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Software maintenance is a crucial part of software development, especially 

now more than ever. Without proper maintenance, software can become 

outdated and unreliable. and vulnerable to security threats, which can have 

serious consequences for users and organisations that rely on it. 

But as the software projects become larger, it becomes It is the responsibility 

of the managers to assign the bugs to the developers so that the developers 

can use their time efficiently in resolving those bugs. But the capacity of 

Managers’ ability to analyse each and every bug report 

and assign it to the appropriate developer is being out- paced by the shear 

number of bug reports, leading to slow progress. Its impossible for developers 

or managers to be able to understand hundreds of reports a week, let alone 

being able to have a good idea of each and every developer in the team to be 

able to appropriately assign the bugs to them. 
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I. INTRODUCTION 

 

Software developers on large software projects often 

have a huge number of ever-increasing pending bug 

requests to fix. To ensure that the time of those 

developers is used effi- ciently, This paper proposes an 

automated approach to clas- sifying bugs. reports to 

the developers based on the previous bug fixes of each 

developer.a˘ A significant amount of an or- 

ganisations Time and money can be saved by 

automating the bug assignment process for its 

software projects. 

 

In this project, we try to improve upon the existing 

ap- proach [1] of bug triaging using the DBRNN (deep 

bidi- rectional neural networks) approach by: (1) 

using GRU in place of LSTM in conjunction with 

RNN, (2) added more densely linked layers to 

effectively push the models performance ceiling. We 

discussed various approaches (in-cluding traditional 

machine learning and non-machine learning 

http://www.ijsrst.com/


International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 10 |  Issue 3 

Aryan Singh et al Int J Sci Res Sci & Technol. May-June-2023, 10 (3) : 29-35 

 

 

 
30 

approaches) and discussed a better and more accurate 

so- lution by developing a deep learning model. We 

explored a better rule-based method that can assist 

our deep learning model to get better accuracy [2]. 

 

II. Background 

 

In software maintenance, bug assignment involves the 

as- signment of a defect or issue to a specific 

developer or team for analysis and resolution. When a 

bug is reported, it is entered into a bug tracking 

system, and a developer or team is assigned to 

investigate the issue. The assignment process 

considers factors such as the developers technical 

expertise, workload, and availability. Automating this 

task can vastly increase the development speed of a 

software project. This task can be automated in a 

variety of ways; the ones we ex- amined are as follows: 

 

 
Figure 1. Bug Assignment overview 

 

III. Brief 

 

This paper is divided into three sections. The 

Introduc- tion section describes the traditional ways 

of assigning that our approach seeks to automate. It 

also describes the ways in which there may be 

significant cost savings due to faster processing and 

less human labour. The next two sections describe and 

compare existing methods and approaches to the 

various methods proposed by us. These methods are as 

follows: 

1. Fuzzy Logic model 

2. using Traditional Machine learning approaches 

3. Tossing-graph model 

4. Social-networks model 

5. Deep learning using RNN with LSTM 

 

Every method has advantages and disadvantages; the 

best approach would be to use any combination of 

best- performing models or ensemble learning models. 

Most of the relevant papers reviewed were ensemble 

learning ap- proaches. 

 

IV. Literature Review 

This section describes the various approaches recently 

used and proposed by the above reviewed work 

 

Fuzzy Logic model 

The method proposed in the works [2], [3] makes 

thorough use of fuzzy sets.“ Fuzzy implies a 

mathematical framework for dealing with uncertainty 

and imprecision. It is a type of logic that allows for 

reasoning in situations where the truth values of 

propositions are not clearly defined or when there is 

incomplete information. As the name suggests, the 

characteristics of a bug report are stored in the form 

of a ”fuzzy set.“ In order to extract the relationship 

between the bug report and the developer to be 

assigned to resolve it, A membership score is 

measured, which is then used to sort the bug reports 

and the developer profile. Each bug is then assigned 

to the appropriate developer with a matching mem- 

bership score. The fuzzy subset and rules are then 

adjusted to better optimise the systems speed and 

accuracy. 

Fuzzy logic helps extract the ambiguous human logic 

from a body of text with the help of the member ship 

score without using any kind of machine learning, 

this also makes it much faster than any machine 

learning model. 

The advantages of using fuzzy logic includes: 

1. Simple 

2. Light on resources 

3. Faster 

4. Easier to use and develop 

5. Easier to get an understanding of the working of 

the model, unlike while using neural networks. 
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Traditional machine learning models(NB, SVM etc.) 

The method proposed in the work [4] describes well 

the ways in which we can automate the bug 

classification pro- cess with little to no sentiment 

analysis. They mostly only used the Naive Bayes 

Model in conjunction with SVM to find correlations 

between the bugs and the developers who were 

assigned those bugs. Despite using SVM and naive 

bayes, the highest accuracy achieved was around 30% 

with average precision and recall values of 28%, 

which was far from ideal.  

[5] developed a semi-supervised method of analysing 

the text and using the information obtained to further 

improve the ef- ficiency of supervised learning 

methods. They made use of the expectation 

maximisation (EM) algorithm, where there are two 

steps: In the E-step, the algorithm estimates the values 

of the missing or unobserved variables by  ffect te- 

ing their expected values based on the available data 

and the current estimate of the model parameters. 

These expected values are also known as the 

“responsibilities” of each data point. In the M-step, 

the algorithm updates the estimates of the model 

parameters based on the calculated responsibilities 

from the E-step. The new parameter estimates are 

obtained by maximising the likelihood of the 

observed data given the estimated responsibilities. 

This repeats until the change in the parameter 

estimates between iterations falls below a cer- tain 

threshold; this further increased the accuracy to 36%, 

which was still not so powerful. 

Another approach that got our attention was [6], 

where the researchers used multi-label KNN to find 

out about old bugs related to the bug reports being 

analysed. Then this informa- tion is used to determine 

the similarity between developers, and finally the 

KNN analysis and the developer similarity are 

combined to appropriately assign the bug in question. 

This method was able to achieve a significantly higher 

accuracy of 89.3%. The paper also compared other 

traditional machine learning approaches despite their 

poor efficiency, which in- clude SVM, the Naive 

Bayes model, and the C4.5 model, of which the SVM 

model performed the best with an accuracy of 64% on 

the firefox dataset. 

 

Tossing-Graph models 

The Tossing Graph Model (TGM) is a graph-based 

model used for defect assignment in software 

maintenance. It is based on the concept of “tossing,” 

which refers to the process of passing a defect from 

one developer to another until it is resolved. The 

TGM represents the entire process of defect resolution 

as a graph, where each node represents a devel- oper 

and each edge represents the tossing of a defect from 

one developer to another. The TGM is used to predict 

the shortest path between the initial defect reporter 

and the final defect resolver, which helps speed up 

the process of defect resolution. 

The TGM has been shown to be effec”ive ’n improv- 

ing the accuracy of automatic defect assignment 

compared to other machine learning-based models. It 

involves a se- ries of tossing steps, where a defect is 

passed from one developer to another until it reaches 

the final fixer. The model predicts a shorter path by 

identifying the most effi- cient path between the 

initial assignee and the final fixer. [7] showed that the 

tossing graph models outperform the tradi- tional 

machine learning models (particularly naive Bayes 

and Bayesian models) in some or most ways. In the 

paper [8], the naive Bayes model is combined with the 

tossing graph model to automate the target 

assignment, and the accuracy they achieved was far 

better than solely using the naive Bayes models, i.e., 

86%. Overall, the tossing model is a promising 

approach to automated defect assignment, as it can 

improve the efficiency of the defect repair process and 

ultimately lead to better software quality. 

 

Team Network model 

 

As more and more people are collaborating digitally, 

it has become far easier to spot people with similar 

talents and skills. When people comment in chat 
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about a bug, the dis- cussions often hint at some 

correlation between other bugs or the developers 

fixing those other bugs. This information can be 

helpful in identifying the correlation between bugs 

and the developers of the project. In one such paper 

[9], the authors used a KNN model along with social 

network in- dicators to recommend a suitable defect 

repairer. They first search for historical defect reports 

that are similar to the new- found bugs using the 

KNN model. Then, they consider the reviewers 

involved in those historical defect reports as can- 

didates for repairing the newfound bugs. They 

compare the frequency and distribution of these 

indicators and find that the frequency and out-degree 

indicators can achieve the best results. In order to 

automatically assign defects, they used the naive 

Bayes model and SVM to get developer priority 

information and then analyse the bug reports to make 

a se- lection. 

 

Other Custom models 

 

[10] developed an approach using the source code 

vocab- ulary of the bug reports and then triaged the 

word vectors with that information to classify the bug 

reports. In the pa- per [11], a tool for automating the 

bug triaging process was developed that used 

historical information about the changes in the source 

code of the project and used that information to assign 

the detected defects. Using this approach, they were 

able to achieve a significant accuracy of 81.44%. 

There are quite a few ways in which (custom) expert 

models are superior to traditional machine learning or 

even deep learn- ing methodologies, primarily where 

efficiency is a concern. Expert systems are computer 

programmes that mimic the decision-making ability 

of a human expert in a specific do- main. These 

systems rely on expert knowledge and reasoning to 

provide advice or make decisions in a particular 

domain. There are several models of expert systems, 

each with its own approach to representing and using 

expert knowledge. The papers we described used the 

following models with differ- ing efficiencies and 

accuracies: 

1. Rule-based expert systems 

2. Fuzzy expert systems 

3. Bayesian expert systems 

4. Neural network expert systems 

5. Case-based reasoning expert systems 

  

Novel Deep Learning Approach(using RNN and GRU) 

Traditional algorithms are rule-based approaches that 

rely on well-defined mathematical equations, 

heuristics, or logic to perform tasks. These algorithms 

require a lot of domain knowledge and expert feature 

engineering to work  ffect- tively. They are often 

interpretable and can provide insights into how 

decisions are made. Examples of traditional algo- 

rithms include decision trees, support vector 

machines, and linear regression. 

On the other hand, deep learning is a subfield of 

machine learning that uses neural networks to learn 

features and make decisions. These networks are 

composed of multiple layers of interconnected nodes 

that can identify complex patterns in the data without 

the need for explicit feature engineering. Deep 

learning models are often black boxes, meaning it can 

be challenging to understand how they arrive at their 

deci- sions. Examples of deep learning models include 

convolu- tional neural networks, recurrent neural 

networks, and deep belief networks. 

 

Model overview 

The model utilises three layers, each with 512 RNN 

units with GRU (gated recurrent units) for short-term 

memory re- tention. Each layer is densely connected 

with the adjacent layers to maximise propagation and 

back propagation. The first layer of this model 

involves word vector representation, which maps 

discrete words in a text into a fixed-dimensional 

feature vector. 

The model is divided into two main layers: 

1. The model first uses a closed set of bug reports for 

initial training by processing the bug reports into 
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word vectors, and then, to focus on layer 1, which 

involves defect reports and vector representation for 

whole words, in order to further enhance the 

confidence of the model, the open bug reports with 

no developer as- signed are used by extracting 

information from them in the form of word vectors. 

2. The word2vec data processed by the first layer is 

then fed to the second layer; the function of this layer 

is to make sense of the vectorized data and find 

crosslinks between the developers and other bug 

reports. This layer uses GRU in place of LSTM for 

short-term mem- ory retention to get a summary of 

the whole corpus in the form of word vectors. 

 

V. Implementation 

Our model primarily makes use of the following 

technolo- gies: 

• word2vec with CBOW(continuous bag of words) 

• RNN(recurrent Neural network) in conjunction with 

GRU(gated recurrent units) 

  

Preprocessing. Getting bug reports from the 

chromium bug management website was not straight 

forward, also, there was no way to download a large 

number of bug reports in bulk. Thus, the only option 

was to extract the data by look- ing at the requests the 

browser made while fetching the bug reports, we 

were then able to extract all the data in bulk by 

manipulating the requests made to the server and 

extracting the data. 

The data had too many fields like attachment, target, 

re- view, stability which are not of any concern for 

bug assign- ment automation, thus we pre-processed 

the data using the ’jq’ utility used for traversing JSON 

data. The data after pro- cessing was of the form: 

{ 

“id” : 20, 

“issue_id” : 98682, 

“issue_title” : “Non-responding Windows UNC share 

hangs bookmark menu”, 

“reported_time” : “2001-09-07 08:18:34”, “owner” : 

“nobody@mozilla.org”, 

“description” : “From Bugzilla Helper:\nUser- Agent: 

Mozilla/5.0 …. 

… displayed the bookmark menu directly.”, “status” : 

“RESOLVED”, 

“resolution” : “WORKSFORME” 

}, 

After processing the dataset, we pre-process the 

objects im- ported from the JSON data. As we made 

no use of applica- tion specific fields like hexcode, 

URLs, stack traces etc, we remove it from our dataset 

to simplify the results, we then tokenize all the 

objects extracted and remove the none words and the 

punctuations present, as the tokenizer does not make 

any use of it. Both open issues and the closed issues 

are treated the same as far as preprocessing is 

concerned(training and testing data should be of same 

shape and form). 

Word Tokenize. After removing the stopwords from 

the corpus during the preprocessing stage. We used 

word2vec library for word tokenization as it is able to 

represent the relationships between words in a low 

dimensional space in which the words which are 

closely related are more similar to each other 

compared to the sparsely related ones. 

This approach also overcomes the limitation of the 

bag of words(BOW) approach and the skip grams 

approach as it preserves the context information, then 

in order to extract the vocabulary for word2vec, we 

make use of the words having frequency more than k. 

Usually this threshold(k) is set to 10, resulting in 

sufficiently diverse vocabulary. 

Validating results. In Order to best utilize the data we 

have and to get a reliable estimate of our model’s 

perfor- mance, we cross validated using the 10 fold 

cross validation approach to determine the 

results(accuracy of the model on the closed bug report 

database). 

  

Final Results 

Our model was able to achieve a substantial accuracy 

with the training data, as can be seen by the output of 

10 fold cross validation below: 
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Top10 accuracies for all CVs: [96.24554005838469, 

91.16966793325624, 91.02938788764409, 

96.05220492866408, 95.22690437601297, 

95.74150787075394, 91.23222748815166, 

82.29234263465283, 83.13972513089006, 

79.65756216877293] 

Average top10 accuracy: 90.17870704771835 

 

but the actual accuracy with the novel test dataset 

took a sig- nificant hit(like in most other papers we 

reviewed). Which the figure 2. Depicts accurately. 

The accuracy of our model in comparison to other 

models using same or similar dataset can be seen 

below, we can thus, infer that increasing the number 

of neurons in the densely linked layers did have an 

impact on the overall accuracy. Further, our decision 

to use gated recurrent units instead of LSTM did not 

seem to have an impact on accuracy, although it did 

slightly reduce the resources required for 

computation. 

 

Figure 2. Accuracy values for the best iteration of the 

mozilla firefox dataset 

 

VI. Conclusion 

 

In this paper we discussed an approach to the problem 

of bug assignment to developers, one solution of 

which was proposed by [1], we work upon this 

solution to further en- hance the accuracy of the 

model. 

The major modifications made by us include : 

1. Using gated recurrent units in place of LSTM for 

faster execution. 

2. Increasing the number of neurons in the densely 

linked layers to increase the performance ceiling of 

the model. 

  

Table 1. Accuracies compared across other approaches 

 
 

The GRUs short term memory function did not seem 

to make a noticeable effect on the performance of our 

model, although the computation complexity was 

considerably re- duces. 

Further, the increased number of densely linked 

neurons were able to achieve slightly better 

performance, so much so that it outpaced our 

reference model, few times we ran the model. the one 

mentioned in the table 1 is the best we were able to 

achieve through our ten fold cross validation method 
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