stored in the electrostatic field is 

given by 

𝑊𝑒 =
1

2𝜖
∬ [(

𝜕𝜙

𝜕𝑥
)

2

+ (
𝜕𝜙

𝜕𝑦
)

2

] 𝑑𝑥𝑑𝑦 

=
1

2𝜖
∬|𝜕𝑡𝜙|2𝑑𝑥𝑑𝑦 

=
1

2𝜖
∬ [

1

ℎ1
2 (

𝜕𝜙

𝜕𝑢
)

2
+

1

ℎ2
2 (

𝜕𝜙

𝜕𝑣
)

2
] ℎ1 dx ℎ2𝑑𝑦 

=
1

2𝜖
 ∬ [(

𝜕𝜙

𝜕𝑢
)

2

+ (
𝜕𝜙

𝜕𝑣
)

2

] 𝑑𝑢𝑑𝑣 

= 1/2𝐶(𝜙2 − 𝜙1)2

  (14) 

The last equation shows that capacitance C is same in 

the conformal mapped domain. 

 

Situations may sometimes arise where a particular 

type of a stripline can be considered as a ploygon. 

This polygon can then the conformal mapped to the 

upper half of a plane by the use of Schwarz-

Christoffel Transformation. The transformation is 

formulated as [6]: Let f(z) be a function that is 

analytic in the plane y>0 having the derivative 
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𝑓′(𝑧) =  𝐴(𝑧 − 𝑥1)𝑎1/𝜋−1(𝑧 − 𝑥2)𝑎2/𝜋−1 … (𝑧 −

𝑥𝑛2)𝑎𝑛/𝜋−1  (15) 

 

where  𝑥1 <  𝑥2 <  … < 𝑥𝑛 and each 𝛼𝑖 satisfied 0 < 𝛼𝑖 

< 2𝜋. Then 𝑓(𝑧) maps the upper half of the plane 𝑦 >

0 to a polygon with its interior angles 𝑎1,𝑎2 … … 𝑎𝑛 

Successive application of this transformations would 

sometimes be needed to end up with the desired 

configuration. Detailed explanation on Schwarz-

Christoffel Transformation and the method to obtain 

the functions for such a mapping is outlined in [6]. 

The steps followed while using the conformal 

mapping approach shall be outlined during the 

analysis of Micro stripline. 

 

4. Losses 

Two kinds of losses are associated with striplines. 

Conductor and dielectric losses. The total loss of the 

stripline in questions is then the combination of these 

two i.e., the total loss 𝛼 is the sum of Dielectric loss 

(𝛼𝑑) and the conductor loss (𝛼𝑐) 

𝑎 = 𝛼𝑐+𝛼𝑑 

The loss is attributed to the finite conductivity of the 

strip and the ground planes and lossy dielectric as 

substrates.  

 

The techniques used to simplify the expressions for 

the propagation constants and Zo. The expression for 

the propagation constant 𝛾 is given by (12) 

𝛾 =  √(𝑅 + 𝑗𝜔𝐿)(𝐺 + 𝑗𝜔𝐶) 

    (16) 

where R,G, L and C are the values of the distributed 

elements of the transmission line 

𝛾√(𝑗𝜔𝐿)(𝑗𝜔𝐶) (1 +
𝑅

𝑗𝜔𝐿
) (1 +

𝑅

𝑗𝜔𝐶
) 

= 𝑗𝜔√𝐿𝐶√1 − 𝑗 (
𝑅

𝜔𝐿
+

𝐺

𝜔𝐶
) −

𝑅𝐺

𝜔2𝐿𝐶

    (17) 

using Taylor's expansion for √1 + 𝑥 we can write (17) 

as 

𝛾 ≈ 𝑗𝜔√𝐿𝐶  [1 −
𝑗

2
(

𝑅

𝜔𝐿
+

𝐺

𝜔𝐶
)] 

   (18) 

separating the real and imaginary parts we have, 

𝛼 ≈
1

2
(𝑅√

𝐶

𝐿
+ 𝐺√

𝐿

𝐶
) =

1

2
(

𝑅

𝑍𝑜
+ 𝐺𝑍𝑜)   (19) 

and 

𝛽 = 𝜔√𝐿𝐶   

 (20) 

Characteristic impedance, 𝑍𝑜 is approximated as  

𝑍𝑜 = √𝑅+𝑗𝜔𝐿

𝐺+𝑗𝜔𝐶
 ≈ √

𝐿

𝐶
   (21) 

There are two main techniques used to analyze the 

two types of losses mentioned above 

Perturbation method [12]: The technique avoids the 

determination of the transmission line parameters L, 

C, R, and G. It uses the field equations to determine 

the losses assuming that there will be little changes 

between the field of a lossy line and that of a loss-less 

line, thus justifying its name. The method considers 

the power flow along a transmission line with 

attenuation 𝛼 (in the absence of reflections), which is 

given by 

𝑃(𝑧) = 𝑃𝑜𝑒−2𝛼𝑧   (22) 

where 𝑃𝑜 si the power at z=0 plane. The power loss 

per unit length can be represented  

as a derivative 

𝑃𝑙 =
−𝜕𝑃

𝜕𝑧
= 2𝛼𝑃𝑜𝑒−2𝛼𝑧 = 2𝛼𝑃(𝑧) (23) 

Attenuation constant  𝛼 is now defined using 

(22) and (23) as 

𝛼 =
𝑃𝑙(𝑧)

2𝑃(𝑧)
=

𝑃𝑙(𝑧=0)

2𝑃𝑜
  (24) 

The crux of the problem, as we can see, is the 

computation of the power (𝑃𝑜)  and the power loss 

(𝑃𝑙) . Due to the generality of this technique, this 

method is applicable for both conductor and dielectric 

losses. 𝑃𝑜 is in general given by the Poynting theorem. 

𝑃𝑜 =
1

2
𝑅𝑒𝑠𝐸 × 𝐻∗𝑑𝑠  (25) 

The Ohmic conductor loss can be written as  

𝑃𝑡 =
𝑅𝑠

2
𝑠 |𝐽𝑠|2𝑠|𝐻𝑡|2ds    (26) 

The Dielectric power loss is 

𝑃𝑡 =
𝜔𝜖′′

2
𝑉|𝐸|2𝑑𝑣    (27) 

where 𝜖′′  is imaginary part of the dielectric 

permittivity 
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𝜖 = 𝜖′ + 𝑗𝜖′′ = 𝜖(1 + 𝑗𝑡𝑎𝑛  𝛿) 

where tan 𝛿  is the loss tangent of the dielectric. 

Depending on the expression used for 𝑃𝑡 in (27), the 

attenuation constant will refer to either the conductor 

loss or the dielectric loss. 

Wheeler's incremental inductance rule [12], [13]:  

The rule gives the effective resistance due to the skin 

effect and begins with inductance calcuations. The 

method holds good for all types of metallic surfaces 

for which skin of metallic surfaces for which skin 

effect plays a significant role. The only constraint 

being that the thickness of the conductor should be 

great compared to the skin depth (at least twice). The 

incremental rule can be stated as: the effective 

resistance in any circuit is equal to the change of 

reactance due to the penetration of magnetic field 

into the metal surfaces as would be caused by the 

surface receeding to a depth of δ/2. As we can see that 

the field cannot penetrate a perfect conductor and 

hence the losses in the conductor is due to their non-

infinite conductivity. The power loss into a cross 

section S of a perfect conductor is 

𝑃𝑡 =
𝑅𝑠

2
𝑠 |𝐽𝑠|2𝑑𝑠 =

𝑅𝑠

2
𝐶|𝐻𝑡|2dlW/m2    (28) 

The above itegral refers to the power loss per unit 

length, the contour integral being carried out across 

the two conductors. The inductance per unit length is 

given by 

𝐿 =
𝜇

|𝐼|2 𝑠|𝐻|2𝑑𝑠   (29) 

The expression for L assumes a lossless conductor. 

However, there will be penetration of the field and 

thus H will be no longer 0 inside the surface. This will 

add an incremental inductance L to L. Knowing that 

the mean depth of current inside the conductor is 𝛿/

2we have 

L =
μ0δ

2|𝐼|2  𝐶|𝐻𝑡|2𝑑𝑠    (30) 

Putting (29) in (30), we have 

𝑃𝑡 =
|𝐼|2𝜔L

2
𝑊/𝑚    (31) 

Using (31) and proceeding further, we have the final 

expression for  as (12) 

c =
Rs

2Z0η
 
dZ0

dl
    (32) 

where 𝜂 = √𝜇0/𝜖  is the intrinsic impedance of the 

dielectric. As can be observed from our argument, 

that this rule is applicable only for the evaluation of 

conductor losses.  

 

5. Conclusions 

A brief survey of the various techniques used in 

Static and Dispersion analysis of various Microstrip 

line configurations has been done. Wherever possible 

closed-form expressions have been provided to aid in 

CAD of these microstrip lines. Dispersion analysis for 

several microstrip lines are absent as closed-form 

expressions were not available for these. Dispersive 

effects on Dielectric and Conductor losses has also 

been omitted in the discussion. All the static 

equations given here were tested against various other 

transmission line calculators available. The equations 

were implemented as a part of the Microwave 

transmission line tool written by me.  
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