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and preventing it is a crucial task. An increasing crime factor leads to an
imbalance in the constituency of a country. Crime prediction and

forecasting is a challenging task for law enforcement agencies to prevent

crimes in the future. In recent years, machine learning algorithms have
Publication Issue been used to analyze crime data and provide useful insights to predict and
Volume 10. Issue 3 prevent future crimes. In this paper, we propose a crime risk prediction

and forecasting system using a sequential minimal optimization algorithm,
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a popular support vector machine algorithm that can be used for

classification and regression tasks. We demonstrate the effectiveness of the
Page Number

617-622 SMO algorithm and LSTM model on a real-world crime dataset and

compare its performance with other commonly used machine learning
algorithms. Our results show that the SMO algorithm and LSTM model
gives faster and more variety of visualizations for crime trend prediction
and forecasting.
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Forecasting, Machine learning

I. INTRODUCTION

Crime risk prediction is a challenging problem in the
field of enforcement. The ability to predict crime risks
can help law enforcement agencies to allocate their
resources effectively and prevent crime before it
occurs. Traditional crime prediction methods rely on
expert knowledge and statistical analysis, which are

often subjective and time consuming. Machine

learning algorithms have been increasingly used for
crime risk prediction due to their ability to learn
patterns and make accurate predictions. In recent
years accurate crime prediction is crucial for the
effective prevention of criminal acts. Predicting crime
types and hot spots from past patterns presents
various computational challenges and opportunities.
While machine learning-based crime prediction is

currently the mainstream analysis approach, few
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studies have compared different
Machine

algorithms have shown their ability to process non-

systematically

machine learning methods. learning
linear rational data and handle high-dimensional data
with faster training speed, enabling them to extract
data characteristics. Despite considerable research
efforts, there is still a lack of literature on the relative
accuracy of crime prediction for large datasets in
multiple cities. Recent studies suggest that
implementing different models can address challenges
related to predicting and forecasting violent acts in
high crime-density areas. Crime data typically
demonstrates data seasonality, indicating the potential
significance of criminal activities that have evolved
over the year. Previous studies have used various
machine learning algorithms to predict crime,
including Random Forests, Support Vector Machines,
and Decision Trees. This paper proposes the use of the
Sequential Minimal Optimization (SMO) algorithm
for crime risk prediction in three major cities: Chicago,
Philadelphia, and San Francisco.SMO is a popular
support vector machine algorithm known for its
ability to handle large datasets and high-dimensional
feature spaces. Forecasting is done with the use of
LSTM. Analyzing crime data requires time series
analysis, which involves generating visual patterns
using deep learning algorithms, particularly Long
Short-Term Memory (LSTM) as compared to ARIMA.
In practice, LSTM is more suitable for time series
forecasting as it requires only a single fitting and does
not require parameter optimization .It aims to predict
the risk of crime and forecast future crime incidents
based on historical crime data.
IL.LRELATED WORK

Previous research has shown that machine learning
algorithms such as decision trees, random forests, and
support vector machines can be effective for crime
risk prediction. These algorithms have been used to
predict various types of crimes, including burglary,
robbery, and drug-related offenses.

1. Unsupervised Domain Adaptation for Crime Risk

Prediction Across Cities

This paper

adaptation method for crime risk prediction across

proposes an unsupervised domain
cities, which utilizes adversarial training and feature
alignment techniques to learn domain-invariant
representations of crime data. The authors highlight
the challenges of adapting crime risk models across
different cities and discuss existing approaches to
crime risk prediction and domain adaptation. The
experimental evaluation of the proposed method on
crime data from three different cities shows that it
outperforms several baselines in terms of accuracy
and robustness to domain shifts. The authors conclude
by discussing the contributions and limitations of
their work and suggest potential avenues for future
research.

2. Dynamic road crime risk prediction with urban
open data

In this piece, proposes a machine learning approach to
predicting road crime risk using urban open data. The
authors emphasize the potential of urban open data as
a source of information for crime risk prediction in
urban areas. They review existing approaches to road
crime risk prediction, discuss the use of urban open
data in crime prediction, and propose a machine
learning pipeline that incorporates various data
sources, including crime statistics, traffic volume, and
weather data. The authors compare their approach to
several baseline models and show that it outperforms
them in terms of accuracy and efficiency. Finally, the
authors conclude by discussing the contributions and
limitations of their work, as well as potential avenues
for future research. They highlight the importance of
dynamic road crime risk prediction and the potential
of urban open data as a source of information for
crime prediction in urban areas.

3. Risk Prediction of Theft Crimes

Communities

in Urban

The authors provide an overview of crime prediction
and highlight the

prediction in urban areas. They review existing

importance of theft crime

approaches to crime prediction, including traditional

statistical models and machine learning techniques.
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The authors then describe their approach, which
involves feature selection, data preprocessing, and the
use of several machine learning models for prediction.
The the

evaluation of the proposed approach using data from a

results section presents experimental
city in Mexico. The authors compare their approach

to several baseline models and show that it
outperforms them in terms of accuracy and efficiency.
Finally, the authors discuss the limitations of their
work and potential avenues for future research,
emphasizing the need for more comprehensive and
diverse datasets to improve crime prediction in urban
areas.

4. Crime Type and Occurrence Prediction using
Machine Learning Algorithm

This proposes a machine learning approach to
predicting crime type and occurrence in urban areas.
The authors provide an overview of crime prediction
and the challenges associated with it, such as the lack
of accurate and upto-date data. They review existing
approaches to crime prediction, including traditional
statistical models and machine learning techniques.
The authors describe their approach to crime type and
occurrence prediction using machine learning
algorithms. They propose a feature selection and
engineering process to extract relevant features from
the input data. They also describe the crime type and
occurrence prediction models, including decision
trees, random forests, and support vector machines.
Finally, the authors discuss the limitations of their
work and potential avenues for future research,
emphasizing the need for more comprehensive and
diverse datasets to improve crime prediction.

5. Smart Policing Technique With Crime Type and
Risk

This paper addresses the challenge of reducing crime
rates by proposing a machine learning-based smart
policing technique that predicts crime types and
associated risks. The authors also review studies on
the use of geographic information systems (GIS) and
other data sources to identify crime hotspots and

patterns. Proposed smart policing technique, which

uses a machine learning pipeline that incorporates

various data sources, including crime data,
demographic data, and geographic data. The authors
also discuss the feature engineering process, the
models used for prediction, and the evaluation metrics
and proposed smart policing technique, which uses a
machine learning pipeline that incorporates various
data sources, including crime data, demographic data,
and geographic data. The authors also discuss the
feature engineering process, the models used for
prediction, and the evaluation metrics. Finally, they
highlight the potential of their smart policing
technique in improving policing efficiency and
reducing crime rates and suggest that it could be
extended to other domains beyond crime.

6. Domain Adversarial Transfer Network for Cross-
Domain Fault Diagnosis

This paper presents a new approach to fault diagnosis
using domain adaptation

and deep learning

techniques. The authors address the challenges
associated with cross-domain diagnosis and introduce
domain

their proposed method, which uses

adversarial transfer learning to learn domain-
invariant representations of sensor data and improve
diagnosis accuracy. The methodology section
describes the domain adversarial transfer network for
fault diagnosis, which consists of an encoder-decoder
architecture with a domain discriminator. The results
demonstrate the effectiveness of the proposed method

on two datasets from different domains, and the

authors suggest potential applications beyond
industrial systems.
III.PROPOSED SYSTEM

We proposed the SMO algorithm and LSTM model to
predict and forecast crimes which help to make the
decision-making process easier for law enforcement
agencies. Big Data Analytics (BDA) is a new way to
analyze data and extract information and their
relationships in a variety of application areas.
However, dealing with vast volumes of available data

presents several issues in public policy. As a result,
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new methodologies and techniques for analyzing this
heterogeneous and multi-sourced data are required.
Big data analytics (BDA) has long been used and
researched in the disciplines of data science and
computer science. The notion of big data in BDA, its
analytics, and the issues that come with engaging
with it. On the research gaps and issues associated
with criminal data mining.

Furthermore, this project provides insight into data
mining for detecting patterns and trends in crime that
may be used correctly, as well as a resource for
novices in the research of crime data mining. As a
result, managing and analyzing massive amounts of
data is extremely tough and complex. To improve the
efficiency of crime detection, appropriate data mining
techniques must be used. Numerous data mining
applications, particularly those that use the Apriority
method discover the most efficient association rule
and decrease processing time. Furthermore, numerous
strategies have been created.

A. Data Collection

Data collection is the process of gathering and
measuring information from countless different
sources. Collecting data allows you to capture a record
of past events so that we can use data analysis to find
recurring patterns. We have collected the dataset
from Gaggle and UCI repositories. Therefore the
dataset includes Chicago, Philadelphia, and San
Francisco. Fig 1. shows the overview of the Chicago
dataset, Fig 2. shows the overview of the Philadelphia
dataset, and Fig 3. shows the overview of the San

Francisco dataset.
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Fig 1. Overview of the Chicago dataset
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Fig 2. Overview of the Philadelphia dataset
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Fig 3. Overview of the San Francisco dataset
From those patterns, predictive models are built using
machine learning algorithms that look for trends and
predict future changes.

B. Data Preprocessing

This data is in the form of the number of cases
recorded all over the cities throughout the year. The
data is in unprocessed form and contains some wrong
as well as missing values. Hence preprocessing of data
is a crucial task in order to bring the data in proper
and clean form. Pre-processing of data includes data
cleansing and Preprocessing. The dataset is classified
into various groups based on certain characteristics of
the data object. We selected the following features for
our experiments: location, time of day, day of the
week, and type of crime. These features have been
shown to be important predictors of crime.

C. Narrative Visualization Prediction with SMO

We actualize the shortest Crime record linkage
Profile information between two nodes in this module.
Like the node-keyword index, only Crime record
linkage Profile information from nodes with a Crime
record linkage Profile weight less than a certain
threshold is saved. The reason for the Node-Node
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index is that in a text-based database, the number of
different words contained within the region of
threshold Crime record linkage Profile weight of a
node is quite big in comparison to the number of
nodes present in the region. Combining narrative
the
Optimization (SMO) algorithm can effectively explore

visualization = with Sequential ~ Minimal
and communicate complex crime data. Narrative
visualization can display crime rates over time, the
distribution of different crimes in neighborhoods, and
correlations with various factors of crime. By using
the SMO algorithm, it's possible to identify complex
relationships between different variables that may not
be immediately obvious. Fig 4. shows the visualization

of crime cases in Chicago.

Crime cases for Chicago
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Fig 4. Visualization of crime cases in Chicago.

IV.CONCLUSION AND FUTURE SCOPE

In this paper a series of state-of-the-art big data
analytics and visualization techniques were utilized to
analyze crime big data from three US cities, which
allowed us to identify patterns and obtain trends. The
results show that the proposed system can achieve
high accuracy in predicting crime risk and can
forecast future crime incidents with reasonable
accuracy. By exploring the neural network algorithm
SMO, and the deep learning algorithm LSTM, we
found that both perform better than conventional

neural network models. We also found the optimal

time period for the training sample to be 3 years, in
order to achieve the best prediction of trends in terms
of RMSE

parameters for the prediction and forecasting models

and spearman correlation. Optimal
are also determined. Additional results explained
earlier will provide new insights into crime trends
and will assist both police departments and law
enforcement agencies in their decision-making. In the
future, we plan to complete our ongoing platform for
generic big data analytics which will be capable of
processing various types of data for a wide range of
applications. We also plan to incorporate multivariate
visualization graph mining techniques and fine-
grained spatial analysis to uncover more potential
patterns and trends within these datasets. Moreover,
we aim to conduct more realistic case studies to
further evaluate the effectiveness and scalability of

the different models in our system.
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