
Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed under the

terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use,

distribution, and reproduction in any medium, provided the original work is properly cited

International Journal of Scientific Research in Science and Technology

Print ISSN: 2395-6011 | Online ISSN: 2395-602X (www.ijsrst.com)

doi : https://doi.org/10.32628/IJSRSET229666

657

Comparing Efficiencies of Different Logical Approaches of

Crossing a Stop Light

Computational Physics

Rishith Singhagra
1Jayshree Periwal International School, Jaipur, India

Research Advisor- Dr. Andrew Haas
2Associate Professor of Physics at NYU College of Arts & Science, New York

Article Info

Volume 9, Issue 6

Page Number : 657-664

Publication Issue

November-December-2022

Article History

Accepted : 05 Nov 2022

Published : 30 Dec 2022

ABSTRACT

As humanity has advanced, cars have become increasingly common on roads,

and vehicle activity has skyrocketed. This shift has naturally created

requirements for stop light systems to be implemented to control traffic flow

through intersecting routes. This paper tackles the issues such as efficiency and

pollution that arise due to the existence of these stop lights by exploring more

efficient methods for a car to approach a stop light to save time and fuel. The

different approaches are all basic logical methods tested in iterative simulations.

I then found the best approach to travel from point A to point B when there is

a stop light between the two points whose timing is dictated by a probability

distribution.

Keywords : Probability Distribution, Stop Light

I. INTRODUCTION

Although essential to road safety, stop lights are often

the source of frustration for many drivers, but more

importantly, they pose a significant problem of

efficiency. We are engaged in an endless search for

perfectly timing traffic lights to ensure that all

vehicles on-road can evenly propagate through a

city’s labyrinth of roads while minimizing their time

idling at a stop. Idling, the act of “running a vehicle’s

engine when the vehicle is not in motion” (Wikipedia,

2022) at stoplights, was responsible for a total

consumption of 23 billion liters of fuel and carbon

dioxide emissions to the order of 30 million tons (U.S.

Department of Energy, 2015).

Idle reduction is a concept that has risen to the

attention of engine manufacturers and

environmentalists alike; it comprises techniques and

equipment that allow a combustion engine to reduce

the time it runs without the vehicle being in motion.

A vehicle may idle for many reasons, such as

maintaining the temperature inside the vehicle,

powering necessary equipment such as lighting, or

waiting for a stop light to turn green. American

http://www.ijsrst.com/

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 9 | Issue 6

Rishith Singhagra et al Int J Sci Res Sci & Technol. November-December-2022, 9 (6) : 657-664

658

drivers average 20% of total driving time spent idling

at stop lights (Crow, 2018), making idling’s impact on

fuel consumption and the environment significant

enough that manufacturers actively try to reduce idle

time by implementing start-stop technologies, energy

recovery systems, and auxiliary power systems (U.S.

Department of Energy, 2022).

This paper will adapt the situation drivers face in the

real world into a logical problem that, although may

not directly address idling, can, to a limited extent,

help simulate the conditions a car may face when

approaching a stop light whose time of turning green

is uncertain. Given a probability distribution for

when the stop light will turn green, the model will

incorporate the impacts of real-world physics, such as

air resistance and varying fuel efficiencies at different

speeds, and I will compare different logical

approaches inspired by mathematical quantities such

as mean, median, and mode, for their fuel and time

efficiencies to find the most effective approach.

II. Related Work

The problem discussed has not been tackled before by

any other researcher in a similar manner; however, a

variety of works focus on concepts essential to the

traffic system. One such paper is (Ghazal, Khatib,

Chahine, & Kherfan, 2016), which addresses the

problem of smoothing out the motion of cars as they

pass through multiple junctions, each with its own

stop light and discusses the algorithmic issue faced

when having to coordinate adjacent stop lights to

facilitate continuous motion for cars as well as

considering occurrences such as pedestrians and

emergency vehicles. They propose incorporating

infrared sensors into the traffic control systems that

measure the density of traffic to dynamically calculate

timings for stop lights that would allow for the

optimal movement of cars and other vehicles.

(Navarro-Espinoza, 2022), more recently,

incorporated technologies such as MLP-NN, RNN,

and various ensemble machine learning models to test

their efficacy in controlling the timings of traffic

lights. Their proposed methods work by dynamically

predicting traffic flow based on the training from the

datasets already seen to coordinate timings for traffic

lights at intersections.

Most papers tackle the problem of traffic efficiency by

investigating strategies to coordinate traffic lights’

timings to optimize traffic flow; however, I will

approach this problem by finding ways for cars to

efficiently cross traffic lights while minimizing the

crossing time and fuel consumption.

III. Background

3.1 Probability Distribution

Figure 1: Probability distribution for the stoplight

Figure 1 shows the probability distribution for the

stop light turning green after a certain number of

seconds as a density plot. This probability distribution

was created using the gamma function from the scipy

module for Python 3.10 using the following code.

from scipy.stats import gamma

data_gamma = gamma.rvs(a=5, size=50000, loc=5, scale=0.5)

data_gamma.sort()

Figure 2: Code used to generate gamma distribution

The gamma function was chosen as it can create a

distribution that is not purely random at all values but

provides a mounded probability distribution to which

logical approaches can be applied.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 9 | Issue 6

Rishith Singhagra et al Int J Sci Res Sci & Technol. November-December-2022, 9 (6) : 657-664

659

Table 1: Hyperparameters used in the gamma

distribution

Hyperparameter Purpose Value

a Shape parameter that

shifts the size and

location of ‘mound’.

5

size Number of samples to be

taken from gamma

distribution

50

000

loc Starting position of

gamma distribution, in

other words, how much it

is shifted from the origin.

5

scale Scale factor to be applied

to the original gamma

distribution.

0.5

Table 1 showcases the hyperparameters used while

creating the gamma distribution and their impact on

the final distribution generated.

The final probability distribution was a sorted list of

50 000 samples from a gamma distribution with times

that ranged from 5 seconds to 15 seconds. The

distribution was taken as a set of samples rather than a

continuous equation to facilitate finding mathematical

quantities such as mean, median, and mode while

running the different algorithms.

3.2 Mathematical Quantities

The following mathematical quantities inspire the

algorithms used:

• Mean: The sum of all values in a list divided

by the number of elements in the list.

• Median: The value present at the halfway

point when linearly traversing an ordered list

of numbers of ascending value.

• Mode: The value most common / appearing

the most in a list.

Table 2 : Mathematical quantities calculated

Name of Quantity How to Calculate

average Finds the mean of a given list

averagep10 Finds the mean of a given list

and adds 20% of the

difference between the

maximum and mean value to

it

averagem10 Finds the mean of a given list

and reduces 20% of the

difference between the

minimum and mean value

from it

median Finds the median value in an

ordered list

medianp10 Finds the value found at the

position 60% into the list

medianm10 Finds the value found at the

position 40% into the list

peak Divides the list into a

histogram with 100 bars of

equal interval and returns

the average of the interval of

the bar with the highest

density

peak2 Divides the list into a

histogram with 100 bars of

equal interval and returns

the average of the interval of

the bar with the second

highest density

peak3 Divides the list into a

histogram with 100 bars of

equal interval and returns

the average of the interval of

the bar with the third

highest density

minimum Returns the maximum value

of the list

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 9 | Issue 6

Rishith Singhagra et al Int J Sci Res Sci & Technol. November-December-2022, 9 (6) : 657-664

660

Table 3 shows how different quantities will be

calculated for the algorithms that will be run. Each

quantity will be calculated based on an inputted list of

numbers.

3.3 Additional Functions

Fuel Efficiency

def fuelConsumed(v, d):

 v = v * 3.6

 efficiency = 0.0019 * (v ** 2) - 0.2506 * v + 13.74

 fuelconsumed = (efficiency / 100) * (d / 1000)

 return fuelconsumed

Figure 3: Code used to calculate fuel consumption

Figure 3 shows the function fuelConsumed that

returns the amount of fuel consumed in liters,

fuelconsumed, when given the car’s speed in meters

per second, v, and the distance traveled in meters, d,

as inputs. This function is a python implementation of

the following fuel efficiency equation (Tarulescu &

Tarulescu, 2016):

𝑦 = 0.0019𝑥2 − 0.2506𝑥 + 13.74

Equation 1: Equation for fuel efficiency of a car

In Equation 1, y represents the fuel efficiency of a car

in liters consumed per 100 kilometers driven, where x

is the vehicle’s average speed in kilometers per hour.

In the function, the fuel efficiency is converted to

liters per kilometer and multiplied by the distance

traveled in kilometers to find the total fuel consumed.

Air Resistance

def accelerationReduction(v, p=1.202, A=3.2, C=0.4, m=1500):

 resistance = (1 / 2) * p * A * C * (v ** 2)

 accRed = resistance / m

 return accRed

Figure 4: Code used to calculate air resistance

Figure 4 shows the function accelerationReduction

that returns the reduction in the maximum

acceleration of a car traveling at speed v in meters per

second due to air resistance. This function is a python

implementation of the following air resistance

equation (Car Performance Formulas, 2022):

𝐴𝑅 =
1

2
𝜌𝐴𝑓𝐶𝑑(

𝑣

3.6
)2

Equation 2: Equation for air resistance force on a car

In Equation 2, AR represents the air resistance force,

in Newtons, on a car where 𝜌 is the air density in

kilograms per meter cubed, 𝐴𝑓 is the total area of the

car that is perpendicular to relative wind velocity and

is in a frontal position, 𝐶𝑑 is the drag coefficient, and

v is the car’s speed in kilometers per hour. This

equation is valid if wind velocity is negligible. For the

car in this experiment, the air density was set to 1.202

kilograms per meter cubed, the frontal car area was

set as 3.2 meters squared, the drag coefficient was set

to 0.4, and the mass was decided as 1500 kilograms.

The resistive force that is found using the equation

above is then used to calculate the reduction in

maximum acceleration using Newton’s second law:

𝑎 =
𝐹

𝑚

∴ 𝑎 =
𝐹

1500

Equation 3: Equation for the reduction in acceleration

using air resistance

The value found for the reduction in acceleration is

then stored in a variable, accRed, and returned to the

function caller.

Technical Approach

The issue to approach is as follows: there is a car that

starts at Point A and must reach point B in the most

time-efficient and fuel-efficient manner; however,

there is a stop light at a fixed position in between the

two points whose time of turning green is unknown

and dictated by a set probability distribution. The car

can dynamically accelerate and decelerate, but it can

not have a velocity of less than 0 m/s at any point,

meaning it can only move in the forward direction.

The first condition during runtime is that the

algorithm must end, and the timer must stop when

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 9 | Issue 6

Rishith Singhagra et al Int J Sci Res Sci & Technol. November-December-2022, 9 (6) : 657-664

661

the car reaches or passes point B. The second

condition is that when the light turns green, the car

must accelerate until it reaches its maximum velocity

and continues traveling at maximum velocity until it

reaches its destination.

For this simulation, Point A is located at 0 meters,

Point B is located at 80 meters, and the traffic light is

placed halfway between both points at 40 meters. The

car can accelerate at a maximum rate of 2.87 meters

per second squared at 0 Newtons of air resistance,

decelerate at a maximum rate of 4.57 meters per

second squared, and achieve a maximum speed of

22.22 meters per second, which is equivalent to 80

kilometers per hour.

Figure 5: Flowchart for running one simulation

Figure 5 is a flowchart that shows how a simulation is

run. It can be observed that the simulation moves in

time steps of 0.1 seconds, meaning that new

acceleration, velocity, and displacement are calculated,

and the current simulation time is increased by 0.1

seconds for each iteration of the loop.

curDistribution = [x - curTime for x in data_gamma if x > curTime]

timeToGreen = # mathematical quantity from Table 2

desiredVel = distGreen / timeToGreen

Figure 6: Code used to update distribution each time

it loops

While the light is still red, the simulation works by

taking the original list of 50 000 values sampled from

the gamma distribution and removing all values that

happen before the current simulation time, then

subtracting the simulation time to get a final current

distribution, shown by the variable named

curDistribution, which is a list of values that

represent a probability distribution of the light

turning green after that many seconds from the

current simulation time. curDistribution is then

passed as an input to one of the various functions

defined to find a mathematical quantity listed in

Table 2, depending on which one was chosen for the

simulation. Using the distance left till the stop light,

distGreen, and the value assigned to timeToGreen, the

car’s velocity should aim to reach that moment is

calculated.

Once desiredVel is calculated, the algorithm executes

a series of logical comparisons to find the acceleration

that will help reach the desired velocity the quickest

after considering maximum acceleration, maximum

deceleration, maximum speed, and minimum speed.

The velocity is then updated based on the new

acceleration, and the displacement is updated based

on the new velocity. The fuel consumption in that 0.1

seconds of simulation is calculated and added to the

running total, the time is then incremented by 0.1

seconds, and all data about the car is stored.

Air resistance is considered by calculating the

acceleration reduction for every iteration of the loop

using the accelerationReduction function with the

last recorded velocity as input and overwriting the

max acceleration value by subtracting what the

function returned from 2.87 meters per second, the

max acceleration when the car is at rest.

This process is repeated until the light turns green,

and a standard loop that makes the car accelerate to

full speed until it reaches the destination is executed.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 9 | Issue 6

Rishith Singhagra et al Int J Sci Res Sci & Technol. November-December-2022, 9 (6) : 657-664

662

IV. CONCLUSION

In our study, the results showed that PRP is a safe and

effective treatmentmodality for chronic non-healing

ulcers. Decrease in pain was observed in post PRP

treatment.Delivering of growth factors to target site

enhances the wound healing rates of chronic non

healing ulcers.PRP seems to be efficient to treat

chronic non healing ulcers which are non responsive

to classical conservative treatments. Using PRP to

treat chronic wounds/ulcers may not only enhance

healing, but also prevent lower extremity amputations

caused by nonhealing wounds.There by reducing over

all hospital stay, inconvenience of constant

medication and morbidity.

V. Experiments

5.1 Experimental Setup

I ran the algorithms below using Python 3.10 on

Windows 11 version 22H2 on a ROG Strix

G533QS_G533QS, which houses 32GB of random-

access memory and an 8-core AMD Ryzen 9 5900HX

clocked at 3.3 GHz. The module matplotlib was used

to visualize the data collected, pickle was used to store

the data collected, numpy was used to create data

structures and perform calculations, scipy was used to

generate a probability distribution, random was used

to choose times for the stop light randomly, and

pyinstaller was used to compile the python code into

an executable.

5.2 Average Results

Table 3: Average results for all ten algorithms

Algorithm

Used

Average Time to

Reach Destination

(seconds)

Average Fuel

Consumed

(ml)

average 12.15 6.686

averagep10 12.29 6.674

averagem10 12.24 6.673

median 12.16 6.678

medianp10 12.11 6.67

medianm10 12.23 6.668

peak 11.58 6.492

peak2 11.86 6.553

peak3 12.04 6.575

minimum 13.17 6.45

Table 3 displays the average results obtained for the

ten different approaches over 1756 simulations for

each algorithm. The results show that the approach

with the fastest average time was peak, followed by

peak2 and peak3. The results also show that the most

fuel-efficient algorithm was minimum, followed by

peak and peak2.

Table 4: Composite scores for algorithms

Algorithm Time-Efficiency Score Fuel-Efficiency Score Composite Score

average 0.642 0 0.642

averagep10 0.553 0.051 0.604

averagem10 0.585 0.055 0.64

median 0.635 0.034 0.669

medianp10 0.667 0.068 0.735

medianm10 0.591 0.076 0.667

peak 1 0.822 1.822

peak2 0.824 0.564 1.388

peak3 0.711 0.47 1.181

minimum 0 1 1

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 9 | Issue 6

Rishith Singhagra et al Int J Sci Res Sci & Technol. November-December-2022, 9 (6) : 657-664

663

Table 4 shows the Time-Efficiency Score (TES) and

Fuel-Efficiency Score (FES) for each algorithm, which

was calculated by scaling all scores in a way where

the highest reading was assigned a value of 0 and the

lowest reading was assigned a value of 1. A composite

score was derived by adding both the TES and FES

values to show that the best algorithm for

approaching this problem is peak with a composite

score of 1.822, followed by peak2 with a score of

1.388, and peak3 with a score of 1.181.

5.3 Edge Cases

Although average results are a fair indicator of which

algorithm will perform better, analyzing each

algorithm’s behavior in edge cases is also essential to

identify an approach’s strengths and weaknesses.

Figure 7: Graphing performance of all algorithms at

different times

Table 5: Maximum and minimum results

Algorithm Minimum

Crossing Delay (s)

Maximum

Crossing Delay (s)

Crossing Delay

Range (s)

average 4.2 5.4 1.2

averagep10 4.7 5.4 0.7

averagem10 4.1 5.4 1.3

median 4.1 5.4 1.3

medianp10 4.2 5.4 1.2

medianm10 4.0 5.4 1.4

peak 3.3 8.6 5.3

peak2 3.6 7.4 3.8

peak3 3.7 7.1 3.4

minimum 4.5 6.0 1.5

Figure 7 and Table 5 measure the time between the

stop light turning green and the car passing Point B.

As visible in Figure 7 and Table 5, peak may have

been the algorithm with the highest average

composite scores but is also the most unreliable, with

the difference between the best-case scenario and

worst-case scenario for the algorithm being 5.3

seconds. Similarly, the algorithm with the worst

composite score is the most reliable of the 10, with a

range in crossing delay of just 0.7 seconds. This result

shows that because of the ‘mound’ in the probability

distribution, a volatile algorithm like peak can

generate phenomenal average results but also have

specific performances far worse than any other.

VI. Conclusion

Through the findings in this paper, I concluded that

peak is likely the best algorithm to use if approaching

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 9 | Issue 6

Rishith Singhagra et al Int J Sci Res Sci & Technol. November-December-2022, 9 (6) : 657-664

664

a traffic light with a given probability distribution and

wish to achieve the fastest average time; however, if

you want to ensure consistency and reliability even

when luck is not on your side, one of the other

models with a lower crossing delay range would fit

your requirements better.

One way to improve the effectiveness of the

algorithms would be to extract ranges where specific

algorithms work best and create a blend of 2 or more

approaches used in the paper based on the

distribution during the current simulation time.

One problem with the simulation can be observed in

Figure 7: The plots are very jagged and have slight

increases and decreases in the form of zigzags. These

are caused by the simulation working in 0.1-second

timesteps while the stoplight can turn green at a far

more continuous level with up to 10 decimal points of

precision. A solution to this would be to increase time

step resolution to something like 0.01 seconds,

making the graph much smoother to the eye and

more accurate for analytical purposes.

This same problem could also be approached with

more modern techniques such as machine learning,

which would not limit us to set algorithms to follow

or quantities to find; instead, the model could be used

to dynamically find optimal acceleration values using

highly complex approaches that cannot be logically

outlined.

Although the direct real-world application of the

research in this paper is limited, as rarely are these

ideal conditions met, such as no congestion before the

traffic light. In addition, a human driver cannot

compute the different quantities required to take

these approaches accurately. Therefore, research on

different methods for cars to approach stop lights in

more real-world settings, such as dealing with

congestion, pedestrians, or even multiple traffic lights,

or in a way that a human driver could execute may

help in devising better systems to control the flow of

traffic on roads as well as minimize the problems

associated with idling and wasting of time and

velocity at stop lights.

VII. REFERENCES

[1]. Crow, S. (2018, September 19). You’ll Spend This

Much of Your Life Waiting at Red Lights. Retrieved

from yahoo!: https://www.yahoo.com/lifestyle/ll-

spend-much-life-waiting-140236110.html

[2]. Ghazal, B., Khatib, K., Chahine, K., & Kherfan, M.

(2016). Smart traffic light control system. Beirut,

Lebanon: IEEE.

[3]. Navarro-Espinoza, A. L.-B.-G.-C.-M.-M.-G. (2022).

Traffic Flow Prediction for Smart Traffic Lights

Using Machine Learning Algorithms. Mexico:

Technologies.

[4]. U.S. Department of Energy. (2015). Idling Reduction

for Personal Vehicles. Chicago: Argonne National

Laboratory. Retrieved 09 28, 22, from

https://afdc.energy.gov/files/u/publication/idling_per

sonal_vehicles.pdf

[5]. U.S. Department of Energy. (2022, September 28).

Medium-Duty Vehicle Idle Reduction Strategies.

Retrieved from Alternative Fuels Data Center:

https://afdc.energy.gov/conserve/idle_reduction_me

dium.html

[6]. Wikipedia. (2022, September 28). Idle (engine).

Retrieved from Wikipedia:

https://en.wikipedia.org/wiki/Idle_(engine)

Cite this article as :

Rishith Singhagra, Dr. Andrew Haas, "Comparing

Efficiencies of Different Logical Approaches of Crossing a

Stop Light", International Journal of Scientific Research in

Science and Technology (IJSRST), Online ISSN : 2395-602X,

Print ISSN : 2395-6011, Volume 9 Issue 6, pp. 657-664,

November-December 2022. Available at doi :

https://doi.org/10.32628/IJSRSET229666

Journal URL : https://ijsrst.com/IJSRSET229666

