

Spectral Resolution of Square of a **\lambda-jection** of Fourth Order

Dr. Rajiv Kumar Mishra

Associate Professor

Department of Mathematics, Rajendra College Chapra
(J.P. University, Chapra, Bihar, PIN - 841301)

E-mail - dr.rkm65@gmail.com

Article Info ABSTRACT

Volume 8, Issue 4 In this paper I define a λ - jection of fourth order and obtain spectral

Page Number : 723-730

Publication Issue resolution of square of such an operator.

July-August-2021

Keywords – λ -jection of third order, λ -jection of fourth order, projection

Article History

Received: 06 May 2021 spectrum.

Accepted: 20 July 2021 Published: 13 August 2021

I. INTRODUCTION

Dr. P. Chandra introduced the concept of trijection in his Ph.D thesis titled "Investigation into the theory of operators and linear spaces".[1] An operator E is called a projection if $E^2 = E$ as given in Dunford and Schwarz [2],p.37 or Rudin [3], p.126. E is trijection operator if $E^3 = E$. I had defined E to be a λ -jection of third order [5] if

 $E^{3} + \lambda E^{2} = (1 + \lambda)E$, λ being a scalar

To further extend this idea, I define E to be a λ - jection of fourth order if

 $E^{4} + \lambda E^{3} = (1 + \lambda)E^{2}$, λ being a scalar

1. Definition

Let H be a Hilbert space and E an operator on H. Let λ_1 , λ_2 ,...., λ_m be eigen values of E and $M_1, M_2,..., M_m$ be their corresponding eigen spaces. Let $P_1, P_2,..., P_m$ be the projection on

these eigen spaces, Then according to definition of spectral theorem in Simmons [4],p. 279-290, the following statements are all equivalent to one-another,

- 1) The Mi 's are pairwise orthogonal and span H.
- 2) The Pⁱ 's are pairwise orthogonal, $I = \sum_{i=1}^{m} P_i$ and $E = \sum_{i=1}^{m} \lambda_i P_i$
- 3) E is normal

Then the set of eigen values of E is called its spectrum ,denoted by $\sigma(E)$. Also if $E = \lambda_1 P_1 + \lambda_2 P_2 + \dots + \lambda_m P_m$

Then expression for E given above is called the spectral resolution of E.

II. MAIN RESULT

Theorem 1

Let E be a λ jection of 4th order. Then E² can be expressed as a linear combination of three pairwise orthogonal projections.

(where $\lambda \neq 0,-1$ or-2)

Proof:

First, we examine when $aE^3 + bE^2$ is a projection, a,b being scalars, i.e.-

$$(aE^3 + bE^2)^2 = aE^3 + bE^2$$

$$\Rightarrow a^2E^6 + b^2E^4 + 2abE^5 = aE^3 + bE^2 \qquad (1)$$

So we need to find E^5 and E^6 in terms of E^2 and E^3 .

We have

$$E^4 + \lambda E^3 = (1 + \lambda)E^2$$

Let
$$\mu = \lambda + 1$$
, then $\lambda = \mu - 1$

Then
$$E^4 + (\mu - 1)E^3 = \mu E^2$$

Also since $\lambda \neq 0$, -1 or -2

$$\mu \neq 1.0 \text{ or } -1$$

Now
$$E^4 - E^3 = \mu(E^2 - E^3)$$

Applying E to both sides,

$$E^{5} = \mu E^{3} + (1 - \mu)E^{4} = \mu E^{3} + (1 - \mu)[\mu E^{2} + (1 - \mu)E^{3}]$$

$$= (\mu - \mu^{2})E^{2} + (\mu + (1 - \mu)^{2})E^{3}$$

$$= (\mu - \mu^{2})E^{2} + (1 - \mu + \mu^{2})E^{3} \qquad (3)$$

Applying E to both sides

$$E^6 = (\mu - \mu^2)E^4 + (1 - \mu + \mu^2)E^4$$

In relation (1), we put values of E⁴, E⁵, E⁶ from equations (2), (3) and (4), and get

$$a^{2}[(\mu - \mu^{2} + \mu^{3})E^{2} + (1 - \mu + \mu^{2} - \mu^{3})E^{3}] + b^{2}[\mu E^{2} + (1 - \mu)E^{3}]$$
$$+2ab[(\mu - \mu^{2})E^{2} + (1 - \mu + \mu^{2})E^{3}] = aE^{3} + bE^{2}$$

Equating co-efficients of E^2 on both sides,

$$a^{2}(\mu - \mu^{2} + \mu^{3}) + b^{2}\mu + 2ab(\mu - \mu^{2}) = b$$
 —-----(5)

Equating co-efficients of E³ on both sides,

Adding (5) and (6),

$$a^2 + b^2 + 2ab = a + b$$

$$\Rightarrow (a+b)^2 = (a+b)$$

$$\Rightarrow a + b = 0 \text{ or } 1$$

Let
$$a + b = 0$$
, then $b = -a$

Then from (5),

$$a^{2}(\mu - \mu^{2} + \mu^{3}) + a^{2}\mu - 2a^{2}(\mu - \mu^{2}) = -a$$

Let $a \neq 0$, then

$$a[\mu - \mu^2 + \mu^3 + \mu - 2\mu + 2\mu^2] = -1$$

$$\Rightarrow a(\mu^2 + \mu^3) = -1 \Rightarrow a = \frac{-1}{\mu^2 + \mu^3} = \frac{-1}{\mu^2 (1 + \mu)} \qquad (\mu \neq 0, -1)$$
$$b = -a = \frac{-1}{\mu^2 + \mu^3}$$

Hence
$$aE^3 + bE^2 = \frac{E^2 - E^3}{\mu^2 + \mu^3} = \frac{E^2 - E^3}{\mu^2 (1 + \mu)}$$

Next let a + b = 1, Then b = 1 - a

Due to (5).

$$a^{2}(\mu - \mu^{2} + \mu^{3}) + (1 - a^{2})\mu + 2a(1 - a)(\mu - \mu^{2}) = 1 - a$$

$$\Rightarrow \mu\{a^2 + (1-a)^2 + 2a(1-a)\} - \mu^2(a^2 + 2a(1-a) + a^2\mu^3) = 1 - a$$

$$\Rightarrow \mu\{a + (1-a)\}^2 - \mu^2(2a - a^2) + a^2\mu^3 = 1 - a$$

$$\Rightarrow \mu - 2a\mu^2 + a^2\mu^2 + a^2\mu^3 = 1 - a$$

$$\Rightarrow a^{2}(\mu^{2} + \mu^{3}) - (2\mu^{2} - 1)a + \mu - 1 = 0$$

Hence
$$a = \frac{(2\mu^2 - 1) \pm \sqrt{(2\mu^2 - 1)^2 - 4(\mu^2 + \mu^3)(\mu - 1)}}{2(\mu^2 + \mu^3)} = \frac{2\mu^2 - 1 \pm 1}{2(\mu^2 + \mu^3)}$$

$$= \frac{2\mu^2}{2(\mu^2 + \mu^3)} \text{ or } \frac{2\mu^2 - 2}{2(\mu^2 + \mu^3)}$$

i.e.
$$a = \frac{1}{1+\mu}$$
 or $\frac{\mu-1}{\mu^2}$

When
$$a = \frac{1}{1+\mu}$$
 then $b = \frac{\mu}{1+\mu}$

So,
$$aE^3 + bE^2 = \frac{E^3}{1+\mu} + \frac{\mu E^2}{1+\mu} = \frac{E^3 + \mu E^2}{1+\mu}$$

When
$$a = \frac{\mu - 1}{\mu^2}$$
 then $b = \frac{\mu^2 - \mu + 1}{\mu^2}$

Then
$$aE^3 + bE^2 = \frac{(\mu - 1)E^3 + (\mu^2 - \mu + 1)E^2}{\mu^2}$$

So we have 3 projections which we name as

$$P_1 = \frac{E^3 + \mu E^2}{1 + \mu}, P_2 = \frac{E^2 - E^3}{\mu^2(\mu + 1)}$$

and
$$Q_3 = \frac{(\mu-1)E^3 + (\mu^2 - \mu + 1)E^2}{\mu^2}$$

We also mark that

$$P_1 + P_2 = \frac{E^3 + \mu E^2}{1 + \mu} + \frac{E^2 - E^3}{\mu^2 (\mu + 1)} = \frac{\mu^2 (E^3 + \mu E^2) + E^2 - E^3}{\mu^2 (\mu + 1)}$$
$$= \frac{(\mu^2 - 1)E^3 + (\mu^3 + 1)E^2}{\mu^2 (\mu + 1)} = \frac{(\mu - 1)E^3 + (1 - \mu + \mu^2)E^2}{\mu^2} = Q_3$$

Let $P_3 = I - Q_3$ which is also a projection.

Then we see that

$$P_1 P_2 = \frac{E^3 + \mu E^2}{1 + \mu} * \frac{E^2 - E^3}{\mu^2 (\mu + 1)} = \frac{(E^3 + \mu E^2)(E^2 - E^3)}{\mu^2 (\mu + 1)}$$

Now, numerator =
$$E^3(E^2 - E^3) + \mu E^2(E^2 - E^3)$$

$$=E^5-E^6+\mu E^4-\mu E^5=(1-\mu)E^5-E^6+\mu E^4$$

$$= (1-u)[\mu E^3 + (1-u)E^4] - (\mu - \mu^2)E^3 - (1-\mu + \mu^2)E^4 + \mu E^4$$

$$= (\mu - \mu^2)E^3 + (1 - \mu)^2E^4 - (\mu - \mu^2)E^3 - (1 - \mu + \mu^2)E^4 + \mu E^4$$

$$= E^{4}[(1-\mu)^{2} - 1 + \mu - \mu^{2} + \mu] = 0$$

Thus $P_1P_2 = 0$, i. e. P_1P_2 are orthogonal

$$P_1P_3 = P_1[I - Q_3] = P_1(I - P_1 - P_2) = P_1 - P_1^2 = 0$$

$$P_2P_3 = P_2[I - Q_3] = P_2(I - P_1 - P_2) = P_2 - P_2^2 = 0$$

Thus P_1 , P_2 , P_3 are pairwise orthogonal

Also

$$\begin{split} P_1 + \mu^2 P_2 &= \frac{E^3 + \mu E^2}{1 + \mu} + \frac{E^2 - E^3}{1 + \mu} = \frac{(\mu + 1)E^2}{1 + \mu} = E^2 \\ \text{Also } P_1 + P_2 + P_3 &= P_1 + P_2 + I - Q_3 = P_1 + P_2 + I - (P_1 + P_2) = I \\ \text{So } E^2 &= P_1 + \mu^2 P_2 = P_1 + \mu^2 P_2 + 0. P_3 = \lambda_1 P_1 + \lambda_2 P_2 + \lambda_3 P_3 \\ \text{where } \lambda_1 &= 1, \lambda_2 = \mu^2, \lambda_3 = 0 \end{split}$$

Thus E² is a linear combination of three pairwise orthogonal projections.

Theorem 2

Let R_{P_1} be the range of P_1 . Then

$$R_{P_1} = \{z: P_1 z = z\} = \{z: E^2 z = z\} = M_1(say)$$

Proof:-

Let $z \in R_{P_1}$, then since P_1 is a projection, $P_1z = z$

Now
$$E^2 P_1 = \frac{E^2 (E^3 + \mu E^2)}{1 + \mu} = \frac{E^5 + \mu E^4}{1 + \mu} = \frac{E^4 + \mu E^3}{1 + \mu}$$

$$= \frac{\mu E^2 + (1 - \mu)E^3 + \mu E^3}{1 + \mu} = \frac{\mu E^2 + E^3}{1 + \mu} = P_1$$

Hence
$$E^2z = E^2P_1z = P_1z = z \ i.e.z \in M_1$$

Conversely, let $z \in M_1$, $i.e. E^2 z = z$

Then
$$E^3z = E(E^2z) = Ez$$

$$\Rightarrow E^4z = E^2z = z$$

Now
$$E^4 z = \mu E^2 z + (1 - \mu) E^3 z$$

$$\Rightarrow z = \mu z + (1 - \mu)E^3 z$$

$$\Rightarrow (1-\mu)E^3z = (1-\mu)z$$

$$\Rightarrow E^3 z = z \ since (1 - \mu) \neq 0$$

Hence
$$P_1 z = \frac{E^3 z + \mu E^2 z}{1 + \mu} = \frac{z + \mu z}{1 + \mu} = z$$

$$or\ z\in R_{P_1}$$

Hence from (7) and (8),

$$R_{P_1}=M_1$$

Theorem 3

We show that

$$R_{P_2} = \{z: E^2z = \mu^2z\} = M_2(say)$$

Proof:-

Let
$$z \in R_{P_2}$$
 then $P_2 z = z$

Also,
$$E^2 P_2 = \frac{E^2 (E^2 - E^3)}{\mu^2 (\mu + 1)} = \frac{E^4 - E^5}{\mu^2 (\mu + 1)} = \frac{\mu E^2 + (1 - \mu) E^3 - E^5}{\mu^2 (\mu + 1)}$$

$$= \frac{\mu E^2 + (1 - \mu) E^3 - \{(\mu - \mu^2) E^2 + (1 - \mu + \mu^2) E^3\}}{\mu^2 (\mu + 1)} using (2) and (3)$$

$$=\frac{\mu^2 E^2 - \mu^2 E^3}{\mu^2 (\mu + 1)} = \frac{(E^2 - E^3)\mu^2}{\mu^2 (\mu + 1)} = \mu^2 P_2$$

So
$$E^2 P_2 z = \mu^2 P_2 z$$

$$\Rightarrow E^2 z = \mu^2 z$$

Thus
$$z \in M_2$$

Let
$$z \in M_2$$
 then $E^2z = \mu^2z \Rightarrow E^4z = E^2(\mu^2z) = \mu^4z$

Hence
$$E^4 z = \mu E^2 z + (1 - \mu) E^3 z$$

$$\Rightarrow \mu^4 z = \mu. \, \mu^2 z + (1 - \mu) E^3 z$$

$$\Rightarrow \mu^3(\mu - 1)z = (1 - \mu)E^3z$$

$$\Rightarrow E^3 z = -\mu^3 z$$

Hence
$$P_2 z = \frac{(E^2 - E^3)z}{\mu^2(\mu + 1)} = \frac{\mu^2 z + \mu^3 z}{\mu^3 + \mu^2} = z$$

Thus $z \in R_{P_2}$

Due to (9) and (10)

$$R_{P_2} = M_2$$

Theorem 4

We show that

$$R_{P_3} = \{z: E^2z = 0\} = M_3(say)$$

Proof:-

Now
$$E^2 P_3 = E^2 (I - Q_3) = E^2 (I - P_1 - P_2)$$

= $E^2 - E^2 P_1 - E^2 P_2 = E^2 - P_1 - \mu^2 P_2$

$$= E^2 - (P_1 + \mu^2 P_2) = E^2 - E^2 = 0$$
 (due to theorem 1)

Let $z \in R_{P_3}$ then $P_3 z = z$

Hence
$$E^2z = E^2P_3z = (E^2P_3)z = 0z = 0$$

So $z \in M_3$.

Hence
$$R_{P_3} \subseteq M_3$$
(11)

Conversely, let $z \in M_3$, then $E^2z = 0 \Rightarrow E^3z = 0$.

Hence
$$P_3 z = [I - P_1 - P_2]z$$

Now,
$$P_1 z = \frac{(E^3 + \mu E^2)}{(\mu + 1)} z = \frac{0}{\mu + 1} = 0$$

$$P_2 z = \frac{(E^2 - E^3)z}{u^2(u+1)} = \frac{0}{u^2(u+1)} = 0$$

So,
$$P_3 z = z - P_1 z - P_2 z = z$$

Thus $z \in R_{P_2}$

Hence,
$$M_3 \subseteq R_{P_2}$$
.....(12)

Due to (11) and (12),

$$R_{P_2}=M_3$$

Theorem 5

Let E be a λ -jection of fourth order (when $\lambda \neq 0$, -1 or -2) on a Hilbert space H. Then spectral resolution of E^2 is given by $E^2 = \lambda_1 P_1 + \lambda_2 P_2 + \lambda_3 P_3$ where $\lambda_1 = 1$, $\lambda_2 = \mu^2$ and $\lambda_3 = 0$. Also P_1, P_2, P_3 are pairwise orthogonal projections such that $P_1 + P_2 + P_3 = I$. Also spectrum of E^2 is given by

$$\sigma(E^2) = \{1, \mu^2, 0\}.$$

Proof:-

Due to theorem 1,

$$E^2 = \lambda_1 P_1 + \lambda_2 P_2 + \lambda_3 P_3$$

Where
$$\lambda_1 = 1$$
, $\lambda_2 = \mu^2$ and $\lambda_3 = 0$.

 P_1 , P_2 , P_3 are pairwise orthogonal projections

Such that $P_1 + P_2 + P_3 = I$.

Due to theorems (2), (3) and (4), λ_1 , λ_2 and λ_3 are eigen values of E^2 and M_1 , M_2 , M_3 are their corresponding eigen spaces. Hence,

$$E^2 = \lambda_1 P_1 + \lambda_2 P_2 + \lambda_3 P_3$$

Gives spectral resolution of E^2 .

Since eigen values of E^2 are 1, μ^2 and 0,

$$\sigma(E^2) = \{1, \mu^2, 0\}$$

III. REFERENCES

[1] Chandra, P.

"Investigation into the theory of operators and linear spaces" Ph.D. thesis, Patna University, 1977.

[2] Dunford, N. and Schwartz, J.

"Linear Operators, Part I", Interscience Publishers, Inc; New York, 1967, p. 37

[3] Rudin, W,

"Functional Analysis", Mc Graw Hill Book Company, Inc; New York, 1973, p.126.

[4] Simmons, G.F.:

"Introduction to Topology and Modern Analysis", McGraw Hill Book COmpany, Inc., New York, 1963

[5] Mishra, R.K.:

"On a special type of operators called **λ**-jection of third order", International Journal of Scientific Research in Science and Technology, (IJSRST), Online ISSN: 2395-602X, Print ISSN: 2395-6011, Volume 4, Issue 2, pp 2321-2328, January-February 2018

Cite this Article

Dr. Rajiv Kumar Mishra, "Spectral Resolution of Square of a λ -jection of Fourth Order", International Journal of Scientific Research in Science and Technology (IJSRST), Online ISSN: 2395-602X, Print ISSN: 2395-6011, Volume 8 Issue 4, pp. 723-730, July-August 2021.

Journal URL: https://ijsrst.com/IJSRST1218433