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 Thalassemia is viewed as a prevalent inherited blood disease that has 

gotten exorbitant consideration in the field of medical research around the 

world. Inherited diseases have a high risk that children will get these 

diseases from their parents. If both the parents are β-Thalassemia carriers 

then there are 25% chances that each child will have β-Thalassemia 

intermediate or β-Thalassemia major, which in most of its cases leads to 

death. Prenatal screening after counseling of couples is an effective way to 

control β-Thalassemia. Iron deficiency anemia (IDA) is considered one of 

the most common nutritional deficiencies globally, making it a prevalent 

health issue. Its prevalence varies among different populations and 

geographic regions. To diagnose iron deficiency anemia (IDA), healthcare 

professionals typically perform a series of tests to evaluate the patient's 

iron status and identify the underlying cause of the deficiency.  

Thalassemia and iron deficiency anemia are thus two common 

hematological disorders characterized by abnormal hemoglobin synthesis 

and reduced iron levels, respectively. Distinguishing between these 

conditions is crucial for accurate diagnosis and appropriate treatment. 

Hereby, we propose a classification approach based on an SGR-voting 

classifier to differentiate between thalassemia and iron deficiency anemia. 

SGR-VC is an ensemble of three machine learning algorithms: Support 

Vector Machine, Gradient Boosting Machine, and Random Forest. 

Keywords: Thalassemia, Iron Deficiency Anaemia, Normalization, Data 

Cleaning, Support Vector Machine, Gradient Boosting Machine, Random 

Forest, Ensemble Classifier, SGR-Voting Classifier. 
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I. INTRODUCTION 

 

Thalassemia is mainly a combination of two Greek 

words, ‘‘Thalassa’’ meaning sea and ‘‘Hema’’ means 

blood. Thalassemia is an inherited blood disorder that 

is commonly found in different parts of the world 

especially in South Asia. Inherited disease means that 

it is passed from parents to their children. In 

Thalassemia, hemoglobin levels decrease from normal 

limit which causes reduction in the count of 

productive red blood cells, which may lead to severe 

anemia. Red blood cells (RBCs) mainly consist of a 

protein containing a great deal of iron named 

hemoglobin which form the main concentration of 

RBCs. Iron deficiency anemia (IDA) is a prevalent 

hematological disorder characterized by a deficiency 

of iron, leading to reduced red blood cell production 

and subsequent impaired oxygen transport. It affects 

individuals across all age groups, with particularly 

high prevalence among children, women of 

childbearing age, and older adults.  

 

SGR-VC: 

Experiments are performed on Tree-based machine 

learning models (Random Forest (RF) and Gradient 

Boosting machine (GBM)) and probability-based 

machine learning models (Support Vector Machine 

(SVM)). A Voting Classifier (VC) based on the 

ensemble of SVM, GBM and RF called SGR-VC is 

considered. The proposed SGR-VC can automatically 

diagnose Thalassemia carriers by using CBC test 

which is a cost effective and fast solution. The patient 

wrongly classified as thalassemic by one of the 

machines is sent for further diagnosis of IDA due to 

its similar traits with thalassemia. SGR-VC is an 

ensemble of SVM. GBM and RF are designed to 

isolate and analyze β-Thalassemia carriers from β-

Thalassemia non-carriers. 

 

 

 

 

II. THALASSEMIA AND IRON DEFICIENCY 

ANEMIA 

A. Overview of Thalassemia 

Thalassemia is an inherited blood disorder that affects 

the production of haemoglobin. It can be classified 

into alpha and beta thalassemia, and its severity varies 

from mild to severe. Treatment may involve blood 

transfusions, chelation therapy, and stem cell 

transplantation. Early diagnosis and genetic 

counselling are important for managing the condition. 

 

B. Overview of Iron Deficiency Anaemia (IDA) 

Iron deficiency anaemia (IDA) is a common type of 

anaemia caused by insufficient iron levels in the body. 

It leads to reduced production of healthy red blood 

cells, resulting in symptoms such as fatigue, pale skin, 

and shortness of breath. Diagnosis involves blood tests 

to measure haemoglobin, ferritin, and iron levels. 

Treatment typically involves iron supplementation 

and dietary changes. Prevention includes consuming 

iron-rich foods and, in some cases, iron 

supplementation. Consulting a healthcare professional 

is important for proper diagnosis and treatment. 

 

C. Key Similarities and Differences between 

Thalassemia and IDA 

Key Similarities between Iron Deficiency Anaemia 

(IDA) and Thalassemia: 

1. Anaemia: Both IDA and Thalassemia are forms of 

anaemia, which means they involve a decrease in the 

number or functionality of red blood cells, resulting 

in reduced oxygen-carrying capacity. 

2. Fatigue and Weakness: Fatigue and weakness are 

common symptoms of both conditions due to 

insufficient oxygen supply to the body's tissues. 

3. Pale Appearance: Individuals with both IDA and 

Thalassemia may exhibit pale skin and mucous 

membranes due to reduced red blood cell production. 

Key Differences between Iron Deficiency Anaemia 

(IDA) and Thalassemia: 



International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 10 |  Issue 4 

Shruti Taware et al Int J Sci Res Sci & Technol. July-August-2023, 10 (4) : 35-43 

 

 

 
36 

1. Causes: The underlying causes of IDA and 

Thalassemia differ significantly. 

   - IDA is primarily caused by a deficiency of iron in 

the body, often due to inadequate dietary intake, 

blood loss, or poor iron absorption. 

   - Thalassemia is an inherited genetic disorder 

characterized by abnormal or reduced production of 

haemoglobin chains. 

2. Iron Levels: Iron deficiency is a key characteristic 

of IDA, whereas Thalassemia is not primarily 

associated with iron deficiency. In Thalassemia, the 

production or structure of haemoglobin is affected, 

but iron levels may be normal or even elevated. 

3. Genetic Inheritance: IDA is not inherited and can 

occur in individuals of any age or sex. In contrast, 

Thalassemia is a genetic disorder inherited from 

parents who carry mutated haemoglobin genes. 

4. Severity and Type of Anaemia: IDA typically 

results in microcytic anaemia, characterized by 

smaller red blood cells, whereas Thalassemia often 

leads to microcytic or hypochromic anaemia with 

abnormal or reduced red blood cells. 

5. Treatment Approaches: Treatment strategies for 

IDA and Thalassemia differ. 

   - IDA is usually treated with iron supplementation, 

dietary changes to increase iron intake, and 

addressing the underlying cause if present. 

   - Thalassemia management may involve blood 

transfusions, bone marrow transplants, and regular 

monitoring of haemoglobin levels. 

It is important to note that these are general 

differences and similarities, and the specific 

presentation and management of IDA and 

Thalassemia vary based on individual cases and 

severity. 

 

 

 

 

 

 

 

III. EXISTING MACHINE LEARNING DIAGNOSTIC 

METHODS 

A. Thalassemia Diagnostic Methods using Machine 

Learning: 

Thalassemia is a group of inherited blood disorders 

characterized by abnormal haemoglobin production. 

Machine learning techniques have been employed to 

aid in Thalassemia diagnosis. Some existing diagnostic 

methods utilizing machine learning include: 

 

- Support Vector Machines (SVM): SVM has been 

applied for Thalassemia classification based on 

features extracted from blood samples, such as red 

blood cell indices and haemoglobin levels (Bhadade et 

al., 2017). 

 

- Artificial Neural Networks (ANN): ANN models 

have been used to diagnose Thalassemia by analyzing 

haematological parameters and genetic information 

(Misra et al., 2016). 

 

- Decision Trees: Decision tree-based models have 

been developed to classify Thalassemia based on 

clinical and laboratory data (Gupta et al., 2019). 

 

B. IDA Diagnostic Methods using Machine Learning: 

 

Iron Deficiency Anaemia (IDA) is a condition caused 

by a lack of iron in the body, leading to decreased 

production of red blood cells. Machine learning 

approaches have also been explored for IDA diagnosis. 

Some existing diagnostic methods using machine 

learning for IDA include: 

 

- Random Forest: Random Forest models have been 

utilized to predict IDA based on various features, 

including haemoglobin levels, red blood cell indices, 

and demographic information (Zhang et al., 2018). 

 

- Gradient Boosting Machines (GBM): GBM models 

have been employed for IDA diagnosis using features 
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like red blood cell parameters, ferritin levels, and 

demographic factors (Sahu et al., 2021). 

 

- Deep Learning: Deep learning models, such as 

convolutional neural networks (CNN), have been 

used to classify IDA based on peripheral blood smear 

images, allowing for automated and efficient diagnosis 

(Ahn et al., 2020). 

 

C. Limitations of Current Diagnostic Methods using 

Machine Learning: 

 

Despite the advancements in machine learning-based 

diagnostic methods for Thalassemia and IDA, several 

limitations exist: 

 

- Limited Data Availability: Availability of large-

scale, high-quality datasets is crucial for training 

accurate machine learning models. In some cases, 

access to diverse and comprehensive datasets for 

Thalassemia and IDA may be limited. 

 

- Interpretability and Explainability: Certain 

machine learning algorithms, such as deep learning 

models, are often considered black-box models, 

making it challenging to interpret and explain the 

reasoning behind the predictions, which may be 

necessary in the medical field. 

 

- Generalization and Validation: Machine learning 

models need to be validated on independent datasets 

to ensure their generalizability and robustness. 

Validation studies with diverse populations and 

demographics are required to assess the performance 

of these models in real-world scenarios. 

 

- Clinical Integration: Integrating machine 

learning-based diagnostic methods into the existing 

clinical workflow and obtaining regulatory approvals 

for their use in clinical settings pose additional 

challenges that need to be addressed. 

 

Addressing these limitations is essential for the 

successful translation of machine learning-based 

diagnostic methods into clinical practice, enabling 

accurate and efficient diagnosis of Thalassemia and 

IDA. 

 

IV.  VOTING CLASSIFIER AND ITS APPLICATION 

 

Although a conclusion may review the main points of 

the paper, do not replicate the abstract as the 

conclusion. A conclusion might elaborate on the 

importance of the work or suggest applications and 

extensions. Authors are strongly encouraged not to 

call out multiple figures or tables in the conclusion 

these should be referenced in the body of the paper. 

 

V. DATA PREPROCESSING 

 

The pre-processing steps of data cleaning and 

normalization are applied to the dataset, specifically 

focusing on the classification of β-Thalassemia 

Carriers from RBC (Red Blood Cell) indices. These 

steps are crucial to ensure data quality, address 

missing values, and normalize attribute values for 

accurate classification of individuals with β-

Thalassemia and Iron Deficiency Anaemia (IDA) 

conditions. 

 

1. Data Cleaning: 

 

Data cleaning is performed to remove impurities and 

correct errors in the dataset that could affect the 

classification process. In the context of β-Thalassemia 

and IDA classification, the following data cleaning 

steps are conducted: 

 

i. Elimination of incomplete input values: Missing 

values in CBC tests related to RBC indices are filled by 

referring to the medical records of the hospital. If the 

missing values cannot be found in the medical reports, 

the entire record is removed from the dataset. This 
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step ensures that the dataset contains complete 

information for accurate analysis. 

ii. Elimination of duplicate data: Duplicated entries in 

the dataset are identified and removed using the 

patient_id attribute. Each patient is assigned a unique 

patient_id, allowing for the identification and 

removal of duplicate records. This step helps in 

ensuring that the dataset is free from redundant data, 

which could bias the classification results. 

 

iii. Removal of insignificant attributes: Insignificant 

attributes that do not contribute to the classification 

results are removed from the dataset. These attributes 

may include patient-specific information like 

patient_id, Test date, Patient name, and Family name. 

By removing such attributes, the dataset is 

streamlined, focusing only on the relevant features 

necessary for classification. 

 

2. Normalization: 

 

Normalization is applied to the dataset to standardize 

the range of attribute values, which is particularly 

important for accurate classification of β-Thalassemia 

Carriers and IDA cases. The normalization process 

considers the normal values specific to each test and 

takes into account factors such as age, gender, and 

RBC indices. The steps involved in normalization are 

as follows: 

 

1. Age normalization: Age information is normalized 

into two values, 0 and 1, representing children and 

adults, respectively. This distinction acknowledges 

that normal values for RBC indices can vary between 

these age groups. 

 

2. Gender normalization: Gender information is 

normalized into two values, 0 for female and 1 for 

male. This step accounts for any gender-based 

variations in the normal range of RBC indices. 

 

3. RBC indices normalization: Each RBC index 

attribute is normalized into multiple divisions, 

typically six divisions ranging from 0 to 5. The value 0 

represents below the normal range, 5 represents 

above the normal range, and values 1, 2, 3, and 4 

represent four equal divisions within the normal 

range. This normalization approach allows for a more 

granular representation of the RBC indices, enabling 

better differentiation between β-Thalassemia Carriers 

and IDA cases. 

 

4. Target class normalization: The target class, 

distinguishing between individuals with β-

Thalassemia and IDA, is represented by the values 0 

and 1, respectively. This normalization allows for the 

effective classification of individuals into the 

respective categories. 

 

By performing data cleaning and normalization, the 

study ensures the quality, completeness, and 

standardization of the dataset, enabling accurate 

classification of individuals as β-Thalassemia Carriers 

or IDA cases based on RBC indices. 

 

 

VI. PERFORMANCE EVALUATION 

 

Performance evaluation is crucial to assess the 

effectiveness of the classification models. The 

evaluation measures used in this study are specifically 

tailored to assess the diagnostic performance for β-

Thalassemia. The following evaluation measures were 

employed: 

 

1. Accuracy: Accuracy is an important measure to 

evaluate the overall correctness of the classification 

model in identifying β-Thalassemia cases correctly 

based on RBC Indices. It calculates the ratio of 

correctly classified β-Thalassemia cases to the total 

number of cases in the dataset. 
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2. Precision: Precision focuses on the positive 

predictions made by the model and assesses the 

proportion of correctly identified β-Thalassemia cases 

out of all instances predicted as β-Thalassemia carriers. 

A higher precision indicates fewer false positives, i.e., 

fewer cases incorrectly identified as β-Thalassemia 

carriers. 

 

3. Recall: Recall, also known as sensitivity, measures 

the ability of the model to correctly identify β-

Thalassemia cases out of all actual β-Thalassemia cases 

in the dataset. It evaluates the model's ability to avoid 

missing β-Thalassemia cases and aims for a lower false 

negative rate. 

 

4. F1-score: The F1-score is the harmonic mean of 

precision and recall. It provides a balanced measure of 

the model's ability to correctly identify both positive 

and negative cases. The F1-score is particularly useful 

when there is an imbalance between the number of β-

Thalassemia carriers and non-carriers in the dataset. 

 

By utilizing these evaluation measures, the study aims 

to assess the performance of the ensemble classifiers 

in accurately classifying β-Thalassemia cases based on 

RBC Indices. 

 

VII. CLASIFICATION ALGORITHMS 

 

A.  Supported Vector Machine (SVM): 

 

Support Vector Machines (SVM) is a powerful and 

widely used supervised machine learning algorithm 

for 

classification and regression tasks. It is particularly 

effective in solving complex problems with high-

dimensional feature Spaces. 

 

 

Fig.1: Support Vector Machine 

 

SVM for β-Thalassemia Classification: 

  

Dataset Preparation: The dataset contains relevant 

features related to β-Thalassemia, such as red blood 

cell indices (mean corpuscular volume, mean 

corpuscular haemoglobin), haemoglobin levels, and 

other such attributes.  

 

Training Phase: The SVM algorithm is trained using 

the dataset, where the feature vectors represent the 

individuals, and the corresponding labels indicate 

whether they are β-Thalassemia carriers or non-

carriers. 

 

Hyperplane Optimization: SVM seeks to find an 

optimal hyperplane that separates the carriers and 

non-carriers in the feature space. The hyperplane is 

determined by maximizing the margin between the 

two classes while minimizing classification errors. 

Non-linear Relationships: SVM can handle non-linear 

relationships between the features and the target 

variable by utilizing the kernel trick. The kernel 

function implicitly maps the input features to a 

higher-dimensional space, where the data points 

become more separable. 

 

Support Vectors: SVM identifies the support vectors, 

which are the data points closest to the hyperplane. 

These support vectors play a crucial role in defining 

the hyperplane and making predictions. 

 

Prediction Phase: Once the SVM model is trained, it 

can classify new, unseen individuals as β-Thalassemia 

carriers or non-carriers based on their feature vectors. 

The position of a data point relative to the learned 

hyperplane determines its class label. 

 

B.  Gradient Boosting Machine (GBM): 
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Gradient Boosting Machine (GBM) is a powerful 

machine learning technique that belongs to the 

ensemble learning family. It combines multiple weak 

predictive models, typically decision trees, to create a 

strong predictive model. GBM iteratively builds an 

ensemble of models, with each subsequent model 

learning from the mistakes made by the previous 

models. 

 

 

 

Fig.2: Gradient Boosting Machine 

 

GBM for β-Thalassemia Classification: 

  

Dataset Preparation: The dataset includes relevant 

features related to β-Thalassemia, such as red blood 

cell indices, haemoglobin levels, and other attributes. 

 

Training Phase: GBM is trained using the dataset, 

where the feature vectors represent the individuals, 

and the corresponding labels indicate whether they 

are β-Thalassemia carriers or non-carriers. 

 

Ensemble of Weak Learners: GBM builds an ensemble 

model by combining multiple weak learners, typically 

decision trees, in a sequential manner. 

 

Boosting Procedure: GBM sequentially fits the weak 

learners to the dataset, with each subsequent learner 

trying to correct the mistakes made by the previous 

learners. It assigns higher weights to the misclassified 

samples to prioritize their correct classification in the 

subsequent iterations. 

 

Gradient Descent Optimization: GBM employs 

gradient descent optimization to minimize a loss 

function, such as the deviance, during the training 

process. The algorithm iteratively updates the model 

by descending the gradient of the loss function to find 

the optimal direction for improving predictions. 

 

Prediction Phase: Once the GBM model is trained, it 

can classify new individuals as β-Thalassemia carriers 

or non-carriers based on their feature vectors. The 

ensemble of weak learners combines their individual 

predictions to make the final prediction. 

 

D. Random Forest: 

 

Random Forest is a machine learning algorithm 

belonging to the ensemble learning family. It is 

known for its ability to provide accurate and robust 

predictions. 

by combining multiple decision trees. 

 

It is widely used for both regression and classification 

tasks and has gained popularity due to its simplicity 

and effectiveness.  

 

Random Forest consists of an ensemble of decision 

trees. Each tree is trained independently on a random 

subset of the training data, and their predictions are 

combined to make the final prediction. 

 

The idea behind the ensemble is to reduce overfitting 

and increase the model's generalization capability. 
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Fig.3: Random Forest Classifier 

 

Random Forest for β-Thalassemia Classification: 

  

Dataset Preparation: The dataset includes relevant 

features related to β-Thalassemia, such as red blood 

cell indices, haemoglobin levels, and other attributes. 

 

Training Phase: Random Forest is trained using the 

dataset, where the feature vectors represent the 

individuals, and the corresponding labels indicate 

whether they are β-Thalassemia carriers or non-

carriers. 

 

Ensemble of Decision Trees: Random Forest builds an 

ensemble model by combining multiple decision trees. 

Each tree is trained on a random subset of the data, 

and at each node, a random subset of features is 

considered for splitting. 

 

Bagging Procedure: Random Forest utilizes a 

technique called bagging (bootstrap aggregating), 

where each decision tree is trained on a bootstrap 

sample of the dataset. This resampling procedure 

helps introduce diversity among the trees. 

 

Voting or Averaging: During the prediction phase, 

each decision tree in the Random Forest 

independently predicts whether an individual is a β-

Thalassemia carrier or a non-carrier. The final 

prediction is made by either taking the majority vote 

(voting) or averaging the predictions of all decision 

trees (averaging). 

 

Robustness to Overfitting: Random Forest mitigates 

overfitting by reducing the variance of the individual 

decision trees through the ensemble approach. It 

reduces the risk of capturing noise or outliers in the 

data and provides more reliable predictions. 

 

VIII. WHAT IS SGR-VC? 

 

To understand the voting classifier, we first need to 

understand what an ensemble classifier is. 

 

ENSEMBLE CLASSIFIER: 

An ensemble classifier is a machine learning model 

that combines the predictions of multiple individual 

classifiers to make the final prediction. It leverages 

the idea that combining multiple models can often 

lead to improved accuracy and robustness compared 

to using a single classifier. 

Ensemble classifiers are commonly used in machine 

learning because they can mitigate the limitations of 

individual classifiers and exploit their strengths. By 

aggregating the predictions of multiple classifiers, 

ensemble methods can provide better generalization, 

handle complex decision boundaries, reduce 

overfitting, and improve overall prediction 

performance. 

 

SGR-VC:  

 

Fig.4: Architecture of the SGR-VC 
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SGR-VC is a voting-based ensemble classifier that is 

applied on an ensemble (group) of machine learning 

algorithms, namely SVM, GBM, and RF. Voting-based 

ensemble classifiers combine the predictions of 

multiple individual classifiers using a voting scheme 

to make the final prediction. The idea is to leverage 

the collective wisdom of the ensemble to achieve 

better accuracy and robustness. 

 

In the case of β-Thalassemia, the ensemble classifier 

SGR-VC combines the outputs of SVM, GBM, and RF 

to effectively distinguish between individuals who are 

carriers of the β-Thalassemia gene and those who are 

non-carriers. By leveraging the strengths of these 

algorithms, SGR-VC can capture the complex patterns 

and features in the data that are indicative of β-

Thalassemia carrier status. 

  

Similarly, when it comes to Iron Deficiency Anaemia 

(IDA), the ensemble classifier SGR-VC can be 

employed to differentiate individuals with IDA from 

those suffering from beta thalassemia. By utilizing the 

combined predictions of SVM, GBM, and RF, SGR-

VC can effectively identify the characteristic patterns 

and biomarkers associated with iron deficiency 

anaemia and beta thalassemia. 

  

The ensemble approach employed by SGR-VC offers 

several advantages in the context of β-Thalassemia 

and IDA. First, by combining multiple classifiers, 

SGR-VC can leverage the strengths of each algorithm 

to compensate for their individual limitations. This 

leads to a more robust and accurate classification 

model for identifying β-Thalassemia carriers and 

individuals with IDA. 

  

Furthermore, the ensemble approach helps overcome 

issues such as overfitting and noisy data. By 

aggregating the predictions of multiple classifiers, 

SGR-VC can reduce the impact of individual errors 

and biases, providing a more reliable and 

generalizable classification model. 

IX. CHALLENGES 

 

1. Class Imbalance: Both β-Thalassemia and IDA 

datasets often exhibit class imbalance, where the 

number of instances belonging to the minority class 

(e.g., β-Thalassemia carriers or IDA-positive cases) is 

significantly smaller than the majority class. Class 

imbalance can affect the training of SGR-VC, as it 

may bias the model towards the majority class and 

lead to lower accuracy in detecting the minority class. 

 

2. Dataset Size and Quality: The availability of large 

and high-quality datasets plays a vital role in training 

and evaluating the performance of SGR-VC for β-

Thalassemia and IDA classification. Insufficient data 

or noisy data can limit the effectiveness of the 

ensemble classifier and impact its generalization 

capabilities. It is crucial to have access to diverse and 

well-annotated datasets to ensure reliable and robust 

predictions. 

 

3. Interpretability and Explain ability: Interpreting 

the results of SGR-VC in the context of β-Thalassemia 

and IDA can be challenging. The ensemble nature of 

SGR-VC, combining multiple classifiers, may make it 

difficult to explain the underlying decision-making 

process and provide clear explanations for the 

classification outcomes. Ensuring transparency and 

interpretability of the ensemble's predictions is 

important, especially in the medical field. 

 

X. CONCLUSION 

 

In conclusion, the SGR-VC algorithm outperforms the 

other classifiers in accurately classifying thalassemia 

and iron deficiency anaemia. The algorithm 

demonstrates higher accuracy, precision, and recall, 

resulting in an improved overall F1 score. The 

ensemble-based nature of the SGR-VC algorithm 

allows it to leverage the strengths of multiple 
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classifiers, thereby enhancing its classification 

capabilities.  

 

The SVM classifier is known for its ability to handle 

complex decision boundaries and high-dimensional 

data. Its margin-based approach effectively separates 

classes and provides strong predictive performance. 

GBM, on the other hand, excels in building sequential 

models by iteratively correcting the mistakes of 

previous models. It captures complex relationships 

and interactions within the data and can handle both 

numerical and categorical features. 

 

Random Forest, as an ensemble of decision trees, 

offers the advantages of reducing overfitting, handling 

noisy data, and providing feature importance rankings 

resulting in an ensemble with improved 

generalization capabilities. 

 

The voting classifier combines the predictions of these 

three classifiers by considering the collective decision 

of the ensemble and overcomes the limitations of 

individual classifiers and making more accurate 

predictions. 
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