
Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed under the 

terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, 

distribution, and reproduction in any medium, provided the original work is properly cited 

 

 

  

 

  

 

International Journal of Scientific Research in Science and Technology 

Print ISSN: 2395-6011 | Online ISSN: 2395-602X (www.ijsrst.com) 

doi : https://doi.org/10.32628/IJSRST2310152 

 

 

 

 

 

 

511 

dx 

Solving System of Higher-Order Linear Differential Equations On 

The Level of Operators 
Amaresh B 

Department of Mathematics, Sindhu Degree College, Adarsh Nagar, Tandur . Dist – Vikarabad, Telangana, 

India 

 

 

Article Info 

Publication Issue 

Volume 10, Issue 1 

January-February-2023 

Page Number  

511-520  

Article History 

Accepted:  01 Feb 2023 

Published: 22 Feb 2023 

ABSTRACT 

In this paper, I  present a method for solving the system of higher-order linear 

differential equations (HLDEs) with inhomogeneous initial conditions on the 

level of operators. Using proposed method, we compute the matrix Green’s 

operator as well as the vector Green’s function of a fully-inhomogeneous initial 

value problems (IVPs). Examples are discussed to demonstrate the proposed 

method. 
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I. INTRODUCTION 

 

Many researchers and engineers have vigorously studied the boundary value problems and its applications. 

Normally, the systems of HLDEs arise in many applications, for example, the models of electrical circuits, multi-

body systems, diffusion processes, robotic modelling and mechanical systems, nuclear reactors, dissipative 

operators, vibrating wires in magnetic fields etc. 

Suppose F = 𝐶∞  [a, b] and [a, b] ⊂ R. Consider a system of n linear ordinary differential equations of 

order l ≥ 1 of the form  

AlDlu(x) + · · · + A1Du(x) + A0u(x) = f (x), (1) 

where D = d is a differential operator, Ai ∈ 𝐹𝑛×𝑛, for i = 0, . . . , l, are coef-ficient matrices, u(x) = 

(u1(x), . . . , un(x))T ∈ Fn is unknown vector to deter- mine, and f (x) = (f1(x), . . . , fn(x))T ∈ Fn is an n-

dimensional vector forcing function. If det(Al) =/ 0, then the system (1) is called of the first kind. I n 

this paper, I consider a system of the first kind with constant coefficients. To obtain an unique 

solution, we must have a set of initial conditions. The number of initial conditions depends on the 

number of independent solutions of the homogeneous system (1). In other words, the number of 

initial conditions and the dimension of null space of matrix differential operator of a given system 

must coincide. Hence, for a system of the first kind, one needs nl initial conditions.  
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