

Plasmon Effects in Non-Diagram X- Ray Spectra of Calcium (Ca) and Cobalt (Co)

Vipin Sharma, Lalit K. Dwivedi

Department of Post-Graduate Studies and Research in Physics, Kamla Nehru Institute of Physical and Sciences, Sultanpur, Uttar Pradesh, India

ARTICLEINFO	ABSTRACT						
Article History:	In recent years the whole area of high energy excitations in solid has						
Accepted: 05 May 2023 Published: 20 May 2023	flourished well, both experimentally and theoretically. Their spectroscopy and theoretical understanding have important implications for the knowledge of the structure and properties of materials, both in bulk and near the surface. The theory used in the present work relates to origin of						
Publication Issue Volume 10. Issue 3	Non-diagram X-ray spectra in various excitation processes where a deep well as the surface electron is excited. The specific contributions of the intrinsic conversion of the specific contributions of the specific con						
May-June-2023	obtained theoretically in terms of "Non-diagram-to-parent-diagram X-ray line yield ratios" for the high energy plasmon satellite profiles in the X-ray						
Page Number 315-319	line spectra of $K\alpha L^{(0)}$ main lines in Calcium (Ca) and Cobalt (Co) by extending the Bohm-Pines Hamiltonian and using many body theory. It has been shown that the high-energy X-ray satellite line shapes of Calcium (Ca) and Cobalt (Co) observed by Mauron and Dousse are due to the Plasmon Oscillations. The theoretically calculated results have been probed by comparing to the relative satellite yields obtained by Mauron and Dousse and are found to agree well with their experimentally observed values.						
	KEY-WORDS : Plasmon Satellites, Bulk Plasmon, Surface Plasmon, Plasmon Coupling						

I. INTRODUCTION

Valence electrons in metal can take part in quantized collective oscillations known as Plasmons. The circumstances and extent to which Plasmons are involved in the production of X-ray satellites have been a topic of extensive experimental and theoretical investigations [1-24]. Satellites on the low energy side of X-ray emission spectra have been shown [17-18] to be associated with surface or bulk plasmon

creation. In filing a vacancy in the core level of atoms, the de-excitation energy may be shared between a photon (which is seen as a low energy satellite) and a surface or bulk plasmon which is created in material. It is possible that de-excitation energy may be augmented by the surface or bulk plasmon energy, forming a satellite at energy higher than the parent diagram X-ray line [12,16-18]. In this case, high energy electrons incident on the material would

Copyright: © 2023, the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited

create both, the core level energy electrons excitations and Surface($\hbar\omega_{s}$) or Bulk ($\hbar\omega_{P}$) plasmons.

The theory [18] used in present work, relates to the origin of non- diagram X-ray Spectra in various excitation processes where deep as well as surface electron is excited. The specific contributions of the intrinsic as well as the extrinsic 'Plasmon-coupling' processes have been obtained theoretically in terms of "Non-diagram-to-parent-diagram X-ray line yield ratios" for the high energy plasmon satellite profiles in the X-ray line spectra of $K_{\alpha} L^{(0)}$ main lines in Calcium (Ca) and Cobalt (Co) by extending the Bohm-Pines Hamiltonian and using many body theory [19]. It has been shown that the high-energy X-ray satellite line shapes of Calcium (Ca) and Cobalt (Co) observed by Mauron and Dousse [20] are due to the Plasmon Oscillations. The theoretically calculated results have been probed by comparing to the relative satellite yields obtained by Mauron and Dousse [20] and are found to agree well with their experimentally observed values.

II. EXPRESSION FOR NON-DIAGRAM-TO-PARENT-DIAGRAM-X-RAY LINE YIELD RATIOS (RELATIVE INTENSITIES) IN X-RAY EMISSION SPECTRA

The transition probability per unit time [18] for the Interaction Hamiltonian H $_{2h\omega_P}$:

$$H_{add} = H_{2\hbar\omega_P}$$

= $\frac{1}{2} \Sigma_{p,k',k < k_c} \frac{1}{(2\hbar\omega_P)^2} \frac{V(\overline{p} + \overline{k} + \overline{k'})M_k M_{k'}}{\left[2\omega_P - \frac{(\overline{k} + \overline{k'}).\overline{p}_i}{m} - \frac{\hbar(\overline{k} + \overline{k'})^2}{2m}\right]}$

is given by $\sigma = \left(\frac{2\pi}{\hbar}\right) < f |H_{2\hbar\omega_p}|i\rangle^2 \rho(E)$ The relative transition probability or relative

The relative transition probability or relative intensity may be expressed as:

$$\frac{I_{2\hbar\omega_{P}(sat)}(E_{P})}{I_{0}(E_{P})} = \frac{1}{(4\hbar\omega_{P})^{2}} \frac{1}{(2\pi)^{3}} \times \begin{cases} \int_{0}^{k_{c}} \int_{-1}^{+1} 2k^{2} dk d(\cos\theta) \frac{M_{k}^{2}M_{k'}^{2}}{\left[2\omega_{P} - \frac{(\overline{k}+\overline{k}).\overline{p}_{i}}{m} + \frac{\hbar(\overline{k}+\overline{k})^{2}}{2m}\right]} \end{cases}$$

The relative intensity $\frac{1}{I_0}$ of bulk plasmon satellite profiles is expressed by simplifying this equation. The matrix element defining simultaneous X-ray photon emission (photoemission) and surface plasmon

photon emission (photoemission) and surface plasmon absorption (loss feature) with momentum hk when a valence electron with momentum p falls into a deep level may be written as:

 $< f | E. M. "_ | i >$

(**n**)

$$= \left\{ \frac{1}{4\hbar\omega_{p}} \right\}^{1/2} V\left(\overline{p} + \overline{k}\right) M_{k} \left\{ \frac{\frac{\hbar\overline{k}.\overline{p}}{m} - \frac{\hbar k^{2}}{2m}}{\frac{\omega_{p}}{\sqrt{2}} - \frac{\hbar\overline{k}.\overline{p}}{\sqrt{2}M} + \frac{\hbar k^{2}}{2\sqrt{2}M}} \right\}$$

1 /

If we suppose that V(p) does not depend upon p, then the relative transition probability or relative intensity may be expressed as

$$\frac{I_{\text{sat}}(E_{\text{P}})}{I_{0}(E_{\text{P}})} = \left(\frac{1}{4\hbar\omega_{P}}\right) \frac{1}{(2\pi)^{3}} \int_{0}^{k_{\text{C}}+1} 2\pi k^{2} dk \, d(\cos\theta)$$
$$\left\{\frac{\frac{\hbar\bar{k}\bar{p}}{m} - \frac{\hbar k^{2}}{2m}}{\frac{\omega_{p}}{\sqrt{2}} - \frac{\hbar\bar{k}\cdot\bar{p}}{\sqrt{2M}} + \frac{\hbar k^{2}}{2\sqrt{2M}}}\right\} M_{k}^{2}$$

The relative intensity $\frac{1}{I_0}$ of surface plasmon satellite profiles is expressed by simplifying this equation.

In summary, the strength I/I_o of the nth plasmon loss feature (if the main line is normalized to unit strength, here I_o) is equal to the coefficient of x^n in the expansion [21] of $e^{\beta x}$ [(1- αx)⁻¹], - (1)

where the exponential represents the 'intrinsic' effect and the quantity in brackets is the 'extrinsic' effect.

Therefore, the combined effects of intrinsic and extrinsic **"Plasmon Coupling Processes"** in terms of the relative intensity of the high energy plasmon satellites in the X- ray line spectra of Calcium (Ca) and Cobalt (Co) is obtained [22] as:

 $\begin{array}{l} \frac{l}{l_0} = \alpha^n \sum_{m=0}^n \frac{(\beta/\alpha)^m}{m!} \ (2) \end{array} \\ \mbox{The value of } \beta \ \mbox{is taken as} \\ \beta = 0.12 \ \mbox{rs}, \qquad (3) \\ \mbox{and the value of } \alpha \ \mbox{(= Kc/KF) is taken as} \\ \alpha = 0.47 \ \mbox{rs}^{1/2}. \qquad (4) \\ \mbox{Again, } r_{\rm s} \ \mbox{(dimensionless parameter) is the inter-} \end{array}$

Again, r_s (dimensionless parameter) is the interelectronic spacing in units of the Bohr radius and may be expressed as

 $r_s = (47.11/\ \hbar\omega_p)^{2/3}~$ for bulk plasmon,

& $r_s = (47.11/\hbar\omega_s)^{2/3}$ for surface plasmon.

The bulk plasmon energy of a metal may be expressed as

 $\hbar\omega_p = 28.8 \ (Z'\sigma/W)^{1/2}$

Where Z' is the effective number of electrons participating in plasma oscillations (number of conduction or valence band electrons), σ is the specific gravity and W is the molecular weight. As usual, the surface plasmon energy is $\hbar\omega_s = \hbar\omega_p/\sqrt{2}$ (if the geometry of the specimen is plane).

III.RESULTS

(i) For CALCUIM (Ca)

Sl.	$K_{\alpha}L^{(1)}$		_			_	Author's calc.	Observed energy-separation by Mauron
No.	Satellites of Ca			Ľ	σ	W	values	and Dousse
								(ΔE), eV
1.	Satellite	Line	(I):	2	4.58	40.078	19.6 eV (2ħω _s)	20.0
	3712eV							
2	Satellite	Line	(II):	n	1 5 9	40.078	23.6 eV ($\hbar\omega_p$ +	24.0
	3716eV			Z	4.30		ħωs)	24.0

Table-1 Energy - Separation (ΔE) of High Energy Satellites of Calcium (Ca)for K₀L⁽⁰⁾ X- Ray Main Line

* K_{α}L⁽⁰⁾ Main Line of Ca : 3692 eV

<u>Iable-2</u> Relative intensity 1/10 of high Energy Flasmon Saternies Rat ~01 Calcium (Ca)for Rat ~ Ray Ma	Table-2 Relative Intensity	I/Io' of High Energy P	lasmon Satellites KαL ⁽¹⁾ of Calcium	n (Ca)for KαL ⁽⁰⁾ X-Ray Mai
--	----------------------------	------------------------	---	--

	Line										
Sl. No.	KαL ⁽¹⁾ Satellites of Ca	$\mathbf{r}_{s} = \left(\frac{47.11}{\Delta E^{eV}}\right)^{2/3}$	β = 0.12rs	α =0.47(rs) ^{1/2}	Intensity Assignment "I/Io"	Theoretical value of "I/Io" in Present Work	Observedvalueof"I/Io"byMauronandDousse				
1.	Satellite Line (I): 3712eV	1.794	0.2153	0.6296	$\frac{\beta^2}{4\alpha}$	0.0261	0.0256				
2	Satellite Line (II): 3716eV	1.585	0.1903	0.5918	$\frac{\beta^2}{2\alpha}$	0.031	0.034				

*K_{α}L⁽⁰⁾ Main Line of Ca : 3692 eV

(ii) For COBALT (Co)

Table-1 Energy - Separation (ΔE) of High-Energy Satellite of Cobalt (Co) for K₀L⁽⁰⁾X- Ray Main Line

Sl. No.	Satellite of Co	Z	Σ	W	Author's calc. value	Observed energy-separation by Mauron and Dousse (ΔE), eV
1.	$K_{\alpha}L^{(1)}$ Satellite Line : $6960 eV$	3	4.8	58.933195	28.5 eV (2ħω _p)	29.0
	KαL ⁽⁰⁾ Main Line: 6931eV					

Table-2 Relative Intensity 'I/Io' of High Energy Plasmon Satellite KaL⁽¹⁾ of Cobalt (Co) for KaL⁽⁰⁾ X-Ray Main Line

Sl. No.	K _o L ⁽¹⁾ Satellite of Co	$\mathbf{r}_{s} = \left(\frac{47.11}{\Delta E^{eV}}\right)^{2/3}$	β = 0.12rs	α =0.47(rs) ^{1/2}	Intensity Assignment "I/Io"	Theoretical value of "I/Io"in Present Work	Observed value of "I/Io" by Mauron and Dousse
1.	$K_{\alpha}L^{(1)}$	1.3980	0.168	0.556	β^2	0.0127	0.0119
	Satellite				4α		
	Line :						
	6960eV						
	$K_{\alpha}L^{(0)}Main$						
	Line :						
	6931eV						

IV.CONCLUSION

Thus, one can safely assume, from the energyseparation as well as from the relative intensity point of view that the high energy satellite profiles observed by Mauron and Dousse [20] in the X-ray line spectra of $K_{\alpha}L^{(0)}$ main lines of Calcium (Ca) and Cobalt (Co) are due to Bulk and Surface Plasmon Oscillations.

V. REFERENCES

- C. Denton et al., Phys. Rev. A 57, N6, (1998) 4498.
- [2]. M. Polasik, Phys. Rev. A 58, N3, (1998) 1840.
- [3]. R.C. Shiell et al., Phys. Rev., A 59, N4, (1993) 2903.

- [4]. C. Sternemann et al., Phys. Rev. A 61, (R)- (2000) 020501.
- [5]. N. Stolterfoht et al. Phys. Rev. A 61, (2000) 052902.
- [6]. O. Mauron et al., Phys. Rev. A 62, (2001) 022508.
- [7]. R. Diamant et.al. Phys. Rev. A 63, (2001) 022508.
- [8]. J.B. Greenwood et al., Phys. Rev. A 63 (2001) 062707.
- [9]. L.G. Gerehikov et al. Phys. Rev. A 66, (2002) 053202.
- [10].Alok Mishra et al. IJERA 2(2012) PP 115-118.
- [11].M. Guzzo et.al. Eur. Phys. J.B, (2012) 85:326.
- [12].L.K. Dwivedi, in Active and Smart Materials, Edited by D.K. Dwivedi, B.K. Pandey, Excel India Press, New Delhi, 2012.

- [13].C.T. Chantler et.al. Phys.Rev. A 85,(2012) 032513.
- [14].C.T. Chantler et.al., J. Phys. B: At. Mol.Opt.Phys.46, (2013) 015002.
- [15].J. Lischner et.al., Phys.Rev. Lett.110, (2013) 14801
- [16].L.K. Dwivedi, in Material Science and Technology, Edited by D.K. Dwivedi, B.K. Pandey, Victorious Publishers, New Delhi, 2014.
- [17].A.M. Bradshaw et al. J. Phys. C, Solid State Phys. 7 (1974) 4503.
- [18].D.C.Langreth, in Collective Properties of Physical Systems, edited by B. Lundqvist and S. Lundqvist, Academic Press., New York (1974)
- [19].O.K. Harsh, J. Phys. Chem. Solids 58 (1997) 1433.
- [20].O Mauron and J.-Cl. Dousse, Phys. Rev. A 66,(2002)042713.
- [21].J.J. Chang, D.C. Langreth, Phys. Rev. B 8 (1973) 4638.
- [22].W.J. Pardee et al., Phys. Rev. B 11(1975) 3614.
- [23].C. Biswas et al., Phys. Rev.B67, (2003) 165416.
- [24]. S.P. Singh et al. Indian J.Phys. 85, N 12, (2011) 1897-1904.