
Copyright: © 2023, the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed

under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial

use, distribution, and reproduction in any medium, provided the original work is properly cited

International Journal of Scientific Research in Science and Technology

Print ISSN: 2395-6011 | Online ISSN: 2395-602X (www.ijsrst.com)

doi : https://doi.org/10.32628/IJSRST523102143

29

Evaluating Deep Learning Methods for Classifying Bugs
Aryan Singh, Deepanshu Singhaniya, Dr. Ruchika Malhotra

Department of Software Engineering, Delhi Technological University New Delhi, India

A R T I C L E I N F O

A B S T R A C T

Article History:

Accepted: 10 April 2023

Published: 06 May 2023

Software maintenance is a crucial part of software development, especially

now more than ever. Without proper maintenance, software can become

outdated and unreliable. and vulnerable to security threats, which can have

serious consequences for users and organisations that rely on it.

But as the software projects become larger, it becomes It is the responsibility

of the managers to assign the bugs to the developers so that the developers

can use their time efficiently in resolving those bugs. But the capacity of

Managers’ ability to analyse each and every bug report

and assign it to the appropriate developer is being out- paced by the shear

number of bug reports, leading to slow progress. Its impossible for developers

or managers to be able to understand hundreds of reports a week, let alone

being able to have a good idea of each and every developer in the team to be

able to appropriately assign the bugs to them.

Keywords: Software maintenance, Software development, Outdated

software, Unreliable software, Security threats ,Bug reports, Bug resolution,

Managerial responsibility, Developer efficiency, Bug assignment, Managerial

capacity, Progress pace, Developer understanding, Bug management, Team

management

Publication Issue

Volume 10, Issue 3

May-June-2023

Page Number

29-35

I. INTRODUCTION

Software developers on large software projects often

have a huge number of ever-increasing pending bug

requests to fix. To ensure that the time of those

developers is used effi- ciently, This paper proposes an

automated approach to clas- sifying bugs. reports to

the developers based on the previous bug fixes of each

developer.a˘ A significant amount of an or-

ganisations Time and money can be saved by

automating the bug assignment process for its

software projects.

In this project, we try to improve upon the existing

ap- proach [1] of bug triaging using the DBRNN (deep

bidi- rectional neural networks) approach by: (1)

using GRU in place of LSTM in conjunction with

RNN, (2) added more densely linked layers to

effectively push the models performance ceiling. We

discussed various approaches (in-cluding traditional

machine learning and non-machine learning

http://www.ijsrst.com/

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 10 | Issue 3

Aryan Singh et al Int J Sci Res Sci & Technol. May-June-2023, 10 (3) : 29-35

30

approaches) and discussed a better and more accurate

so- lution by developing a deep learning model. We

explored a better rule-based method that can assist

our deep learning model to get better accuracy [2].

II. Background

In software maintenance, bug assignment involves the

as- signment of a defect or issue to a specific

developer or team for analysis and resolution. When a

bug is reported, it is entered into a bug tracking

system, and a developer or team is assigned to

investigate the issue. The assignment process

considers factors such as the developers technical

expertise, workload, and availability. Automating this

task can vastly increase the development speed of a

software project. This task can be automated in a

variety of ways; the ones we ex- amined are as follows:

Figure 1. Bug Assignment overview

III. Brief

This paper is divided into three sections. The

Introduc- tion section describes the traditional ways

of assigning that our approach seeks to automate. It

also describes the ways in which there may be

significant cost savings due to faster processing and

less human labour. The next two sections describe and

compare existing methods and approaches to the

various methods proposed by us. These methods are as

follows:

1. Fuzzy Logic model

2. using Traditional Machine learning approaches

3. Tossing-graph model

4. Social-networks model

5. Deep learning using RNN with LSTM

Every method has advantages and disadvantages; the

best approach would be to use any combination of

best- performing models or ensemble learning models.

Most of the relevant papers reviewed were ensemble

learning ap- proaches.

IV. Literature Review

This section describes the various approaches recently

used and proposed by the above reviewed work

Fuzzy Logic model

The method proposed in the works [2], [3] makes

thorough use of fuzzy sets.“ Fuzzy implies a

mathematical framework for dealing with uncertainty

and imprecision. It is a type of logic that allows for

reasoning in situations where the truth values of

propositions are not clearly defined or when there is

incomplete information. As the name suggests, the

characteristics of a bug report are stored in the form

of a ”fuzzy set.“ In order to extract the relationship

between the bug report and the developer to be

assigned to resolve it, A membership score is

measured, which is then used to sort the bug reports

and the developer profile. Each bug is then assigned

to the appropriate developer with a matching mem-

bership score. The fuzzy subset and rules are then

adjusted to better optimise the systems speed and

accuracy.

Fuzzy logic helps extract the ambiguous human logic

from a body of text with the help of the member ship

score without using any kind of machine learning,

this also makes it much faster than any machine

learning model.

The advantages of using fuzzy logic includes:

1. Simple

2. Light on resources

3. Faster

4. Easier to use and develop

5. Easier to get an understanding of the working of

the model, unlike while using neural networks.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 10 | Issue 3

Aryan Singh et al Int J Sci Res Sci & Technol. May-June-2023, 10 (3) : 29-35

31

Traditional machine learning models(NB, SVM etc.)

The method proposed in the work [4] describes well

the ways in which we can automate the bug

classification pro- cess with little to no sentiment

analysis. They mostly only used the Naive Bayes

Model in conjunction with SVM to find correlations

between the bugs and the developers who were

assigned those bugs. Despite using SVM and naive

bayes, the highest accuracy achieved was around 30%

with average precision and recall values of 28%,

which was far from ideal.

[5] developed a semi-supervised method of analysing

the text and using the information obtained to further

improve the ef- ficiency of supervised learning

methods. They made use of the expectation

maximisation (EM) algorithm, where there are two

steps: In the E-step, the algorithm estimates the values

of the missing or unobserved variables by ffect te-

ing their expected values based on the available data

and the current estimate of the model parameters.

These expected values are also known as the

“responsibilities” of each data point. In the M-step,

the algorithm updates the estimates of the model

parameters based on the calculated responsibilities

from the E-step. The new parameter estimates are

obtained by maximising the likelihood of the

observed data given the estimated responsibilities.

This repeats until the change in the parameter

estimates between iterations falls below a cer- tain

threshold; this further increased the accuracy to 36%,

which was still not so powerful.

Another approach that got our attention was [6],

where the researchers used multi-label KNN to find

out about old bugs related to the bug reports being

analysed. Then this informa- tion is used to determine

the similarity between developers, and finally the

KNN analysis and the developer similarity are

combined to appropriately assign the bug in question.

This method was able to achieve a significantly higher

accuracy of 89.3%. The paper also compared other

traditional machine learning approaches despite their

poor efficiency, which in- clude SVM, the Naive

Bayes model, and the C4.5 model, of which the SVM

model performed the best with an accuracy of 64% on

the firefox dataset.

Tossing-Graph models

The Tossing Graph Model (TGM) is a graph-based

model used for defect assignment in software

maintenance. It is based on the concept of “tossing,”

which refers to the process of passing a defect from

one developer to another until it is resolved. The

TGM represents the entire process of defect resolution

as a graph, where each node represents a devel- oper

and each edge represents the tossing of a defect from

one developer to another. The TGM is used to predict

the shortest path between the initial defect reporter

and the final defect resolver, which helps speed up

the process of defect resolution.

The TGM has been shown to be effec”ive ’n improv-

ing the accuracy of automatic defect assignment

compared to other machine learning-based models. It

involves a se- ries of tossing steps, where a defect is

passed from one developer to another until it reaches

the final fixer. The model predicts a shorter path by

identifying the most effi- cient path between the

initial assignee and the final fixer. [7] showed that the

tossing graph models outperform the tradi- tional

machine learning models (particularly naive Bayes

and Bayesian models) in some or most ways. In the

paper [8], the naive Bayes model is combined with the

tossing graph model to automate the target

assignment, and the accuracy they achieved was far

better than solely using the naive Bayes models, i.e.,

86%. Overall, the tossing model is a promising

approach to automated defect assignment, as it can

improve the efficiency of the defect repair process and

ultimately lead to better software quality.

Team Network model

As more and more people are collaborating digitally,

it has become far easier to spot people with similar

talents and skills. When people comment in chat

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 10 | Issue 3

Aryan Singh et al Int J Sci Res Sci & Technol. May-June-2023, 10 (3) : 29-35

32

about a bug, the dis- cussions often hint at some

correlation between other bugs or the developers

fixing those other bugs. This information can be

helpful in identifying the correlation between bugs

and the developers of the project. In one such paper

[9], the authors used a KNN model along with social

network in- dicators to recommend a suitable defect

repairer. They first search for historical defect reports

that are similar to the new- found bugs using the

KNN model. Then, they consider the reviewers

involved in those historical defect reports as can-

didates for repairing the newfound bugs. They

compare the frequency and distribution of these

indicators and find that the frequency and out-degree

indicators can achieve the best results. In order to

automatically assign defects, they used the naive

Bayes model and SVM to get developer priority

information and then analyse the bug reports to make

a se- lection.

Other Custom models

[10] developed an approach using the source code

vocab- ulary of the bug reports and then triaged the

word vectors with that information to classify the bug

reports. In the pa- per [11], a tool for automating the

bug triaging process was developed that used

historical information about the changes in the source

code of the project and used that information to assign

the detected defects. Using this approach, they were

able to achieve a significant accuracy of 81.44%.

There are quite a few ways in which (custom) expert

models are superior to traditional machine learning or

even deep learn- ing methodologies, primarily where

efficiency is a concern. Expert systems are computer

programmes that mimic the decision-making ability

of a human expert in a specific do- main. These

systems rely on expert knowledge and reasoning to

provide advice or make decisions in a particular

domain. There are several models of expert systems,

each with its own approach to representing and using

expert knowledge. The papers we described used the

following models with differ- ing efficiencies and

accuracies:

1. Rule-based expert systems

2. Fuzzy expert systems

3. Bayesian expert systems

4. Neural network expert systems

5. Case-based reasoning expert systems

Novel Deep Learning Approach(using RNN and GRU)

Traditional algorithms are rule-based approaches that

rely on well-defined mathematical equations,

heuristics, or logic to perform tasks. These algorithms

require a lot of domain knowledge and expert feature

engineering to work ffect- tively. They are often

interpretable and can provide insights into how

decisions are made. Examples of traditional algo-

rithms include decision trees, support vector

machines, and linear regression.

On the other hand, deep learning is a subfield of

machine learning that uses neural networks to learn

features and make decisions. These networks are

composed of multiple layers of interconnected nodes

that can identify complex patterns in the data without

the need for explicit feature engineering. Deep

learning models are often black boxes, meaning it can

be challenging to understand how they arrive at their

deci- sions. Examples of deep learning models include

convolu- tional neural networks, recurrent neural

networks, and deep belief networks.

Model overview

The model utilises three layers, each with 512 RNN

units with GRU (gated recurrent units) for short-term

memory re- tention. Each layer is densely connected

with the adjacent layers to maximise propagation and

back propagation. The first layer of this model

involves word vector representation, which maps

discrete words in a text into a fixed-dimensional

feature vector.

The model is divided into two main layers:

1. The model first uses a closed set of bug reports for

initial training by processing the bug reports into

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 10 | Issue 3

Aryan Singh et al Int J Sci Res Sci & Technol. May-June-2023, 10 (3) : 29-35

33

word vectors, and then, to focus on layer 1, which

involves defect reports and vector representation for

whole words, in order to further enhance the

confidence of the model, the open bug reports with

no developer as- signed are used by extracting

information from them in the form of word vectors.

2. The word2vec data processed by the first layer is

then fed to the second layer; the function of this layer

is to make sense of the vectorized data and find

crosslinks between the developers and other bug

reports. This layer uses GRU in place of LSTM for

short-term mem- ory retention to get a summary of

the whole corpus in the form of word vectors.

V. Implementation

Our model primarily makes use of the following

technolo- gies:

• word2vec with CBOW(continuous bag of words)

• RNN(recurrent Neural network) in conjunction with

GRU(gated recurrent units)

Preprocessing. Getting bug reports from the

chromium bug management website was not straight

forward, also, there was no way to download a large

number of bug reports in bulk. Thus, the only option

was to extract the data by look- ing at the requests the

browser made while fetching the bug reports, we

were then able to extract all the data in bulk by

manipulating the requests made to the server and

extracting the data.

The data had too many fields like attachment, target,

re- view, stability which are not of any concern for

bug assign- ment automation, thus we pre-processed

the data using the ’jq’ utility used for traversing JSON

data. The data after pro- cessing was of the form:

{

“id” : 20,

“issue_id” : 98682,

“issue_title” : “Non-responding Windows UNC share

hangs bookmark menu”,

“reported_time” : “2001-09-07 08:18:34”, “owner” :

“nobody@mozilla.org”,

“description” : “From Bugzilla Helper:\nUser- Agent:

Mozilla/5.0 ….

… displayed the bookmark menu directly.”, “status” :

“RESOLVED”,

“resolution” : “WORKSFORME”

},

After processing the dataset, we pre-process the

objects im- ported from the JSON data. As we made

no use of applica- tion specific fields like hexcode,

URLs, stack traces etc, we remove it from our dataset

to simplify the results, we then tokenize all the

objects extracted and remove the none words and the

punctuations present, as the tokenizer does not make

any use of it. Both open issues and the closed issues

are treated the same as far as preprocessing is

concerned(training and testing data should be of same

shape and form).

Word Tokenize. After removing the stopwords from

the corpus during the preprocessing stage. We used

word2vec library for word tokenization as it is able to

represent the relationships between words in a low

dimensional space in which the words which are

closely related are more similar to each other

compared to the sparsely related ones.

This approach also overcomes the limitation of the

bag of words(BOW) approach and the skip grams

approach as it preserves the context information, then

in order to extract the vocabulary for word2vec, we

make use of the words having frequency more than k.

Usually this threshold(k) is set to 10, resulting in

sufficiently diverse vocabulary.

Validating results. In Order to best utilize the data we

have and to get a reliable estimate of our model’s

perfor- mance, we cross validated using the 10 fold

cross validation approach to determine the

results(accuracy of the model on the closed bug report

database).

Final Results

Our model was able to achieve a substantial accuracy

with the training data, as can be seen by the output of

10 fold cross validation below:

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 10 | Issue 3

Aryan Singh et al Int J Sci Res Sci & Technol. May-June-2023, 10 (3) : 29-35

34

Top10 accuracies for all CVs: [96.24554005838469,

91.16966793325624, 91.02938788764409,

96.05220492866408, 95.22690437601297,

95.74150787075394, 91.23222748815166,

82.29234263465283, 83.13972513089006,

79.65756216877293]

Average top10 accuracy: 90.17870704771835

but the actual accuracy with the novel test dataset

took a sig- nificant hit(like in most other papers we

reviewed). Which the figure 2. Depicts accurately.

The accuracy of our model in comparison to other

models using same or similar dataset can be seen

below, we can thus, infer that increasing the number

of neurons in the densely linked layers did have an

impact on the overall accuracy. Further, our decision

to use gated recurrent units instead of LSTM did not

seem to have an impact on accuracy, although it did

slightly reduce the resources required for

computation.

Figure 2. Accuracy values for the best iteration of the

mozilla firefox dataset

VI. Conclusion

In this paper we discussed an approach to the problem

of bug assignment to developers, one solution of

which was proposed by [1], we work upon this

solution to further en- hance the accuracy of the

model.

The major modifications made by us include :

1. Using gated recurrent units in place of LSTM for

faster execution.

2. Increasing the number of neurons in the densely

linked layers to increase the performance ceiling of

the model.

Table 1. Accuracies compared across other approaches

The GRUs short term memory function did not seem

to make a noticeable effect on the performance of our

model, although the computation complexity was

considerably re- duces.

Further, the increased number of densely linked

neurons were able to achieve slightly better

performance, so much so that it outpaced our

reference model, few times we ran the model. the one

mentioned in the table 1 is the best we were able to

achieve through our ten fold cross validation method

VII. REFERENCES

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 10 | Issue 3

Aryan Singh et al Int J Sci Res Sci & Technol. May-June-2023, 10 (3) : 29-35

35

[1]. S. Mani, A. Sankaran, and R. Aralikatte,

Deeptriage: Exploring the effectiveness of deep

learning for bug triaging, Corr, vol.

abs/1801.01275, 2018, Available:

http://arxiv.org/abs/1801.01275

[2]. R. R. Panda and N. K. Nagwani, Classification

and in- tuitionistic fuzzy set based software bug

triaging tech- niques, Journal of king saud

university - computer and information sciences,

vol. 34, no. 8, Part B, pp. 63036323, 2022, doi:

https://doi.org/https://

doi.org/10.1016/j.jksuci.2022.01.020.

[3]. A. Tamrawi, T. T. Nguyen, J. M. Al-Kofahi, and

T. N. Nguyen, Fuzzy set and cache-based

approach for bug triaging, in Proceedings of the

19th acm sigsoft sympo- sium and the 13th

european conference on foundations of

software engineering, in Esec/fse 11. Szeged,

Hun- gary: Association for Computing

Machinery, 2011, pp. 365375. doi:

10.1145/2025113.2025163.

[4]. D. Cubranic and G. C. Murphy, Automatic bug

triage using text categorization, in International

conference on software engineering and

knowledge engineering, 2004.

[5]. J. Xuan, H. Jiang, Z. Ren, J. Yan, and Z. Luo,

Auto- matic bug triage using semi-supervised

text classifica- tion, Arxiv, vol. abs/1704.04769,

2017.

[6]. X. Xia, D. Lo, X. Wang, and B. Zhou, Accurate

de- veloper recommendation for bug resolution,

in Pro- ceedings - 20th working conference on

reverse engi- neering, wcre 2013, in

Proceedings - working con- ference on reverse

engineering, wcre. United States of America:

IEEE, Institute of Electrical and Elec- tronics

Engineers, Dec. 2013, pp. 7281. doi:

10.1109/WCRE.2013.6671282.

[7]. G. Jeong, S. Kim, and T. Zimmermann,

Improving bug triage with bug tossing graphs,

in Esec/fse 09, 2009.

[8]. P. Bhattacharya and I. Neamtiu, Fine-grained

incre- mental learning and multi-feature tossing

graphs to im- prove bug triaging, 2010 ieee

international conference on software

maintenance, pp. 110, 2010.

[9]. W. Wu, W. Zhang, Y. Yang, and Q. Wang,

Drex: Devel- oper recommendation with k-

nearest-neighbor search and expertise ranking,

2011 18th asia-pacific software engineering

conference, pp. 389396, 2011.

[10]. D. Matter, A. Kuhn, and O. Nierstrasz,

Assigning bug reports using a vocabulary-based

expertise model of developers, in 2009 6th ieee

international working conference on mining

software repositories, 2009, pp. 131140. doi:

10.1109/MSR.2009.5069491.

[11]. F. Servant and J. A. Jones, Whosefault:

Automatic developer-to-fault assignment

through fault localiza- tion, 2012 34th

international conference on software

engineering (icse), pp. 3646, 2012.

Cite this article as :

Aryan Singh, Deepanshu Singhaniya, Dr.

Ruchika Malhotra, "Evaluating Deep Learning

Methods For Classifying Bugs", International

Journal of Scientific Research in Science and

Technology (IJSRST), Online ISSN : 2395-602X,

Print ISSN : 2395-6011, Volume 10 Issue 3, pp.

29-35, May-June 2023. Available at doi :

https://doi.org/10.32628/IJSRST523102143

Journal URL : https://ijsrst.com/IJSRST523102143

