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ABSTRACT 

The Three Body Problem The three body problem studies the motion of three 

masses whose gravitational attraction have an effect on each other. The 

dynamics of the three-body problem are essentially different from those of two 

bodies, because in the latter case, an analytical solution may be found that 

admits orbits in the form of conic sections. This problem has been studied at 

great length and is the basis of most of today’s orbit planning and trajectory 

design for satellites. However, the two-body problem is valid on close to a 

single massive body, compared to which the target body (the object whose 

motion is desired) is essentially a massless particle. In deep space, when there 

may be two or more massive bodies to affect the motion of our test particle, the 

two-body solution obviously fails. It then becomes essential to study the three-

body problem.  

Keywords : RTBP, CRTBP, Three Body Problem. 

 

I. INTRODUCTION 

 

In the restricted three body problem (RTBP), the 

target mass/test particle is assumed to be of negligible 

mass when compared to the other two bodies (called 

primaries). The two primaries orbit around their 

common center of mass and their motion is 

unaffected by the test particle. Common examples of 

the RTBP are: a satellite in the Earth-Moon system, 

asteroids in the Sun-Jupiter system, etc.  

The most common alternative to the RTBP is 

the method of patched conics. Here, it is assumed that 

the test particle is only under the effect of one 

primary when in its vicinity, and under the effect of 

the other primary when close to it. This allows the 

solution in terms of two conic analytical solutions to 

the orbit, hence the name patched conics. Here we 

must introduce the concept of the sphere of influence 

- the sphere enclosing the second primary of 

comparatively less mass, in which the effects of the 

more massive primary can be “switched off”. At the 

point of entry into the sphere of influence, the 

position and velocity conditions of the two conic 

orbits are matched to ensure continuity. Obviously, it 

is less accurate than the three-body problem and only 

serves as a preliminary trajectory design tool.  

The RTBP has been the subject of constant 

study for the last few centuries. It has given rise to 
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many original ideas (for example, Poincare’s sections) 

and stimulated other branches of mathematics and 

mechanics like topology. A study of the RTBP can 

greatly enhance the knowledge and understanding of 

mathematical techniques presently used, since it has 

been the reason of the birth of the same. The RTBP is 

found to admit some equilibrium solutions (attributed 

to Euler and Lagrange). This report concerns the 

stability analysis of these points of equilibria using 

classical and modern mathematical techniques.  

We know that an equilibrium point is one 

where the velocity (or derivative of the states) is zero. 

This is true of the system being considered, but only 

in the rotating frame. When we consider the inertial 

frame, these points will rotate in a circle about the 

barycenter, and hence they are called relative 

equilibria. For the rest of this report, equilibrium will 

be used synonymously with relative equilibrium. 

 

II. THE CIRCULAR RESTRICTED THREE-BODY 

PROBLEM 

 

Consider a mechanical system consisting of three 

gravitationally interacting point masses, M1, M2, and 

m. Suppose, that the third mass, m, is so much smaller 

than the other two that it has a negligible effect on 

their motion. Suppose, further, that the first two 

masses, M1 and M2, execute a circular orbit about their 

common centre of mass. This simplified problem is 

known as the circular restricted three-body problem. 

 Let us further assume, to simplify the 

presentation of the final calculations, that mass m 

moves in the plane of the orbital motion of masses M1 

and M2.  

 Let ω be the constant orbital angular velocity 

of masses M1 and M2 on the circular orbit. We can 

find ω by equating Fcp, the centripetal force acting 

upon the mass 𝜇 =
𝑀1𝑀2

𝑀1+𝑀2
(the equivalent one-body 

problem), and Fg, the force of gravitational attraction 

between masses M1 and M2: 

 

𝐹𝑐𝑝 =
𝑀1𝑀2

𝑀1+𝑀2

𝑣2

𝑅′
      𝐹𝑔 = 𝐺

𝑀1𝑀2

𝑅2                      (1) 

 

where G is the gravitational constant, v is the 

constant linear velocity of mass . From Eq. (1) 

 

𝑣2 = 𝐺
𝑀1+𝑀2

𝑅2                                (2) 

 

 
Figure 1: The circular restricted three-body problem 

 

On the other hand, the period of orbital motion on a circular orbit, T, is  

𝑇 =
2𝜋𝑅

𝑣
                        (3) 

thus, 
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𝑤 =
2𝜋

𝑇
=

𝑣

𝑅
                        (4) 

Substituting Eq. (2) into Eq. (4) we arrive at the following expression. 

𝑤2 = 𝐺
𝑀1+𝑀2

𝑅3                         (5) 

 Let us define a Cartesian coordinate system (ξ, η, ζ) in an inertial reference frame whose origin 

coincides with the center of mass, C, of the two orbiting masses, M1 and M2. Let the orbital plane of these 

masses coincide with the ξ-η plane, and let them both lie on the ξ-axis at time t = 0 — see Figure 5.1. Suppose 

that R is the constant distance between the two orbiting masses, r1 the constant distance between mass M1 and 

the origin, and r2 the constant distance between mass M2 and the origin. 

  Let the third mass have position vector 𝑟 = (,, 0). The Cartesian components of the equation of 

motion of this mass are thus  

̈ = −𝐺𝑀1
(−1)

1
3 − 𝐺𝑀2

(−2)

2
3          (6) 

̈ = −𝐺𝑀1
(−1)

1
3 − 𝐺𝑀2

(−2)

2
3          (7) 


1
2 = ( − 

1)
2

+ ( − 
1

)2         (8) 


2
2 = ( − 

2)
2

+ ( − 
2

)2         (9) 

3. CO-ROTATING FRAME 

Let us transform to a non-inertial frame of reference rotating with angular velocity ω about an axis normal to 

the orbital plane of masses M1 and M2, and passing through their center of mass. The masses M1 and M2 are 

stationary in this new reference frame. Let us define a Cartesian coordinate system (X, Y) in the rotating frame 

of reference which is such that massesM1 and M2 always lie on the X-axis. Let the position vector of mass m be 

𝑟 = (x, y) see Figure 2. 

 The masses M1 and M2 have the fixed position vectors 

 𝑟1 = (−𝛼𝑅, 0,0)       𝑟2 = (1 − 𝛼)𝑅, 0,0)                   (10) 

in our new coordinate system. Indeed, by the definition of the center of mass, 

  r1M1 = r2 M2                  (11) 

on the other hand 

  r1 + r2 = R.                  (12) 

Solve Eqs. (11) and (12), we obtain, 

𝑟1 =
𝑀2

𝑀1+𝑀2
𝑅, 𝑟2 =

𝑀1

𝑀1+𝑀2
𝑅 =  (1 −

𝑀2

𝑀1+𝑀2
) 𝑅                      (13) 

i.e. in Eq. (10) 

𝛼 =
𝑀2

𝑀1+𝑀2
                      (14) 

 The equation of motion of mass m in the reference frame are obtained by including into Eqs. (6), (7) 

two additional forces - Coriolis force 𝐹⃗cor and centrifugal force 𝐹⃗cf: 

𝐹⃗𝑐𝑓 = −𝑚𝑤⃗⃗⃗ × (𝑤⃗⃗⃗ × 𝑟) = 𝑚𝑤2𝑟,                  (15) 

𝐹⃗𝑐𝑜𝑟 = −2𝑚𝑤⃗⃗⃗ × 𝑟̇ = 2𝑚𝑤(−𝑥𝑦̇ + 𝑦̂𝑥̇) = 𝑚𝑤2𝑟,                 (16) 

𝑟̈ = −𝐺𝑀1
(𝑟−𝑟1)

1
3 − 𝐺𝑀2

(𝑟−𝑟2)

2
3 − 𝑤⃗⃗⃗ × (𝑤⃗⃗⃗ × 𝑟) −  2𝑤⃗⃗⃗ × 𝑟̇               (17) 

where 𝑤⃗⃗⃗ = (0, 0, w), and  


1
2 = (𝑥 + 𝛼𝑅)2 + 𝑦2,                    (18) 


2
2 = (𝑥 − (−𝛼)𝑅)2 +  𝑦2,                   (19) 
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Figure 2 : The Co-rotating Frame 

 

 Here, the last two terms on the right-hand side of Eq. (17) are the centrifugal acceleration and the 

Coriolis acceleration. 

 The components of Eq. (17) reduce to 

𝑥̈ = −
𝐺𝑀1(𝑥+𝛼𝑅)

1
3 −

𝐺𝑀2(𝑥−(1−𝛼)𝑅)

2
3 + 𝑤2𝑥 + 2𝑤𝑦̇,                 (20) 

𝑦̈ = −
𝐺𝑀1𝑦

1
3 −

𝐺𝑀2𝑦

2
3 + 𝑤2𝑥 − 2𝑤𝑥̇                  (21) 

III. JACOBI INTEGRAL 

Eqs. (20), (21) can be rewritten as following. 

ẍ − 2wẏ =  −
U

x
                    (22) 

ÿ − 2wẋ =  −
U

y
                     (23) 

where 

𝑈 =  −
𝐺𝑀1

1

−
𝐺𝑀2

2

−
𝑤2

2
(𝑥2 + 𝑦2)                   (24) 

is the sum of the gravitational and centrifugal potentials 

Now, it follows from Eqs. (22) - (23) that  

ẍẋ − 2w ẋ ẏ =  −ẋ
U

x
                                  (25) 

ÿẏ − 2w ẋ ẏ =  −ẏ
U

x
                                  (26) 

Summing the above equations, we obtain 
𝑑

𝑑𝑡
[

1

2
(𝑥̇2 + 𝑦̇2) + 𝑈] = 0                   (27) 

In other words, 

𝐶 =  −2𝑈 − 𝑣2                    (28) 

is a constant of the motion, where 𝑣2 = 𝑥̇2 + 𝑦̇2. C is called the Jacobi integral. The mass m is restricted to 

regions in which  

−2𝑈 ≥ 𝐶                    (29) 

since 𝑣2 is a positive definite quantity. 

IV. DIMENSIONLESS FORM OF THE EQUATIONS 

No analytic solutions of Eqs. (20) - (21) are known. My goal is to solve them numerically. As the first required 

step, we convert the to a dimensionless form. 
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 Circular restricted three body problem has natural scales: the distance R, between masses M1 and M2 

and the characteristic time of their orbital motion 1/w. Let us introduce dimensionless variables by measuring 

the coordinates x and y in units of R, thus introducing new unknowns u and v as following. 

𝑢 ≡
𝑥

𝑅
,        𝑣 ≡

𝑦

𝑅
                    (30) 

Let us measure time t in units of 1/w, introducing dimensionless variable .  

 ≡ wt                      (31) 

"Old" derivatives with respect to time are going to have the following forms: 

𝑥̇ ≡
𝑑𝑥

𝑑𝑡
=

𝑑(𝑢𝑅)

𝑑(/w)
= 𝑤𝑅

𝑑𝑢

𝑑
                    (32) 

𝑥̈ ≡
𝑑

𝑑𝑡
(

𝑑𝑥

𝑑𝑡
) =

𝑑

𝑑𝑡
(wR

𝑑𝑢

𝑑
) = wR 

𝑑

𝑑/w
(

𝑑𝑢

𝑑
) = w2R

𝑑2𝑢

𝑑2 .                            (33) 

Similarly, 

𝑦̇ = 𝑤𝑅
𝑑𝑣

𝑑
                     (34) 

𝑦̈ = 𝑤2𝑅
𝑑2𝑣

𝑑2                      (35) 

Substituting Eqs. (32) - (35) into Eqs. (20), (21), we get 

𝑤2𝑅
𝑑2𝑢

𝑑2 = −
𝐺𝑀1𝑅(𝑢+𝛼)

1
3 −

𝐺𝑀2𝑅(𝑢+𝛼)

2
3 + 𝑤2𝑅𝑢 + 2𝑤2𝑅

𝑑𝑣

𝑑
                (36) 

𝑤2𝑅
𝑑2𝑣

𝑑2 = −
𝐺𝑀1𝑅𝑣

1
3 −

𝐺𝑀2𝑅𝑣

2
3 + 𝑤2𝑅𝑣 − 2𝑤2𝑅

𝑑𝑢

𝑑
                 (37) 

Here and expressed via dimensionless parameters are as following: 


1

= 𝑅((𝑢 + 𝛼)2 + 𝑣2)
1

2 = 𝑅𝑑1                  (38) 


2

= 𝑅((𝑢 − 1 + 𝛼)2 + 𝑣2)
1

2 = 𝑅𝑑2                              (39) 

where 

𝑑1 = ((𝑢 + 𝛼)2 + 𝑣2)
1

2                    (40) 

𝑑2 = ((𝑢 − 1 + 𝛼)2 + 𝑣2)
1

2                    (41) 

Dividing term in Eqs. (36) - (37) by w2R, we arrive the following equations. 
𝑑2𝑢

𝑑2 = −
𝐺𝑀1

𝑤3𝑅3

(𝑢+𝛼)

𝑑1
3 −

𝐺𝑀2

𝑤3𝑅3

(𝑢−1+𝛼)

𝑑2
3 + 𝑢 + 2

𝑑𝑣

𝑑
                   (42) 

𝑑2𝑣

𝑑2 = −
𝐺𝑀1

𝑤3𝑅3

𝑣

𝑑1
3 −

𝐺𝑀2

𝑤3𝑅3

𝑣

𝑑2
3 + 𝑣 − 2

𝑑𝑢

𝑑
                   (43) 

Noticing that 
𝐺𝑀1

𝑤3𝑅3 =
𝑀1

𝑀1+𝑀2
≡ 1 − 𝛼                     (44) 

and 
𝐺𝑀2

𝑤3𝑅3 =
𝑀1

𝑀1+𝑀2
≡ 𝛼                      (45) 

we arrive the following equations 
𝑑2𝑢

𝑑2 = −(1 − 𝛼)
(𝑢+𝛼)

𝑑1
3 − 𝛼

(𝑢−1+𝛼)

𝑑2
3 + 𝑢 + 2

𝑑𝑣

𝑑𝜏
                  (46) 

𝑑2𝑣

𝑑2 = −(1 − 𝛼)
𝑣

𝑑1
3 − 𝛼

𝑣

𝑑2
3 + 𝑣 − 2

𝑑𝑢

𝑑𝜏
                   (47) 

Equations (5.46) - (5.47) can be rewritten in a compact form 

𝑢̈ = −
𝑈

𝑣
+ 2𝑣̇,                      (48) 

𝑣̈ = −
𝑈

𝑣
+ 2𝑢̇                      (49) 

where  
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𝑈(𝑢, 𝑣) =  −
1−𝛼

𝑑1
−

𝛼

𝑑2
−

1

2
(𝑢2 + 𝑣2)                 (50) 

is the dimensionless version of Eq. (5.24). 

Equation (46) - (47) are dimensions and contain a single parameter, . Some of the results of their numerical 

solution are presented in Figs. 3 and 4.  

 
Figure 3: Arenstorf periodic orbits for α = 0.012277471 and initial conditions 

x(0) = 0.994, y(0) = 0, x˙(0) = 0; 

left subfigure: y˙(0) = −2.0317326295573368357302057924, 

right subfigure: y˙(0) = −2.00158510637908252240537862224, 

 
Figure 4: Chaotic orbit: α = 0.5, x(0) = 1, y(0) = 0, x˙(0) = 0, y˙(0) = 0. 

  

Many studies were dedicated to the classical 

gravitational three-body problem, involving different 

methods and theories. The development of modern 

computers and computational techniques gave the 

possibility to deal with these problems using more 

powerful methods. This approach led to new results. 

Szebehely (1967), Marchal (1990) and many other 

researchers have dedicated extensive studies to this 

problem, pointing out various and interesting aspects.  

V. CONCLUSION 

 

In the study of the PCR3BP the Jacobian integral 

plays an important role, since it makes possible 

certain general, qualitative statements regarding the 

motion without actually solving the equations of 

motion. It permits for example the establishment of 

certain forbidden regions from which the third body 

is excluded. The application of this principle to 
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celestial mechanics was first made by Hill (1878) 

showing that the Moon cannot depart from the 

Earth’s neighbourhood arbitrarily far. These regions 

are called today Hill-regions. 

 

VI. REFERENCES 

 

[1]. Bhatanagar, K.B. and Hallan, P.P. (1978), “Effect 

of perturbation in coriolis and centrifugal forces 

on the stability of libration points in restricted 

problem”, Cele. Mech., 18:  pp. 105. 

[2]. Brumberg,V.G., 1972. Relativistic Celestial 

Mechanics, Nauka, Moscow. 

[3]. Deprit, A and Deprit-Bartholome, A. (1967), 

“Stability of the triangular Lagrangian points” 

Astro. J.,vol. 72 No. 2: pp. 173-179. 

[4]. Douskos, C.N. (2011), “Equilibrium points of the 

restricted three body problem with prolate and 

radiating primaries and their stability”, Astrophys. 

Space Sci., 333: pp. 79-87. 

[5]. Fawzy, A and Abd El-salam (2012), “Discovery of 

an equilibrium circle in the circular restricted 

three body problem”, Americ. J. App. Sci., 9: pp-

1378-1384. 

[6]. Haque, M.N. (1992), “Effect of perturbations on 

the stability of equilibrium points in the 

photogravitational restricted problem of three 

bodies” Ph.D. thesis, Submitted to BRA Bihar 

University, Muz. 

[7]. Haque, M.N. and Vikash Kumar (2014), “Location 

and stability of equilibrium points in a PRTBP 

under perturbations, bigger primary is an oblate 

spheriod ”, IJSR, vol. 3: pp-1139-1140. 

[8]. Kumar, S. and Ishwar, B. (2011), “Location of 

collinear equilibrium points in the generalised 

photogravitational elliptic restricted three body 

problem”, Int. J. Eng. Sci. Techol., 3: pp-157-163.  

[9]. Kishor, R. and Kushvah, B.S. (2012) “Periodic 

orbits in the generalised photogravitational 

Chermnykh-Like problem with power profile”, 

[10]. Leontovich, A.M. (1962), “On the stability of the 

restricted problem of three bodies”, Soviet Math. 

Dokl., 3: pp. 425-428. 

[11]. Markeew, A.P. (1969), “On the stability of 

triangular libration points in the circular bounded 

three body problem”, J. Applied Math. Mech., 33: 

pp. 105-110. 

[12]. Murray, C.D. and Dermott, S.F. (1999), “Solar 

system dynamics”, Cambridge University Press, 

Cambridge. 

[13]. Narayan, A. and Ramesh, C. (2008), “Stability of 

triangular points in the generalised restricted 

three body problem”, J. Mod. Ex-B, France. 

[14]. Szebehely, V.G. (1967), “Theory of orbits”, 

Academics press, New York. 

[15]. Subbarao, P.V. and Sharma, R.K. (1975), “A note 

on the stability of the triangular points of 

equilibrium in the restricted three body problem” 

Astronomy and Astrophysics, 43: pp. 381-383. 

[16]. Singh, R.B. (2006), “Some Problems of Space 

Dynamics” Celestial Mechanics, Recent Trends” 

pp. 237-244, Narosa  Publishing House, New 

Delhi. 

[17]. Singh, J. (2011), “Nonlinear stability in the 

restricted three body problem with oblate and 

variable mass”, Astrophys. Space Sci., 333: pp. 

105-110. 

 

Cite this article as : 

 

Vikash Kumar, Dr. K. B. Singh, Dr. M. N. Haque, 

"Study of Stability of Equilibrium Points in The 

Pcr3bp on the Circumference of FEC", International 

Journal of Scientific Research in Science and 

Technology (IJSRST), Online ISSN : 2395-602X, Print 

ISSN : 2395-6011, Volume 9 Issue 6, pp. 395-401, 

November-December 2022. Available at doi : 

https://doi.org/10.32628/IJSRST229658            

Journal URL : https://ijsrst.com/IJSRST229658 


