
Copyright © 2023 The Author(s): This is an open-access article distributed under the terms of the Creative

Commons Attribution 4.0 International License (CC BY-NC 4.0) which permits unrestricted use, distribution,

and reproduction in any medium for non-commercial use provided the original author and source are credited.

International Journal of Scientific Research in Science and Technology

Print ISSN: 2395-6011 | Online ISSN: 2395-602X (www.ijsrst.com)

doi : https://doi.org/10.32628/IJSRST523103196

1009

Object Detection Using Adaptive Block Partition and RCNN

Algorithm
R. Ajay Krishnaraju1, J. Poovarasan1 , S. Santhies Kumar1, S. Surya1, P. Tamilselvan2

1Students, 2Professor

Department of ECE, Rajiv College of Engineering and Technology, Puducherry, India

A R T I C L E I N F O

A B S T R A C T

Article History:

Accepted: 05 June 2023

Published: 24 June 2023

Advancements in image and video processing are growing over the years for

industrial robots, autonomous vehicles, cryptography, surveillance, medical

imaging and computer-human interaction applications. One of the major

challenges in real-time image and video processing is the execution of complex

functions and high computational tasks. To overcome this issue, a hardware

acceleration of different filter algorithms for both image and video processing is

implemented on Xilinx Zynq®-7000 System on-Chip (SoC) device consists of

Dual-core Cortex™-A9 processors which provides computing ability to perform

with the help of software libraries using Vivado® High-Level Synthesis (HLS).

The acceleration of object detection algorithms include Sobel-Feldman filter,

posterize and threshold filter algorithms implemented with 1920 x 1080 image

resolutions for real-time object detection. The implementation results exhibit

effective resource utilization such as 45.6% of logic cells, 51% of Look-up tables

(LUTs), 29.47% of Flipflops, 15% of Block RAMs and 23.63% of DSP slices

under 100 MHz frequency on comparing with previous works.

There are a few reasons why tracking is preferable over detecting objects in each

frame. Tracking facilitates in identifying the identity of various items across

frames when there are several objects. Object detection may fail in some

instances, but tracking may still be achievable which takes into account the

location and appearance of the object in the previous frame. The key hurdles in

real-time image and video processing applications are object tracking and motion

detection. Some tracking algorithms are extremely fast because they perform a

local search rather than a global search. Tracking algorithms such as meanshift,

Regional Neural Network probabilistic data association, particle filter, nearest

neighbor, Kalman filter and interactive multiple model (IMM) are available to

estimate and predict the state of a system.

Keywords: IMM, System on-Chip, High-Level Synthesis

Publication Issue

Volume 10, Issue 3

May-June-2023

Page Number

1009-1023

http://www.ijsrst.com/

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 10 | Issue 3

R. Ajay Krishnaraju et al Int J Sci Res Sci & Technol. May-June-2023, 10 (3) : 1009-1023

1010

I. INTRODUCTION

The introduction of high speed computational

hardware platforms deployed for image processing

applications are increasing in recent years. It is no

surprising that image processing units are already

included in cellphones and cameras, but the demand

of image processing algorithms remains a barrier to

bringing a wide variety of theoretical advances into

the reality of real-time implementation. On the other

hand, the large number of resources available on

FPGAs, along with the freedom it provides for testing

and developing Application-Specific Integrated

Circuits (ASICs), has made FPGA a best platform for

implementing image processing algorithm in real time

and autonomous vehicles. FPGAs are well-suited in

providing trade-off between parallelism and flexibility

when compared with other hardware platforms

shown in Figure 1.1. The brief survey of hardware

architectures reveals that, despite considerable

advances in designing new algorithms or enhancing

current ones, only a small amount of attention is paid

to the realization.

1.1 FPGA ARCHITECTURE

FPGAs are composed of a collection of programmable

logic blocks (PLBs) embedded in a programmable

interconnect. Basic computational and storage aspects

are provided by the programmable logic block, which

can be used in electronic designs. The logic blocks in

FPGA architecture are made up of a few logic cells

that include look-up tables (LUTs), multiplexers, D-

flip flops and various combinations of memory and

logic blocks are found in recent FPGAs. To connect

these logic blocks, routing channels and I/O 4 blocks

are required [1]. In the programmable routing

architecture, pre-fabricated switches and

programmable wires are positioned in vertical and

lateral routing channels. It allows logic and I/O blocks

to communicate with one another. Around the FPGA

chip, the programmable routing network connects

I/O blocks. The functional components and routing

framework are connected to peripherals using

configurable I/O pads. Logic circuits surround the I/O

pads, forming I/O cells that take up a lot of space on

the chip. The simplest form of FPGA Architecture is

shown in Figure 1.1

Figure 1.1 Generic FPGA Architecture

FPGAs are reprogrammable platforms that enable the

reuse of hardware components and software libraries.

Xilinx creates SoCs that combine the software

programmability of a processing unit with the device

fully programmable of an FPGA. They offer a variety

of boards to their potential consumers who want SoC

platforms for design, which are grouped into three

categories: cost-optimized, mid-range, and high-end.

Devices in the cost-optimized category include the

Artix® and Zynq-7000 series. These boards offer

developers a low-cost way to construct programs that

do not take substantial software processing. As a result,

these devices are available with either single-core or

dual-core ARM Cortex-A9 processors.

1.1.1. Xilinx Zynq-7000 SoC

Zynq-7000 APSoCs are exclusive and typical from all

other Xilinx FPGA families. It is built with a dual-

core ARM Cortex-A9 Processing System (PS),

Advanced Microcontroller Bus Architecture (AMBA)

Interconnects and a variety of peripheral devices

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 10 | Issue 3

R. Ajay Krishnaraju et al Int J Sci Res Sci & Technol. May-June-2023, 10 (3) : 1009-1023

1011

including a USB JTAG interface, Quad SPI flash

memory, UART, CAN and Ethernet as well as Xilinx

Programmable Logic (PL) of Artix 7-series [2]. Figure

1.4 shows the schematic view of Xilinx XC7Z020-

1CLG484C SoC device. Figure 1.5 gives the overview

structure of FPGA hardware which is chosen as

primary hardware for proposed design to meet

prerequisites. The significant features of Zynq-7000

SoC are listed below [3].

Memory

• Support 32 data width

• IIC - 1 KB EEPROM

• 16MB Quad SPI Flash

• DDR3 Component Memory 1GB

Configuration

• USB JTAG configuration port (Digilent)

• 16MB Quad SPI Flash

Figure 1.2. Schematic View of PL and PS Portions of

ZYNQ XC7Z020- 1CLG484C [3]

The programmable logic section comprises of CLBs,

LUTs, BRAMs, DSP slices and FFs and so on. LUTs

can be configured as a single 6-input LUT (64-bit

ROMs) with a single output or as two 5-input LUTs

(32-bit ROMs) with distinct outputs but shared

addresses or logic inputs. Each LUT output can be

registered in a flip-flop if desired. A slice is formed by

four such LUTs and their eight flip-flops, as well as

multiplexers and arithmetic carry logic, and two slices

comprise a customizable logic block (CLB). Four of

the eight flip-flops per slice (one flip-flop each LUT)

can be configured as latches if desired. The block

diagram of Zynq SoC is shown in Figure 1.6.

Zynq-7000 SoC series of devices enables designers to

target both cost-sensitive and high-performance

applications from a single platform using industry-

standard tools. While all devices in the Zynq-7000

family have the identical PS, the PL and I/O resources

may vary. As a result, the Zynq-7000 SoCs can

execute plethora of applications such as networking,

cryptography, wireless networks, video and

surveillance, tracking and detection, medical imaging,

autonomous systems and industrial applications. The

resources available in Zynq-7000 SoC are listed in

Table 1.3.

Figure 1.3. Overview of ZYNQ ZC7Z020 SoC Block

Diagram [2]

Figure 1.4. Block Description of ZYNQ ZC7Z020 SoC

[3]

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 10 | Issue 3

R. Ajay Krishnaraju et al Int J Sci Res Sci & Technol. May-June-2023, 10 (3) : 1009-1023

1012

1.2 XILINX VIVADO

Vivado Design Suite, created by Xilinx, is used for

HDL design synthesis and analysis [4]. Vivado is an

IDE that allows users to create low-level hardware

designs for Xilinx FPGAs. This suite includes a

plethora of Xilinx-developed intellectual property (IP)

that may be included into designs to minimise

development time. Users can also create their own

HDL-based IP for application modification with

Vivado. The hardware designs can be developed as a

set of HDL files that are linked together, or by

utilising the built-in block diagram GUI, which allows

users to drop in IP blocks and manually connect

signal in Vivado. When a design is finished, Vivado

can output a bitstream file that can be used to

configure the FPGA.

Before simulation or synthesis, the tool provides

design validation, which allows the user to ensure

that the developed hardware design is correctly

configured and free of major design flaws. Users can

build testbenches for their designs to emulate the

functionality of their applications. When a simulation

is done, a testbench is an HDL-based framework that

wraps around the hardware design and provides it

with a sequence of inputs that will be executed and

outputted to the user. Running simulations within

Vivado is a useful tool for 10 users to assess the

correctness and functionality of their designs prior to

synthesis. The complete design flow of Vivado HLS is

illustrated in Figure 1.7.

Simulation is merely a technique for functional

testing of a design; it does not ensure that the design

will pass synthesis. The most significant feature that

Vivado offers is synthesis. The synthesis process will

convert the user's design, which may be in the form

of HDL code or a schematic, into a netlist. This step is

crucial since the netlist is the component in charge of

mapping and connecting logic gates and FFs

throughout the fabric. In general, synthesis is the

process of converting a software design into the

hardware components required to physically

represent the application. When the netlist is aimed at

FPGA hardware, it ensures that when an output

signal is generated, it can transmit the data to the

input of the next component in the time required to

transport the data physically. This concept is known

as setup and hold slack in static timing analysis, and it

is defined as the difference between the data required

time and the data arrival time.

Figure 1.5 VIVADO HLS Design Flow [4]

To transition from one state to the next, each custom

IP produced for this project implements an FSM that

is reliant on the system clock and the defined state

variable. This architecture enables a function to be

divided into numerous states, each of which requires

one clock cycle. This design enables a function to be

divided into numerous states, each of which requires

one clock cycle to perform. This has the advantage of

allowing a timing issue to be tracked back to a specific

state within an IP block when a static timing analysis

report is generated. Once the source of the timing

error has been identified, it can be rectified by

providing it with additional states to complete its

execution.

The Vivado 2020.1 SDK tool was used for this

research work to build high-level software designs

that operate on the FPGA processors and interface

with the hardware design in the FPGA fabric. These

software designs are in charge of retrieving parameter

and frame data from the FPGA's I/O ports and writing

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 10 | Issue 3

R. Ajay Krishnaraju et al Int J Sci Res Sci & Technol. May-June-2023, 10 (3) : 1009-1023

1013

it to BRAM. The SDK included a graphical user

interface (GUI) for developing applications directly on

the MicroBlaze® soft-processor found in ZC702

FPGAs and the dual-core ARM Cortex-A9 CPU. It

differs from the standard Eclipse IDE in that it can

import Vivado-generated hardware designs, create

and configure Board Support Packages (BSPs), support

single-processor and multi-processor development for

FPGA-based software applications, and includes off-

the-shelf software reference designs that can be used

to test the applications hardware and software

functionality.

1.3 NEED FOR HARDWARE ACCELERATION

Hardware acceleration refers to the utilization of

hardware resources to accomplish certain activities

more quickly than software execution on platforms,

such as FPGAs and general processing units (GPUs).

High performance, lower power consumption, lower

latency, improved parallelism and bandwidth, and

better utilization of space and 12 functional

components available on an integrated circuit are all

positive aspects of hardware acceleration.

FPGAs are often considered as first option towards

true hardware acceleration since they have a

reconfigurable fabric that can express a software

programme as logic gates. The trade-off between

flexibility, performance, and power consumption is

constantly examined when considering hardware

platforms to accelerate domain-specific applications.

FPGAs, on the other hand, fall somewhere in

between the two and provide a good balance between

these three measures [5].

1.4 MOTIVATION AND PROBLEM STATEMENTS

FPGA based hardware acceleration for image and

video processing techniques provide high

performance and parallelism. The major concern in

implementation process is that effective utilization of

hardware resources such as BRAMs, DSP slices, LUTs,

FFs and PLBs. The challenging task in real-time image

processing is tracking of multiple objects. For object

tracking algorithms, accuracy and speed are

considered as the primary parameters for evaluation

and validation. CNN-based tracking algorithms are

not time efficient, and feature extraction involves a

multi-layer network to perform the operation. These

characteristics prompted the researchers to choose

FPGAs to implement tracking and prediction.

1.5 ORGANIZATION OF THE THESIS

Chapter 1 discusses FPGA architecture and basic

concepts of hardware acceleration and the literature

on the variants of FPGA acceleration for different

image and video processing applications such as object

detection, tracking and motion detection followed by

the problem statements and objectives of the research

work.

A comprehensive literature survey about existing

works about hardware acceleration and

implementation of different image processing

algorithms and architectures are explained in chapter

2 with the motivation to carry out the research

objectives.

In chapter 4, multiple object tracking and motion

detection is performed. The proposed MDKF is

explained with system model, various ablation studies

using standard datasets and numerical analysis along

with FPGA implementation. Chapter 5 briefs the

properties and analysis of proposed MDKF algorithm

for an aircraft application with path tracking based on

linear measurements using updated state estimations.

Based on these estimations, Kalman gain equations are

derived. The results are compared with conventional

Kalman filter.

YOLOv4, a deep learning algorithm implemented on

FPGA platform is demonstrated in chapter 6. The

hardware acceleration of deep learning algorithm for

realtime object detection is proposed. It also includes

datasets, evaluation parameters, hardware modules

and comparison with other existing implementations.

Chapter 7 outlines the concluding remarks with

future perspectives.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 10 | Issue 3

R. Ajay Krishnaraju et al Int J Sci Res Sci & Technol. May-June-2023, 10 (3) : 1009-1023

1014

II. RELATED WORK

 Hardware acceleration gained progression with the

evolution of FPGAs and GPUs. Particularly, FPGAs

are mostly suited for acceleration when compared

with GPUs because of its cost efficiency,

reconfigurable ability and flexibility. In this chapter,

the detailed literature review of FPGA based

acceleration for image processing techniques

including deep learning algorithms are discussed.

2.1 FPGA BASED ACCELERATION OF

ALGORITHMS FOR OBJECT DETECTION

 Numerous studies are being conducted with the

intention to develop specialized hardware accelerators

to perform a specific function in computer vision

applications. In this subsection, various acceleration

of edge detection filter algorithms and the

implementation techniques are explained.

 J. C. Mora et al. presented cost-efficient video

processing development system with the

implementation of some spatial filters such as color

filtering, Sobel and posterize for 320 x 240 resolutions

on Zedboard embedded platform [6]. J. K. Kong Wong

et al. demonstrated hardware acceleration on Altera

Cyclone IV FPGA for video processing with reduction

in computational time and memory bandwidth

requirements is described in literature [7]. The

hardware implementation shown in Figure 2.1 could

minimise both the computational load on a general-

purpose computer and the calculation time required.

The above mentioned hardware implementations

make use of soft-core processors, while others make

use of custom-built processing and executional units.

The implemented hardware architecture does not

take expandability or deployment for usage with

other systems into account [7].

Figure 2.1 Hardware Accelerator Proposed in [7]

The significant design aspect in hardware acceleration

is platform based design (PBD) in which each

platform is a layer in the design flow that abstracts the

underlying and resulting design-flow processes [8].

The dedicated hardware architecture of designed with

PBD which explored the design requirements

implemented on Virtex-5 FPGA for real-time video

and image processing system [9]. J. K. Pandey et al.

proposed PBD based hardware accelerated

architecture on Xilinx ML-507 platform capturing 640

x 480 resolutions of realtime video frames at 60

frames per second (fps) with effective resource

utilization [10].

 J. Rettkowski et al. explained different types of design

architectures using Histogram of Oriented Gradients

(HOG) based on OpenCV method for processing

resolution of 1920 x 1080 pixel resolutions which is

achieved at 39.6 fps implemented on Zynq®- 7000

SoC [11]. The proposed acceleration in the literature

[11] outperformed the software approach in terms of

performance and flexibility and integrated OpenCV

functions implemented on ARM processors. Several

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 10 | Issue 3

R. Ajay Krishnaraju et al Int J Sci Res Sci & Technol. May-June-2023, 10 (3) : 1009-1023

1015

types of hardware-accelerated systems for machine

vision applications based on FPGA implementations

are described briefly in [13-17].

Figure 2.2 Platform-Based Design Approach [8]

 FPGAs are able to perform multi-threading processes

that help them to execute numerous applications,

including automotive industries [1]. The majority of

research investigations have shown the advancement

of image processing and computer vision in driver-

assistance systems (DA). Claus et al. developed DA

systems for various driving scenarios in order to

improve security using multi-processor SoC (MPSoC)

architecture following dynamic partial

reconfiguration (DPR) [18] and also explored

“Autovision” framework for hardware accelerated

engines shown in Figure 2.3. Numerous validations

are concentrated on advanced DA systems for

hardware implementation of lane detection in real-

time environment.

Figure 2.3 FPGA Based Reconfigurable Auto-Vision

System [18].

 Using TB-FMCH-3GSDI2A device for 1920 x 1080

resolution images, Hough Transform is implemented

using Vivado HLS tool at 100 MHz with 130 fps and

the frame rate of 60 fps is achieved for 480 × 270

resolution on Xilinx Zynq-7000 platform with

reduction in latency [19].

FPGAs are suitable for high computational operations

such as cluster analysis, image recognition and

computer vision applications [20]. Edge detection is a

widely adapted method in image segmentation and

surveillance systems. The hardware implementation

for video streams (4096 x 2160) on Xilinx devices is

examined by M. Kowalczyk et al. [21]. Rapid

prototyping methods are used to create FPGA-based

edge detection architectures for HD video streaming

[22]. The study and analysis about edge detection

techniques for image and video processing algorithms

implemented on FPGAs are discussed and compared

with various methods [23].

2.1 ACCELERATION OF RCNN ALGORITHMS ON

HARDWARE

 FPGA, being a reconfigurable architecture, may solve

a variety of system performance issues, and designers

can adapt the resources according to the demand and

target applications [24]. Such features have prompted

the researchers to construct tracking and detection

systems using FPGA devices. To solve tracking error

in gesture detection, an enhanced tracking algorithm

using EKF based on multiple feature extraction are

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 10 | Issue 3

R. Ajay Krishnaraju et al Int J Sci Res Sci & Technol. May-June-2023, 10 (3) : 1009-1023

1016

presented [25]. The convolutional Siamese network

(SiamFC) based on adaptive Kalman filter with is

designed to increase tracking performance in

challenging scenarios at 43 fps [26]. Nevertheless,

advances in deep learning approaches for object

trackers are emerging, the computational process is

highly complex, and data annotations for bounding

box prediction will affect overall system performance.

The tracking problems for occluded images are

addressed and EKF is employed to address these issues

[27]. For unmanned aerial vehicles (UAVs), C. G.

Prevost et al. presented state estimates and trajectory

prediction using EKF [28].

 The different types of Kalman filter-based tracking

methods for multiple objects are discussed in [29-33].

The most difficult issue in multiple object tracking is

identifying and resolving occlusion obstructions

developing various types of Kalman filters. Zhou et al.

explained a robust deep learning method for multi-

object tracking through occlusions [36]. This multi-

instance tracking method is based on the assumption

of updating the model with samples from prior frames

to minimize update errors and ensuring the proposed

tracker classifies new samples [37]. The tracking

performance of deep neural networks (DNN)- based

tracking algorithms are improved over the years [38–

41]. To improve the performance of feature extraction

networks, Yuan et al. suggested a self-supervised deep

correlation tracker approach for manually labelled

images [42].

 FPGAs deliver real-time solutions for deep learning

applications. and also provide improving flexibility by

parallel computations to implement learning-based

algorithms for object detection. Dong et al. suggested

an object detection technique based on deep Q-

learning and a hyperparameter optimization

algorithm [43]. However, these CNN-based tracking

algorithms demand more computational time and

feature extraction requires multi-layered networks.

As a result of these factors, many trackers are unable

to reach the needed tracking speed and precision.

These tracking methods can be employed on

embedded platforms to overcome the issues

highlighted earlier.

 By developing an iterative tracking algorithm

referred to as multi Track BeforeDetect (MF-TBD) on

FPGA, Zhang et al. demonstrated that hardware

implementations performed better than software

simulations in terms of speed and performance [53].

Iqbal et al. integrated the mean shift (MS) algorithm

and KF to develop a visual tracking method based on

adaptive video filtering. MS-KF achieved a tracking

performance of 38 fps at 75 MHz while implementing

on FPGA [54].

2.2 DEEP LEARNING BASED ACCELERATION FOR

OBJECT DETECTION

 Regional Convolutional neural network (RCNN)

demands a significant number of memory accesses

and calculations. The development of RCNNs have

resulted in a major breakthrough in computer vision

applications. Frequent access to off-chip memory

result in slow computation and high power

consumption. FPGAs are logically reconfigurable

hardware processors that offer significant advantages

in terms of performance and power consumption,

making them an excellent option for deploying a deep

convolutional network. When compared to GPUs,

FPGAs are able to provide higher performance in

deep learningbased applications where latency is

critical [55]. Comparison of ASICs, FPGAs and GPUs

for deep learning applications are listed in Table 2.2.

Table 2.2 Comparison of ASICs, FPGAs and GPUs for

Deep Learning Applications

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 10 | Issue 3

R. Ajay Krishnaraju et al Int J Sci Res Sci & Technol. May-June-2023, 10 (3) : 1009-1023

1017

FPGAs provide hardware customisation with built-in

AI and can be configured to behave similarly to a

GPU or an ASIC. The advantages of FPGAs over

GPUs are as follows.

 Greater performance with low latency: By directly

ingesting video into the FPGA and bypassing a CPU,

FPGAs can provide low latency as well as

deterministic latency for real-time applications such

as video stream, interpretation, and gesture detection.

Designers can create a neural network from scratch

and organise the FPGA to best suit the model.

 Cost-efficiency and value: Because FPGAs can be

reprogrammed for numerous functions and data

formats, they are one of the most cost-effective

hardware solutions available. Furthermore, FPGAs

can be utilised for purposes other than AI. Designers

can save money and board space by combining

multiple functions into the same chip. Because FPGAs

have extended product life cycles, FPGAbased

hardware designs can have a long product life,

measured in years or decades. Because of this, they are

suited for application in the industrial defence,

medical, and automotive markets.

YOLOv4 uses single convolutional neural network

predicts the bounding box coordinates, the class

probabilities for these boxes and confidence of the

object from the whole image. The evaluation metrics

are mean average precision (mAP), precision, recall,

loss measurements used in learning mechanisms. For

different image resolutions, mAP is shown in Figure

2.4. FPGAs perform reconfiguration which offer

better trade-offs between 23 performance and

flexibility. Thus FPGAs deserve high priority than

ASICs as well as GPUs for performing deep learning

techniques [64].

Figure 2.3 mAP for Different Input Resolutions.

 FPGAs are well-suited for deep learning algorithms,

there are numerous surveys available with respect to

design and implementation [65-71]. There are several

FPGA design have been proposed for the

implementation of different versions of YOLO

algorithms shown in Table 2.4. Ding et al. proposed a

framework (REQ-YOLO) for object detection

implemented on FPGA and developed new processing

element (PE) structure [72]. However, in literature

[72] achieved very high percentage of resource

utilisation. For effective resource utilisation, the fast

FIR algorithm (FFA) is introduced in literature [73]

for computation of CNN models and is implemented

on Xilinx Virtex VC707 and Zynq ZC706 boards.

Mini-YOLOv3 is developed for real-time embedded

applications tested on MS-COCO dataset and

proposed a Multi-Scale Feature Pyramid Network

(MSFPN) for feature extraction [74]. The architecture

in literature [74] used two types of convolution

processes such as group convolution and depth-wise

convolution, yet the accuracy and speed is not high

when compared to recently proposed methods.

 FPGA-YOLO hardware acceleration for object

detection is developed in [79] which utilized

maximum number of on-chip resources. The overall

performance of hardware acceleration is quite low in

[80] for implementing CNN on VC707 FPGA board at

61.62 GigaFLOPS (100 MHz). The object detection

implemented on FPGAs and GPUs is carried out in

[81] without any optimization of hardware resource

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 10 | Issue 3

R. Ajay Krishnaraju et al Int J Sci Res Sci & Technol. May-June-2023, 10 (3) : 1009-1023

1018

utilization for both platforms. D. Pestana et al.

developed acceleration of YOLO tiny architectures

algorithm on FPGAs achieving 31 fps with efficient

resource utilization [82]. For hardware acceleration of

object detection algorithms, resource utilization and

prediction time are the significant parameters to

evaluate the research work.

 Several existing CNN based accelerators failed to

evaluate both the factors. Despite the fact that

existing FPGA accelerators outperform generic

hardware, the exploration of design space of hardware

accelerators is still a major concern. The most

significant issue is the computation speed which may

not be sufficient to meet the memory bandwidth

given by an FPGA platform. As a result, present

techniques are not capable to reach optimal

performance due to overexploitation of hardware

resources and memory bandwidth. At the same time,

the rising complexities and flexibility of deep learning

systems aggravates the challenge.

III. 3.METHODOLOGY

 Researchers are turning their attention to the

development of dedicated hardware for image and

video processing applications as technology improves

exponentially. To begin, software acceleration is a set

of instructions for the CPU that allows numerous

libraries to be executed for optimization. The

implementation of these algorithms on programmable

logic (PL) provided by SoC device is the second phase.

These connectors provide efficient resource

utilization, user management, real-time processing,

and a variety of other benefits. Remote sensing, high

performance computing, histology, medical

diagnostics, broadcast, cryptography, wireless

communication, and other applications are supported

by FPGA hardware architectures. The advancements

in microchip technologies allow for the integration of

a wide range of functionality on host semiconductor

chips. As a result, embedded SoC designers are dealing

with design requirements such as adaptability, power

consumption, performance, and cost.

 FPGAs, which are gaining prominence in

reconfigurable computing, are well suited for the

development of embedded hardware design. FPGAs

provide a solid foundation for image and video

processing based hardware architecture mechanisms,

with performance comparable to specialised ICs.

These computer vision systems are mostly used in

fields ranging from security to space in combination

with developing technologies. Implementing image

processing techniques on reconfigurable hardware can

boost performance, accelerating common methods

that shall simplify debugging and validation processes.

The development time and expense are affected by

these arguing limits. Therefore, there is a requirement

for flexible solutions that provide greater precision in

the development process and may be reused after final

implementation.

FPGA implementation of filter algorithms are

discussed in this chapter. SobelFeldman, threshold

and posterize filter algorithms are implemented on

Xilinx Zynq-7000 SoC with effective hardware

resources utilization are also explained.

3.1 OVERVIEW OF EDGE DETECTION

ALGORITHMS

 Sobel-Feldman or Sobel filtering is a standard edge-

detection technique that creates input data that

highlights edges and transitions in real-time image

and video processing [6]. The illustration of Sobel-

edge filtering algorithm is shown in Figure 3.1.

Figure 3.1 Sobel Filter Illustration

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 10 | Issue 3

R. Ajay Krishnaraju et al Int J Sci Res Sci & Technol. May-June-2023, 10 (3) : 1009-1023

1019

 Sobel filter represents the pixel values as x and y

derivatives which is depicted in Figure 3.2. The

convolution of Image (M) and two 3 x 3 kernels with

vertical (Gx) and horizontal (Gy) derivative

approximations is represented in Equation (3.1).

3.2 ACCELERATION OF EDGE DETECTION

ALGORITHMS

 The proposed architecture uses Xilinx XC7Z020-

1CLG484C SoC device as major hardware, as

illustrated in Figure 3.4. To connect the hardware

blocks to the computing system, AXI bus connectivity

protocols are exploited. Accessing hardware

configuration registers and broadcasting input image

processing data from IP core to frame buffer in DDR3

component memory is done via the AXI4-Lite bus and

AXI4 stream block also converts the input image data

to AXI4 stream interface. Test pattern generator in

the FPGA receives video signals from the visual

timing controller in the hardware part. VDMA 29 is

used to send the video frames to memory controller,

and then output is shown via external HDMI output

interface.

 Direct streaming and frame buffer streaming are the

two methods of streaming architectures. The

information of each pixel in the PL is passed to the

video processing component and is transmitted to

output interfaces in direct streaming architecture.

However, with frame buffer streaming architecture,

image data is originally retained by dedicated

memories before video streams are buffered related to

appropriate memory bandwidth. With the

reprogrammable architecture of Zynq SoCs and

software and hardware acceleration, multiple image

and video processing operations can be accomplished.

 The complete operating system is controlled by

embedded hardware frame buffers and filters

incorporated into PL component, in addition to

software algorithms. In this architecture, video signals

are sent from the processor to the video processing

pipelined through Advanced Extensible Interface

(AXI) interconnect. These ports and communication

with the ARM CPU are shared by the USB camera.

The memory controller stores the image data. Once

the image is processed, it is transferred through the

output linked with HDMI display, and the process

pipeline is repeated during several iterations.

3.3 INTEGRATION OF VIVADO AND OPENCV

 IP cores are set up with dimensions (width x height)

of the input data. All video frames are received and

processed when the IP core has been initialised in the

input interface. The processed frame is then

transferred over the output interface. Simultaneously,

the core receives the next video frame, which is ready

to process without any delay and next video frames

are processed at regular intervals. This process is

continued once the entire pipeline is executed and the

image filters will be turned off. The video format used

in the streaming design is 16-bit 4:2:2 YUV. The GUI

layers of the display component are controlled by 32-

bit RGB. For image processing applications, Vivado

HLS includes a large set of functions [4]. To name a

few, 𝑐𝑣: : 𝑀𝑎𝑡 class one of the library functions to

indicate images in video processing system

represented as,

 Xilinx Video Timing Controller (VTC) can be utilized

to determine dimensions of the input image. AXI4

stream interfaces, on the other hand, share any data

through the output interfaces. The design approach

for acceleration based on the video library functions

for the Vivado HLS Application Program Interface

(API) is shown in Figure 3.5. The library functions

used in proposed design flow are AXIvideo2Mat and

Mat2AXIvideo for conversion.

• AXIvideo2Mat function – converting from AXI4

Streams to hls::Mat representations.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 10 | Issue 3

R. Ajay Krishnaraju et al Int J Sci Res Sci & Technol. May-June-2023, 10 (3) : 1009-1023

1020

 • Mat2AXIvideo function – converting from hls::Mat

representations to AXI4 video streams.

Figure 3.2. Design Flow of Vivado HLS Video Library

Functions.

IV. RESULTS AND DISCUSSION

 On a dual-core ARM PS, filtering algorithms are

implemented. While input image data is executed and

kept in output memory at the same time, various edge

detection filters can be applied. Sobel-Feldman,

threshold and posterize filtering techniques are

illustrated among the detection filter algorithms used

in this design are shown in Figure 3.6. Vivado 2018.2

is used to generate simulation and synthesis results.

The complete system is synthesized and implemented

at a desirable frequency of about 100 MHz. While

analyzing performance and flexibility, some physical

limits such as DSP blocks exhaustion are obtained.

The resources of the FPGA SoC are utilized based on

design which may vary depending on the design

complexities of FPGA implementation.

4.1 Resource Utilization

 The resources utilized for the proposed hardware

acceleration is listed in Table 3.1. For input image

with 1920 x 1080 resolution, three different types of

filter designs are implemented. The utilization of

hardware resources was investigated and achieved as

23.63%, 51%, 15%, 29.47% and 45.6% of DSP blocks,

LUTs, BRAMs, FFs and logic cells respectively. The

placement and routing mechanisms influence how

logic cells are used. From the simulation results, the

proposed implementation of filter algorithms

consumed 9% and 4% fewer number of FFs and

BRAMs respectively [6] as well as 41% and 30% fewer

amount of logic cells and LUTs respectively [22]. The

resource utilization comparison with other existing

implemented systems is shown in

4.5 SUMMARY

 Xilinx Zynq-7000 SoC was used to deploy hardware

acceleration of SobelFeldman filtering, posterize and

threshold filtering techniques for 1920 x 1080 image

resolutions. Vivado 2018.2 was used to generate

simulation and synthesis outcomes. Based on the

simulation results, the proposed implementation used

29% and 40% less LUTs and logic cells respectively [6],

as well as 10% and 3% fewer flip-flops and BRAMs,

respectively [22]. Filter algorithms are executed

concurrently in the proposed approach, providing

flexibility and parallelism for hardware acceleration.

V. CONCLUSION AND FUTURE WORK

5.1 CONCLUSION

 Object tracking and detection are important tasks in

computer vision applications. The real-time

performance of these processes can be achieved by

implementing on FPGAs, GPUs and multi-core

architectures. The primary objective of this research

work provides different hardware accelerations for

image processing techniques such as object tracking

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 10 | Issue 3

R. Ajay Krishnaraju et al Int J Sci Res Sci & Technol. May-June-2023, 10 (3) : 1009-1023

1021

and detection to achieve high performance, effective

utilization FPGA resources and prediction accuracy.

 We have implemented edge detection filter

algorithms such as Sobel-Feldman, posterize and

threshold on Zynq SoC for 1920 x 1080 image

resolutions with effective resource utilization

provides primary objective for other accelerations.

The synthesis and simulations were carried out using

Vivado 2018.2 and libraries were utilized from

OpenCV functions. The outcomes of this work were

compared with similar implementations in terms of

hardware resource utilization.

 In case of tracking, multiple object tracking (MOT) is

the challenging processes when it is performed in

real-time mode for high degree of accuracy and speed.

MOT aims to estimate trajectories of all objects under

various factors for example occlusions and distracters.

To overcome this issue, MDKF algorithm is proposed

and it is trained on various benchmark datasets such

as OTB-100, UAVDT and MOT and ablation studies

proved that MDKF achieved with 70.3% of precision

and 44.7% of AUC. These results demonstrated that

the proposed tracking algorithm outperformed other

state-of-the art trackers.

 The tracking speed of MDKF is achieved as 49 fps in

software approach using MATLAB. The hardware

acceleration of MDKF achieved 91 fps at 100 MHz

with 780 mW consumption of power which shows

that the proposed FPGA-based acceleration of MDKF

achieved high tracking speed than the software

approach. In order to analyze the 82 performance of

MDKF, path tracking is carried out for linear systems.

For estimation, state extrapolation, covariance and

Kalman gain equations are updated based on linear

measurements. The simulation is carried out using

MATLAB/Simulink

 Further the research is fueled by the application of

deep learning in the image processing applications.

Among several deep learning based object detections

algorithms, RCNN algorithm is chosen and

acceleration was attempted. In addition, a hardware

based neural network for object detection was

designed. The model is trained on MS-COCO

benchmark dataset and outcomes are compared with

existing implementations. For proposed acceleration

of real-time detection, the prediction time is about

10.12 ms which is faster than existing SoC

accelerations.

5.2 FUTURE PERSPECTIVES

The research work can be extended with the

intention to incorporate full reconfiguration or partial

reconfiguration (PR) which are the main features for

FPGAs. The most difficult problems are programming

for reconfigurable architectures and effective

virtualization of FPGA resources for PR. With the

development of FPGA technology, it is possible to

implement reconfigurability for real-time image

processing applications.

 Modern FPGAs have greater capacity and faster

memory speeds than in the past, allowing for more

design space. In our research, we discovered that

there may be a performance difference of up to 95%

between two different solutions that use the identical

logic resource of an FPGA. It is not trivial to settle

with one optimal solution, particularly when the

computation resource and memory bandwidth of an

FPGA platform are taken into account. Therefore, if

an accelerator structure is not designed properly, its

compute performance will be insufficient to satisfy

the memory band-width requirements enabled by

FPGAs. It denotes that performance has suffered as a

result of insufficient usage of either logic resources or

memory bandwidth.

 Finally, the future work is focused on implementing

object detection algorithms on different types of

hardware platforms to analyze various parameters like

power consumption, speed and resource utilization.

However, FPGA implementations surpasses software

implementations in terms of timing accuracy and

efficiency, their deployment is complex and time-

consuming. Moreover, developers with specialised

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 10 | Issue 3

R. Ajay Krishnaraju et al Int J Sci Res Sci & Technol. May-June-2023, 10 (3) : 1009-1023

1022

expertise are required for development and

customization of the FPGA algorithm. The upcoming

platforms that can generate system configuration from

software requirements could be a solution.

VI. REFERENCES

[1]. S.A. Fahmy, K. Vipin, FPGA dynamic and

partial reconfiguration: A survey of

architectures, methods, and applications.

Comput. Surveys 51, pp. 1-39, 2018.

[2]. Xilinx, ZC702 Evaluation Board for the Zynq-

7000 XC7Z020 SoC: User Guide

(2017).[Online].https://www.xilinx.com/support

/documentation/boards_and_kits/

zc702_zvik/ug850-zc702-eval-bd.pdf. (Accessed

on 23rd March, 2022)

[3]. Xilinx Inc.: Zynq-7000 all programmable SoC

technical reference manual. (2021). (Accessed

on 23rd March, 2022) Available at:

https://www.xilinx.com/support/documentation

/user_guides/ug585-Zynq-7000- TRM.pdf

[4]. Xilinx Inc, “Vivado Design Suite tutorial high

level synthesis, UG871 (v 2014.1) May 6, 2014,”

UG871 (v 2014.1) May 6, 2014. [Online].

Available at:

https://www.xilinx.com/support/documentation

/sw_manuals/xilinx2019_1/ug871- vivado-high-

level-synthesis-tutorial.pdf. (Accessed on 23rd

March, 2022)

[5]. P. Babu, E. Parthasarathy, “Reconfigurable

FPGA Architectures: A Survey and

Applications,” J. Inst. Eng. India Ser. B 102, pp.

143–156, 2021.

[6]. J. C. Mora, E. C. Gallego and S. S. Solano,

“Hardware/software co-design of video

processing applications on a reconfigurable

platform,” in Int. Conf. on Industrial

Technology (ICIT), Seville, Spain: IEEE, pp.

1694–1699, 2015.

[7]. K. F. Kong Wong, V. Yap and T. P. Chiong,

“Hardware accelerator implementation on

FPGA for video processing,” in IEEE Conf. on

Open Systems (ICOS), Kuching, Malaysia, pp.

47–51, 2013.

[8]. A. L. Sangiovanni-Vincentelli et al. “Defining

Platform-Based Design,” In EEDesign. Available

at

www.eedesign.com/story/OEG20020204S0062).

(Accessed on 23rd March, 2022) 84

[9]. L. Kechiche, L. Touil and B. Ouni, “Real-time

image and video processing: Method and

architecture,” in 2nd Int. Conf. on Advanced

Technologies for Signal and Image Processing

(ATSIP), IEEE, Monastir, Tunisia, pp. 194–199,

2016.

[10]. J. G. Pandey, A. Karmakar and S.

Gurunarayanan, “Architectures and algorithms

for image and video processing using FPGA-

based platform,” in 18th Int. Sym. on VLSI

Design and Test (VDAT), IEEE, pp. 1, 2014.

[11]. J. Rettkowski, A. Boutros and D. Göhringer,

“HW/SW co-design of the HOG algorithm on a

Xilinx Zynq SoC,” Journal of Parallel and

Distributed Computing, vol. 109, pp. 50–62,

2017.

[12]. S. Madhava Prabhu and S. Verma, "A

Comprehensive Survey on Implementation of

Image Processing Algorithms using FPGA,"

2020 5th IEEE International Conference on

Recent Advances and Innovations in

Engineering (ICRAIE), 2020, pp. 1-6, doi:

10.1109/ICRAIE51050.2020.9358384.

[13]. Ali Azarian, Mahmood Ahmadi,

“Reconfigurable Computing Architecture:

Survey and introduction,” in 2nd International

Conference on Computer Science and

Information Technology, IEEE, Beijing, China,

pp. 269–27, 2009.

[14]. A. DeHon, "Reconfigurable Architectures for

General-Purpose Computing", Technical Report

Massachusetts Institute of Technology, 1996.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 10 | Issue 3

R. Ajay Krishnaraju et al Int J Sci Res Sci & Technol. May-June-2023, 10 (3) : 1009-1023

1023

[15]. I. Kuon, R. Tessier and J. Rose, "FPGA

Architecture: Survey and Challenges", J. Found.

and Trends in Electronic Design Automation,

vol. 2, no. 2, pp. 135-253, 2008.

[16]. K. Compton and S. Hauck, "Reconfigurable

computing: A survey of systems and software",

ACM Computing Surveys, vol. 34, no. 2, pp.

171-211, 2002.

[17]. R. Cumplido, M. Gokhale and M. Huebner,

“Guest Editorial: Special issue on Reconfigurable

Computing and FPGA technology,” Journal of

Parallel and Distributed Computing, vol. 133,

pp. 359–361, 2019.

[18]. C. Claus, W. Stechele and A. Herkersdorf,

“Autovision – A run-time reconfigurable

MPSoC architecture for future driver assistance

systems,” IT- Information Technology, vol. 49,

no. 3, pp. 181–187, 2007. 85

[19]. C. Khongprasongsiri, P. Kumhom, W.

Suwansantisuk, T. Chotikawanid, S. Chumpol et

al., “A hardware implementation for real-time

lane detection using high-level synthesis,” in

International Workshop on Advanced Image

Technology (IWAIT), Chiang Mai, Thailand:

IEEE, pp. 1–4, 2018.

[20]. D. G. Bailey, “Image processing using FPGAs,”

Journal of Imaging, vol. 5, no. 53, pp. 1–4, 2019.

[21]. M. Kowalczyk, D. Przewlocka and T. Krvjak,

“Real-time implementation of contextual image

processing operations for 4K video stream in

Zynq UltraScale+ MPSoC,” in Conf. on Design

and Architectures for Signal and Image

Processing (DASIP), Porto, Portugal, pp. 37–42,

2018.

[22]. A. B. Amara, E. Pissaloux and M. Atri, “Sobel

edge detection system design and integration on

an FPGA based HD video streaming

architecture,” in 11th Int. Design & Test Sym.

(IDT), Hammamet, Tunisia, pp. 160–164, 2016.

[23]. E. Onat, “FPGA implementation of real time

video signal processing using Sobel, Robert,

Prewitt and Laplacian filters,” in 25th Signal

Processing and Communications Applications

Conf. (SIU), Antalya, Turkey, pp. 1–4, 2017.

[24]. R. Tessier, I. Kuon, J. Rose, “FPGA architecture:

survey and challenges,” Found. Trends Electron.

Des. Autom. 2(2), pp. 135–253, 2008.

[25]. Y. Fang, L. Yu and S. Fei, "An Improved Moving

Tracking Algorithm With Multiple Information

Fusion Based on 3D Sensors," in IEEE Access,

vol. 8, pp. 142295-142302, 2020, doi:

10.1109/ACCESS.2020.3008435.

Cite this article as :

R. Ajay Krishnaraju, J. Poovarasan, S. Santhies

Kumar, S. Surya, P. Tamilselvan, "Object

Detection Using Adaptive Block Partition and

RCNN Algorithm", International Journal of

Scientific Research in Science and Technology

(IJSRST), Online ISSN : 2395-602X, Print ISSN :

2395-6011, Volume 10 Issue 3, pp. 1009-1023,

May-June 2023. Available at doi :

https://doi.org/10.32628/IJSRST523103196

Journal URL : https://ijsrst.com/IJSRST523103196

