

Spectral Resolution of a (λ, μ) - jection of Third Order Dr. Rajiv Kumar Mishra

Associate Professor Department of Mathematics, Rajendra College Chapra (J.P. University, Chapra, Bihar, PIN - 841301) E-mail - dr.rkm65@gmail.com

ABSTRACT

In this paper I consider an operator E which is a (λ, μ) -jection of third order and obtain its spectral

resolution.

Keywords:- (λ, μ) -jection, projection, spectrum, spectral resolution

I. INTRODUCTION

A trijection operator was introduced by Dr. P. Chandra in his Ph.D. thesis titled "Investigation into the theory of operators and linear spaces".[1] A projection operator E is defined as $E^2=E$ in DUnford and Schwarz [2], p.37 and Rudin [3], p.126. E is a trijection operator if $E^3=E$. I have defined E to be a λ -jection of third order [5], if

 $E^3 + \lambda E^2 = (1 + \lambda)E$, λ being a scalar To generalise it further, I have defined E to be a (λ, μ) -jection if $\lambda E^3 + \mu E^2 = (\lambda + \mu)E$ λ, μ being scalars.

I. Definition

Let H be a Hilbert space and E an operator on H. Let $\lambda_1, \lambda_2, \lambda_3, \dots, \lambda_m$ be eigen values of E and $M_1, M_2, M_3, \dots, M_m$ be their corresponding eigen spaces. Let $P_1, P_2, P_3, \dots, P_m$ be the projections on these eigen spaces. Then according to definition of spectral theorem in SImmons [4], pp 279-290, the following statements are all equivalent to one another.

- 1. The M_i^s are pairwise orthogonal and span H.
- 2. The P_i^s are pairwise orthogonal, $I = \sum_{i=1}^{m} P_i$ and $E = \sum_{i=1}^{m} \lambda_i P_i$
- 3. E is normal.

Then the set of eigen values of E is called its spectrum and is denoted by $\boldsymbol{\sigma}$ (E). Also $E = \lambda_1 P_1 + \lambda_2 P_2 + \dots + \lambda_m P_m$

Expression for E given above is called the spectral resolution of E.

II. Main Result **Theorem 1** Let E be a (λ,μ) -jection. Then there are two mutually orthogonal projections L and M such that E = $L - \frac{(\lambda + \mu)}{\lambda} M$ where $L = \frac{\lambda E^2 + (\lambda + \mu)E}{2\lambda + \mu}$ and $M = \frac{\lambda^2 (E^2 - E)}{(\lambda + \mu)(2\lambda + \mu)}$ assuming $\lambda \neq 0$, $\lambda + \mu \neq 0$, $2\lambda + \mu \neq 0$ **Proof:-**Let us assume that E can be expressed in form aL+bM, L and M being two mutually orthogonal projections. This means E = aL + bMWhere $L^2=L$, $M^2=M$, LM=0a,b being scalars. Hence $aE = a^2L + abm \quad (1)$ From (1) and (2), $aE - E^2 = abM - b^2M = b(a - b)M$ $\Rightarrow M = \frac{aE - E^2}{b(a - b)} \text{ assuming } a \neq 0, b \neq 0, a - b \neq 0$ So, $bM = \frac{aE - E^2}{a - b}$ Hence $aL = E - bM = E - \frac{(aE - E^2)}{a - b} = \frac{E^2 - bE}{a - b}$ $\Rightarrow L = \frac{E^2 - bE}{a(a-b)}$ Since LM = 0, we have $\frac{E^2 - bE}{a(a-b)} * \frac{aE - E^2}{b(a-b)} = 0$ $\Rightarrow (E^2 - bE)(aE - E^2) = 0$ $\Rightarrow aE^3 - E^4 - abE^2 + bE^3 = 0$ $\Rightarrow E^4 = (a+b)E^3 - abE^2 \quad (3)$ But E being a (λ, μ) -jection $\lambda E^3 = (\lambda + \mu)E - \mu E^2$ $\Rightarrow \lambda E^4 = (\lambda + \mu)E^2 - \mu E^3$ Comparing (3) and (4), $a + b = \frac{-\mu}{\lambda}$ and $ab = \frac{-(\lambda + \mu)}{\lambda}$ Solving for a and b, a = 1 and $b = \frac{-(\lambda + \mu)}{2}$ Hence $E = L - \frac{(\lambda + \mu)}{\lambda} M$

Also
$$L = \frac{E^2 - bE}{a(a-b)} = \frac{E^2 + \frac{(\lambda+\mu)E}{\lambda}}{1 + \frac{\lambda+\mu}{\lambda}} = \frac{\lambda E^2 + (\lambda+\mu)E}{2\lambda+\mu}$$
 assuming $2\lambda + \mu \neq 0$
$$M = \frac{aE - E^2}{a(a-b)} = \frac{E - E^2}{a(a-b)} = \frac{\lambda^2(E^2 - E)}{a(a-b)}$$

 $M = \frac{1}{b(a-b)} = \frac{1}{\frac{-(\lambda+\mu)}{\lambda}(1+\frac{\lambda+\mu}{\lambda})} = \frac{1}{(\lambda+\mu)(2\lambda+\mu)}$ assuming $\lambda + \mu \neq 0$ Note:- Since L, M are projections such that LM=0 their sum L+M is also a projection. Call it N, then

$$N = L + M = \frac{\lambda E^2 + (\lambda + \mu)E}{2\lambda + \mu} + \frac{\lambda^2 (E^2 - E)}{(\lambda + \mu)(2\lambda + \mu)} = \frac{\lambda E^2 + \mu E}{\lambda + \mu}$$

Theorem 2

Let E be a (λ, μ) -jection on a Hilbert space H. Then there are three pairwise orthogonal projections P_1, P_2, P_3 such that

 $E = \lambda_1 P_1 + \lambda_2 P_2 + \lambda_3 P_3$ where $\lambda_1, \lambda_2, \lambda_3$ are scalars and $I = P_1 + P_2 + P_3$

Proof:-

Due to theorem I $E = L - \frac{(\lambda + \mu)}{\lambda}M$ Call L as P₁, M as P₂ and I-N as P₃ Then P₁ + P₂ + P₃ = L + M + I - N = I Also P₁P₂ = LM = 0 P₁P₃ = L(I - L - M) = L - L² = 0 P₂P₃ = M(I - L - M) = M - M² = 0 So, P₁, P₂, P₃ are pairwise orthogonal projections. Choose $\lambda_1 = 1, \lambda_2 = \frac{-(\lambda + \mu)}{\lambda}$ and $\lambda_3 = 0$ Then $E = P_1 - \frac{(\lambda + \mu)}{\lambda}P_2 = P_1 - \frac{(\lambda + \mu)}{\lambda}P_2 + 0.P_3$ Choose $\lambda_1 = 1, \lambda_2 = \frac{-(\lambda + \mu)}{\lambda}$ and $\lambda_3 = 0$ Then $E = \lambda_1 P_1 + \lambda_2 P_2 + \lambda_3 P_3$

Theorem 3

Range of projection P₁ denoted by R_{P_1} is given by $R_{P_1} = \{z: Ez = z\} = M_1(say)$ Proof:-

Let z be an element of R_{P_1} , then since P_1 is a projection, $P_1z=z$ Now $EP_1 = E \frac{(\lambda E^2 + (\lambda + \mu)E)}{2\lambda + \mu} = \frac{\lambda E^3 + (\lambda + \mu)E^2}{2\lambda + \mu} = \frac{\lambda E^3 + \mu E^2 + \lambda E^2}{2\lambda + \mu} = \frac{(\lambda + \mu)E + \lambda E^2}{2\lambda + \mu} = P_1$ Hence $Ez = E(P_1z) = EP_1z = P_1z = z$ So $z \in M_1$ Hence $R_{P_1} \subseteq M_1$ (5) Conversely, let $z \in M_1$, then Ez=zThen $E^2z = E(Ez) = Ez = z$

So, $P_1 z = \frac{(\lambda E^2 + (\lambda + \mu)E)}{2\lambda + \mu} z = \frac{\lambda z + (\lambda + \mu)z}{2\lambda + \mu} = \frac{2\lambda + \mu}{2\lambda + \mu} z = z$ Hence $z \in R_{P_1}$ Thus $M_1 \subseteq R_{P_1}$ (6) From (5) and (6) $R_{P_1} = M_1$

Theorem 4

We show that

$$R_{P_2} = \{z: Ez = -(\frac{\mu}{\lambda} + 1)z\} = M_2 (say)$$

Proof:-

Let $z \in R_{P_2}$, then $P_2 z = z$ Also $EP_2 = \frac{E(\lambda^2(E^2 - E))}{(\lambda + \mu)(2\lambda + \mu)} = \frac{\lambda^2(E^3 - E^2)}{(\lambda + \mu)(2\lambda + \mu)}$ but $\lambda E^3 - \lambda E^2 = -\mu E^2 - \lambda E^2 + (\lambda + \mu)E = (\lambda + \mu)(E - E^2)$ Hence $EP_2 = \frac{\lambda(\lambda+\mu)(E-E^2)}{(\lambda+\mu)(2\lambda+\mu)} = \frac{\lambda(E-E^2)}{2\lambda+\mu} = \frac{-\lambda^2(E^2-E)}{(\lambda+\mu)(2\lambda+\mu)} * \frac{(\lambda+\mu)}{\lambda} = -(1+\frac{\mu}{\lambda})P_2$ So $Ez = EP_2 z = -(1 + \frac{\mu}{\lambda})P_2 z = -(1 + \frac{\mu}{\lambda})z$ Thus $z \in M_2$ Hence $R_{P_2} \subseteq M_2$ (7) Conversely, let $z \in M_2$, then $Ez = -(\frac{\mu}{2} + 1)z$ $E^{2}z = E(Ez) = -(\frac{\mu}{2} + 1)Ez = (\frac{\mu}{2} + 1)^{2}z$ So $E^2 z - Ez = [(\frac{\mu}{\lambda} + 1)^2 + (\frac{\mu}{\lambda} + 1)]z = (\frac{\mu}{\lambda} + 1)(\frac{\mu}{\lambda} + 2)z$ $=\frac{(\lambda+\mu)(2\lambda+\mu)}{\lambda^2}z$ Hence $P_2 z = \frac{\lambda^2 (E^2 - E)z}{(\lambda + \mu)(2\lambda + \mu)} = \frac{(\lambda + \mu)(2\lambda + \mu)}{(\lambda + \mu)(2\lambda + \mu)} z = z$ i.e. $z \in R_{P_2}$ Hence $M_2 \subseteq R_{P_2}$ —------(8) Therefore from (7) and (8), $R_{P_2} = M_2$ **Theorem 5** We show that $R_{P_3} = \{z: Ez = 0\} = M_3(say)$

Proof:-

We have $P_3 = I - N = I - P_1 - P_2$ Let $z \in R_{P_3}$, then $P_3 z = z$

Theorem 6

Let E be a (λ, μ) -jection on a Hilbert space H. Let $\lambda_1 = 1, \lambda_2 = -(1 + \frac{\mu}{\lambda})$ and $\lambda_3 = 0$ be eigen values of E Let M_1, M_2, M_3 be their corresponding eigen spaces. Let P_1, P_2, P_3 be projections on these eigen spaces where $P_1 = \frac{\lambda E^2 + (\lambda + \mu)E}{2\lambda + \mu}, P_2 = \frac{\lambda^2 (E^2 - E)}{(\lambda + \mu)(2\lambda + \mu)}, P_3 = I - (\frac{\lambda E^2 + \mu E}{\lambda + \mu})$ Then $P_1 + P_2 + P_3 = I$ P_i^s are pairwise orthogonal and spectral resolution of E is given by (assuming $\lambda \neq 0, \lambda + \mu \neq 0, 2\lambda + \mu \neq 0$

 $E = \lambda_1 P_1 + \lambda_2 P_2 + \lambda_3 P_3$ Spectrum of E is given by $\{1, -(\frac{\mu}{4} + 1), 0\}$

Proof:-

(0)

Theorem 3,4,5 show that $\lambda_1 = 1$, $\lambda_2 = -(1 + \frac{\mu}{\lambda})$ and $\lambda_3 = 0$ are eigen values of E, M₁, M₂, M₃ are their corresponding eigen spaces and P₁, P₂, P₃ are pairwise orthogonal projections on these eigen spaces. Also due to theorem 2,

 $E = \lambda_1 P_1 + \lambda_2 P_2 + \lambda_3 P_3$ and $I = P_1 + P_2 + P_3$

Hence expression for E given above is the spectral resolution of E. Since the eigen values of E are $1, -(1 + \frac{\mu}{\lambda})$ and 0, spectrum of E is given by

$$\sigma(E) = \{1, -(1+\frac{\mu}{\lambda}), 0\}$$

III. References

- Chandra, P: "Investigation into the theory of operators and linear spaces" (Ph.D. Thesis, Patna University, 1977)
- Dunford, N. and Schwartz, J.:
 "Linear operators, part I" Interscience publishers, Inc., New York, 1967, P. 37
- Rudin, W.: "Functional Analysis", McGraw- Hill Book Company, Inc., New York, 1973, p. 126.
- 4. Simmons, G.F.:
 "Introduction to Topology and Modern Analysis", McGraw Hill Book COmpany, Inc., New York, 1963
- Mishra, R.K., "On A Special Type of Operator, Called ?-Jection of Third Order", International Journal of Scientific Research in Science and Technology (IJSRST), Online ISSN : 2395-602X, Print ISSN : 2395-6011, Volume 4 Issue 2, pp. 2321-2328, January-February 2018.

Cite this Article

Dr. Rajiv Kumar Mishra, "On A Special Type of Operator, Called λ-Jection of Third Order", International Journal of Scientific Research in Science and Technology (IJSRST), Online ISSN : 2395-602X, Print ISSN : 2395-6011, Volume 4 Issue 2, pp. 2321-2328, January-February 2018. Journal URL : https://ijsrst.com/IJSRST229411351