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ABSTRACT 

 

In this chapter we will discuss the equation of motion of Photogravitational 

Circular Restricted Three Body Problem (in brief -PCR3BP) in which both the 

primaries are sources of radiation [1]. The three body problem studies the 

motion of three masses whose gravitational attraction have an effect on each 

other. The dynamics of the three-body problem are essentially different from 

those of two bodies, because in the latter case, an analytical solution may be 

found that admits orbits in the form of conic sections. This problem has been 

studied at great length and is the basis of most of today’s orbit planning and 

trajectory design for satellites.  

Keywords: RTBP, CRTBP, Three Body Problem. 

 

 

I. INTRODUCTION 

 

The development of mathematical model of Circular 

Restricted Three Body Problem is one of the most 

challenging problems of Celestial Mechanics. The 

Circular Restricted Problem specifies the motion of a 

body of infinitesimal mass under the gravitational 

attraction of two massive bodies revolving around 

each other in circular orbits. The problem is restricted 

in the sense that the infinitesimal body does not 

influence the motion of other two massive bodies [1-

4]. 

 

This model of Circular Restricted Three Body 

Problem is an ideal one. In actual situation, there are 

various examples in which either or both the 

primaries are sources of radiation. The first, it is quite 

reasonable to modify the model by taking the 

radiation pressure of the primaries into account in 

ideal equation. The modified model is known as 

Photogravitational Circular Restricted Three Body 

Problem (in brief PCR3BP) [5-6].  

 

Radzievsky (1950) studied the Restricted Three Body 

Problem by considering the more massive primary as 

a source of radiation. Perezhogin (1976), Kunitsyn 

and Perezhogin (1978), Simmons et. al (1985), Kumar 
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and Chaudhary (1988), Haque (1992) and many 

authors studied the problem by taking into 

consideration the radiation effect of either and both 

the primaries. In the present problem we have 

considered both the primaries as sources of radiation 

[7]. The force of radiation is taken as 

F = Fg − Fp = Fg (1 −
Fp

Fg
) = qFg 

where 

Fg      = the gravitational attraction force, 

Fp      = the radiation pressure force, 

and q = the mass reduction factor. 

q1 and q2 are the factors characterizing the radiation 

effects of the two primaries [8].  

To simplify the calculation, we have used later on  

        q1 = 1- δ1 

and   q2 = 1- δ2 

δ1, 2 = 0 i.e., q1 = q2 = 1 represents the classical case;  

0 < δ1, 2 < 1 i.e. (1> q1, q2 > 0) represents the reduction 

of the gravitational forces by radiation and δ1, 2 ≥ 1 i.e. 

(q1, q2 ≤ 0) implies that the radiation is overwhelmed 

gravity.  

 

The complete range of physically possible q1, q2 is -∞ 

< q1, q2 ≤ 1              i.e., o ≤ δ1, 2 < ∞. We have 

considered the case when the gravitation prevails i.e., 

when 0 < δ1, 2 < 1, i.e., when 1 > q1, q2 > 0. 

 

II. DERIVATION OF EQUATIONS OF MOTION OF 

PCR3BP 

 

We consider three gravitationally interacting bodies 

of masses m1, m2 and m in which two bodies m1 and 

m2, are so-called primaries, are sources of radiation, 

revolving around their centre of mass in a circular 

orbit under the influence of their mutual gravitational 

attraction and the third body m is much smaller than 

m1 and m2. Intuitively the third body m does not 

affect the motion of the primaries [9]. Thus, the 

Circular Restricted Problem of Three Bodies is to be 

described the motion of the third body. 

Consider an inertia frame of reference ξηζ whose 

origin lie at the centre of mass O of the two bodies m1 

and m2 (as shown in fig. 1). Let the ξ- axis lie along 

the line from m1 to m2 at time t = 0 with the η- axis 

perpendicular to it and also in the orbital plane of the 

two bodies and ζ- axis perpendicular to the ξη- plane, 

along the angular momentum vector [10]. 

Let (ξ1, η1, ζ1) and (ξ2, η2, ζ2) be the coordinates of 

masses m1 and m2 respectively in this frame of 

reference. Let R be the constant distance between the 

two orbiting masses m1 and m2 and r1, r2 be the 

constant distances between infinitesimal mass m and 

orbiting masses m1 and m2 respectively. 

In this inertial frame, it is required to balance 

between the gravitational and centrifugal forces 

i.e.G
m1m2

R2 = m2an2 = m1bn2       ......................(1) 

 

Where G is the Gaussian constant of gravitation, n is 

the mean angular velocity (in Celestial Mechanics is 

called mean motion) of masses m1 and m2, a and b are 

the distances of masses m1 and m2 from O respectively.  

 
Fig. 1 

 

The primaries m1 and m2 are moving around their 

centre of mass O as shown in figure 1. 

 

 

∴ G
m1m2

R2
= m2an2     and     G

m1m2

R2
= m1bn2 

Or,    Gm1 = R2an2     and     Gm2 = R2bn2         
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         ∴ G(m1 + m2) = R2(a + b)n2  Or,   G(m1 + m2) = R2Rn2 

 

                       Or,   G(m1 + m2) = R3n2                     ................( 2) 

This equation is known as Kepler’s Law. 

Also              a =
m1

M
R        and   b =

m2

M
R                     ...............( 3) 

 Where, M = m1 + m2 

It is convenient choose our unit of length such that R=1, and our unit mass such that  µ = G(m1 + m2) =

1. It follows, from equation (2), the mean angular velocity n=1. However, we shall continue to retain n in our 

equations, for the sake of clarity [11]. If we assume that m1 > m2  and define  

                                      µ =
m2

m1+m2
            ...................................( 4) 

The force of radiation is taken as 

F = Fg − Fp = Fg (1 −
Fp

Fg
) = (1 − q)Fg 

Where, Fg = gravitational attraction force, Fp = radiation pressure force and, q = mass reduction factor. Here, it is 

assumed that gravitation prevails. Poynting– Robertson drag effect is ignored. Then in this system of units of 

two masses with sources of radiation are  

    μ1 = Gm1q1 = (1 − μ)q1 and  μ2 = Gm2q2 = μq2       ………… (5)  

where, μ ≤
1

2
 ,  q1 and q2 are the radiation effect of the primaries m1 and m2. 

Let (ξ, η, ζ) be coordinate of the infinitesimal mass m in the inertial (sideral) coordinate system [12]. 

Then the equations of motion of the infinitesimal mass ‘m’ are 

mξ̈ = −Gm1q1m
ξ − ξ1

r1
3 − Gm2q2m

ξ − ξ2

r2
3  

                    𝑚η̈ = −Gm1q1m
η−η1

r1
3 − Gm2q2m

η−η2

r2
3                                      .... (6) 

𝑚ζ̈ = −Gm1q1m
ζ − ζ1

r1
3 − Gm2q2m

ζ − ζ2

r2
3  

 

i.e.,                        ξ̈ = Gm1q1
ξ1−ξ

r1
3 + Gm2q2

ξ2−ξ

r2
3  

                             η̈ = Gm1q1
η1−η

r1
3 + Gm2q2

η2−η

r2
3                      …(7) 

ζ̈ = Gm1q1

ζ1 − ζ

r1
3 + Gm2q2

ζ2 − ζ

r2
3  

i.e.,  

ξ̈ = µ1

ξ1 − ξ

r1
3 + µ2

ξ2 − ξ

r2
3  

                                       η̈ = µ1
η1−η

r1
3 + µ2

η2−η

r2
3                            …(8) 

ζ̈ = µ1

ζ1 − ζ

r1
3 + µ2

ζ2 − ζ

r2
3  

i.e.,  

ξ̈ = (1 − µ)q1

ξ1 − ξ

r1
3 + µq2

ξ2 − ξ

r2
3  

                               η̈ = (1 − µ)q1
η1−η

r1
3 + µq2

η2−η

r2
3               … (9) 

                                ζ̈ = (1 − µ)q1
ζ1−ζ

r1
3 + µq2

ζ2−ζ

r2
3  
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Where       r1
2 = (ξ1 − ξ)2 + (η1 − η)2 + (ζ1 − ζ)2 

                   r2
2 = (ξ2 − ξ)2 + (η2 − η)2 + (ζ2 − ζ)2       ......... (10) 

 

If the ζ axis is perpendicular to the plane of the two massive bodies (primaries) then 

𝜁1 = 𝜁2 = 0. 

 

If the two masses are moving in circular orbit, then the distance between them is fixed and they move about 

their common centre of mass at a fixed angular velocity i.e., mean motion n. In these circumstances it is natural 

to consider the motion of the particle in a rotating (synodic) reference frame in the locations of the two masses 

are also fixed [14]. Consider a new set of coordinate axes X, Y, Z having the same origin and the X and Y axes 

are rotating with angular velocity unity i.e., n=1 about Z- axis which coincides with the ζ-axis perpendicular to 

the plane of the primaries as shown in Fig-1.The direction of the X- axis can be chosen such that two massive 

bodies always lie along it, having coordinates (x1,  y1,  z1) = (−μ, 0,0) and (x2,  y2, z2) = (1 − μ, 0,0).      

 

Hence  

r1
2 = (x + μ)2 + y2 + z2, 

                                    r2
2 = (x − 1 + μ)2 + y2 + z2,         ……. (11) 

r2 = x2 + y2 + z2 

 

Where (x, y, z) are the coordinates of the infinitesimal mass m with respect to rotating or synodic system [15]. 

We now discuss about Rotation Matrices in three dimensions Coordinate system. 

Let us take a fixed coordinate axes χ, ψ, ω and the coordinates of any point P with respect to this coordinate 

axes be (χ, ψ, ω). 

Also, consider a new coordinate axis χ′, ψ′, ω′ having the same origin and   χ′and ψ′ axes are rotating about ω′  

axis which coincides with  𝜔′ axis and let (χ′, ψ′, ω′) be coordinates of the particle of P with respect to this 

coordinate axes. 

                                          χ = χ′cosθ − ψ′sinθ 

                                          ψ = χ′sinθ + ψ′cosθ     …………. (12) 

                                          ω = ω′ 

In Matrix form 

                              [
x

 y 
z

] = [
cosθ −sinθ 0
sinθ cosθ 0

0 0 1
] [

𝜒′

𝜓′

𝜔′

]          .................(13) 

This is called the rotation matrix. 

In this way, for our problem the coordinates (x, y, z) are connected to the old coordinates (ξ, η, ζ) by the 

relation as above is to be found out. 

                                  [
ξ

 η 
ζ

] = [
cost −sint 0
sint cost 0

0 0 1
] [ 

x
y
z

 ]           ..............(14) 

Differentiating (14) twice, we have 

             [
ξ̇

 η̇ 

ζ̇

] = [
cost −sint 0
sint cost 0

0 0 1
] [ 

ẋ − y
ẏ + x

ż

 ]     ………………. (15) 
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And       [
ξ̈

 η̈ 

ζ̈

] = [
cost −sint 0
sint cost 0

0 0 1
] [ 

ẍ − 2ẏ − x
ÿ + 2ẋ − y

z̈

 ]        ……… (16) 

Substituting the values of ξ, η, ζ, ξ̈, η̈, ζ̈ in equation (9), we have 

(ẍ − 2ẏ − x)cost − (ÿ + 2ẋ − y)sint

= (1 − µ)q1 {
(x1 − x)cost − (y1 − y)sint

r1
3 } + µq2 {

(x2 − x)cost − (y2 − y)sint

r1
3 } 

(ẍ − 2ẏ − x)sint + (ÿ + 2ẋ − y)cost

= (1 − µ)q1 {
(x1 − x)sint + (y1 − y)cost

r1
3 } + µq2 {

(x2 − x)sint + (y2 − y)cost

r1
3 } 

z̈ = (1 − µ)q1 {−
z

r1
3} + µq2 {−

z

r1
3} 

i.e.,  

(ẍ − 2ẏ − x)cost − (ÿ + 2ẋ − y)sint

= {(1 − µ)q1

(x1 − x)

r1
3 + µq2

(x2 − x)

r2
3 } cost − {(1 − µ)q1

(y1 − y)

r2
3 + µq2

(y2 − y)

r2
3 } sint 

(ẍ − 2ẏ − x)sint + (ÿ + 2ẋ − y)cost

= {(1 − µ)q1

(x1 − x)

r1
3 + µq2

(x2 − x)

r2
3 } sint + {(1 − µ)q1

(y1 − y)

r2
3 + µq2

(y2 − y)

r2
3 } cost 

z̈ = −(1 − µ)q1 {
z

r1
3} − µq2 {

z

r1
3} 

                ………..(17) 

Multiplying the first two equations of (18) by cost and sint respectively and again by –sint and cost and adding 

them, we obtain 

ẍ − 2ẏ − x = (1 − µ)q1

(x1 − x)

r1
3 + µq2

(x2 − x)

r2
3  

ÿ + 2ẋ − y = 1 − µ)q1

(y1 − y)

r2
3 + µq2

(y2 − y)

r2
3  

                    z̈ = −(1 − µ)q1

z

r1
3 − µq2

z

r2
3                                              … (18) 

If the X-axis will pass through the centre of the finite bodies, then y1 = 0, y2 = 0 and equation (18) becomes  

ẍ − 2ẏ − x = −(1 − µ)q1

(x−x1)

r1
3 − µq2

(x−x2)

r2
3  

ÿ + 2ẋ − y = −(1 − µ)q1

(y − y1)

r1
3 − µq2

(y − y2)

r2
3  

z̈ = −(1 − µ)q1

z

r1
3 − µq2

z

r2
3 

 

i.e., 

ẍ − 2ẏ = x − (1 − µ)q1

(x−x1)

r1
3 − µq2

(x−x2)

r2
3  

ÿ + 2ẋ = y − (1 − µ)q1

(y − y1)

r1
3 − µq2

(y − y2)

r2
3  

              z̈ = −(1 − µ)q1
z

r1
3 − µq2

z

r2
3                                              .....(19) 
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These are the equations of motion of the infinitesimal body with respect to the set of rotating (synodic) 

coordinates, so that the finite bodies always lie on the X-axis and they have important property that they do not 

involve explicitly the independent variable t. 

Let a function U be defined by  

U =
1

2
(x2 + y2) +

1 − μ

r1
q1 +

μ

r2
q2                       … … … … … … (20) 

We have, 

(1 − μ)r1
2 + μr2

2 = (1 − μ){(x + μ)2 + y2} + μ{(x − 1 + μ)2 + y2}       

  = (1 − μ)(x + μ)2 + (1 − μ)y2 + μ{(x + μ)2 − 2(x + μ) + 1 + y2} 

= (1 − μ)(x + μ)2 + (1 − μ)y2 + μ(x + μ)2 − 2μ(x + μ) + μ + μy2 

          = (x + μ)2 + y2 − 2μx − 2μ2 + μ 

          = x2 + μ2 + 2μx + y2 − 2μx − 2μ2 + μ 

          = x2 + y2 − 2μ2 + μ 

          = x2 + y2 − μ(μ − 1) 

∴ x2 + y2 = (1 − μ)r1
2 + μr2

2 + μ(μ − 1) 

 

Thus, equation (2.20) can be written a 

U =
1

2
((1 − μ)r1

2 + μr2
2 + μ(μ − 1)) +

1 − μ

r1
q1 +

μ

r2
q2           . … (21) 

Thus equation (2.19) can be written as 

ẍ − 2ẏ =
∂U

∂x
 

ÿ + 2ẋ =
∂U

∂y
 

                                                z̈ =
∂U

∂z
                            .................( 22) 

Multiplying first equation by �̇�, second by �̇� and third by �̇� of (22) and adding them, we obtain 

ẋẍ − 2ẋẏ + ẏÿ + 2ẋẏ + żz̈ = ẋ
∂U

∂x
+ ẏ

∂U

∂y
+ ż

∂U

∂z
    … … … … . . (23) 

ẋẍ + ẏÿ + żz̈ =
dU

dt
                … … . . . … … … . (24) 

Integrating, we have 

ẋ2 + ẏ2 + ż2 = 2U − C               … … … . (25) 

Where C is the constant of integration. 

The L.H.S. of (25) is the square of the velocity of the particle of the infinitesimal mass in the rotating frame and 

is denoted by V2 then  

V2 = 2U − C                        … … … … (26) 

This is the Jacobi’s Integral and is sometime called the Integral of  

Relative Energy. It is the only one that can be obtained in the Circular Restricted Three Body Problem [16]. 

Now we introduce the perturbations in coriolis and centrifugal forces in terms of the parameters α and β. Thus, 

in a synodic coordinate system (x, y, z) the equations of motion of the Photogravitational Circular Restricted 

Three Body Problem (PCR3P) in which both the primaries are sources of radiation and there are perturbations 

α and β in coriolis and centrifugal forces respectively are 

ẍ − 2αẏ =
∂U

∂x
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ÿ + 2αẋ =
∂U

∂y
  

                                                 z̈ =
∂U

∂z
                        ………… (27)  

Where, 

U =
1

2
[(1 − μ)r1

2 + μr2
2]β +

1−μ

r1
q1 +

μ

r2
q2 +

1

2
μ(μ − 1)β    .. (28) 

and   

q1 = 1 − δ1;      0 < δ1 < 1, 

q2 = 1 − δ2;      0 < δ2 < 1, 

α = 1 − ε1;      0 < |ε1| ≪ 1, 

β = 1 + ε2;      0 < |ε2| ≪ 1. 
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