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 This paper presents an optimized M-term Karatsuba-like binary, 

polynomial multiplier for finite field arithmetic. The proposed method is 

based on the traditional Karatsuba algorithm but incorporates 

modifications to handle binary polynomials of arbitrary degree. The 

proposed algorithm reduces the number of multiplications and additions 

required for multiplication of binary polynomials by using a divide-and-

conquer approach. The algorithm also minimizes the number of temporary 

storage registers required during the multiplication process, thereby 

reducing the overall complexity of the algorithm. Experimental results 

show that the proposed algorithm outperforms existing algorithms in 

terms of speed and hardware complexity for polynomial multiplication in 

finite fields. The proposed algorithm is suitable for hardware 

implementation in applications such as error-correcting codes, 

cryptographic systems and digital signal processing.  
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I. INTRODUCTION 

 

With the ever-growing expansion of modern 

information technologies in almost every field, the 

number of threats and importance of information 

security are increasing day by day. Cryptography 

systems play a crucial role in ensuring safety and 

security of information .In these systems, a 

fundamental and frequently used operation that 

determines the overall speed and cost of systems is 

finite field multiplication. Therefore, the efficiency of 

the multiplier is of paramount importance . Among 

various polynomial multiplication algorithms, school-

book multiplication (SBM) is the simplest form of 

multiplication. For two polynomials of n−1 degree, 

the SBM has complexity of O(n2). In order to improve 

the efficiency of multiplication, several algorithms 

have been proposed by researchers . One widely 

known algorithm is the Karatsuba–Ofman multiplier 

(KOM) . It is a recursive multiplicative approach that 
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has a lower space complexity [O(nlog2 3)] compared 

to conventional SBM . This approach splits the 

operands into lower and upper parts, and uses three 

sub multipliers to compute the product. Although 

KOM can reduce resource requirements, it has the 

disadvantage of higher delay compared to SBM 

because of its sub multiplier-based recursive structure. 

To overcome this problem, a series of Karatsuba 

modifications and various implementation strategies 

were proposed. Overlap-free Karatsuba was proposed 

to eliminate the higher combinational delay of 

general Karatsuba. A low-complexity Karatsuba 

multiplier introduced a new implementation strategy 

to eliminate the high register complexity in current 

systolic implementation, which leads to an increase in 

area and power consumption. Samanta et al. presented 

a modified Karatsuba implementation for 8-bit 

operands, in which terms are separated into different 

formats to reduce operational latency. Li et al.  

proposed a new type of non-recursive Mastrovito 

multiplier for GF(2m) using an n-term Karatsuba 

algorithm (KA). In Chiou-Yng et al.’s work, they 

presented an efficient digit-level parallel-in– serial-

out (PISO) multiplier with sub quadratic space 

complexity using the overlap-free Karatsuba 

multiplication algorithm. Some of the relevant studies 

are and the M-term Karatsuba-like approach has 

received much attention in recent years. In these 

Karatsuba-like algorithms, the operand can be divided 

into a higher number of terms compared to only two 

terms in Karatsuba. This allows reducing the number 

of recurrent operations in the KOA and, hence, 

increasing the speed of multiplication. In the M-term 

Karatsuba-like multiplier, the more the number of 

terms, the larger the number of sub multipliers is 

needed. Montgomery introduced five-, six-, and 

seven-term Karatsuba-like algorithms that split each 

polynomial into five, six, and seven parts, and uses 

recursive construction to perform the multiplication. 

Based on Montgomery’s work, Fan et al. proposed a 

method to obtain more Karatsuba-like formulas by 

generalizing the division algorithm. Find and Peralta 

gave a detailed account of M-term Karatsuba-like, 

where M =4, 5, 6, and 7, and their theoretical 

representation. Compared to previous works, they 

achieved smaller size and depth by optimizing the 

existing M-term Karatsuba-like algorithm. It has been 

theoretically proven that M-term Karatsuba 

multipliers, where M = 3, 4, 5, 6, and 7, have better 

performance for large degree polynomials since it 

reduces the number of recurrence stages and can be 

recommended as a viable alternative to the regular 

KOM . However, these Karatsuba-like formulas 

contain combinations of the sub multipliers, and the 

total delay and area are not linear, especially when 

physically implemented on the hardware. To optimize 

the combinational delay of these Karatsuba-like 

multipliers, a new methodology is proposed and 

verified with field-programmable gate array (FPGA) 

implementation. The main contributions of this 

article are given as follows.  

1) We investigated the gate-level space and time 

complexity analyses for a larger number of terms, 

such as five-, six-, and seven-term Karatsuba-like 

algorithms.  

2) We designed a road map to achieve an efficient 

finite field multiplier using the M-term Karatsuba-like 

algorithm.  

3) We experimentally evaluated the proposed 

hardware on FPGA where the result indicated the 

average of 26% delay reduction and 15% lower area–

delay product compared to standard KOM.  

In this article, first, the performance of M-term 

Karatsuba like polynomial multipliers is evaluated 

both theoretically and based on implementation 

results. Furthermore, the hardware design space is 

explored for the various operand sizes in terms of area 

[number of look up tables (LUTs)], delay, and ADP. 

We have six degrees of freedom to select the most 

efficient M-term Karatsuba-like multiplier for each 

operand size in this step. Second, an improved 

composite model based on M-term Karatsuba-like and 

SBM is proposed. This composite solution uses the M-

term Karatsuba-like at the higher level of recurrence 
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and utilizes single-step conventional SBM in a lower 

recurrence stage. The design has three degrees of 

freedom for selecting the most efficient composite 

model. Overall, there are 18 degrees of freedom in the 

proposed road map to select the number of terms in 

M-term Karatsuba-like and combination levels. The 

proposed design was first validated against Python 

results, described in VHDL, synthesized, and 

implemented on various FPGA devices, and 

furthermore, performance metrics and 

implementation costs were determined. The proposed 

multiplier demonstrated roughly 26% reduction in 

combinational delay and collectively has 15% lower 

ADP compared to the standard KOM method. 

Comparison with state of the art also indicated the 

effectiveness of the design. The rest of this article is 

organized as follows. The generalization of M-term 

Karatsuba-like algorithms is presented in Section II. 

The implementation of the M-term Karatsuba like 

model on FPGAs has been introduced in Section III. 

Discussions and significance of the proposed method 

are given in Section IV. Finally, Section V concludes 

this article. 

 

II. EARLIER WORK 

 

In the finite field arithmetic, multiplication requires a 

binary polynomial multiplier followed by the 

modular reduction operation with an irreducible 

polynomial. The multiplicative cost and additive cost 

determine the space complexity of implementing this 

multiplier. The number of combinational gates 

required to implement the multiplier is used to assess 

space complexity, while delay complexity is 

determined by the linear addition of standard gate 

delays. In this section, the space and delay 

complexities of the SBM and M-term Karatsuba-like 

are assessed. 

SBM Algorithm Considering A and B as two degree 

one binomial, the polynomial multiplier using SBM 

could be realized as A(x) = A1x + A0 ,B(x) = B1x +B0 

where A and B is split into two parts of (A0, A1) and 

( B0, B1).  

A(x).B(x)= A1.B1x2 +(A1.B0 + A0.B1)x + A0.B0.  

The polynomial multiplication of two degrees one 

binomial could be calculated, as described in 

trinomial, by employing four point multiplications 

and three point additions. The theoretical 

complexities for hardware implementation of this 

multiplier are given by the number of AND and XOR 

gates utilized. The maximum delay is the total 

number of gates in the critical path of the multiplier. 

The theoretical complexities are given as follows:  

SXOR = (n−1)2  

SAND = (n)2 ,STotal = SXOR +SAND ,TTotal = TAND 

+TXOR.SXOR and SAND gives the space complexity 

in terms of number of XOR and AND gates for 

operand size of n. STotal provides overall space 

complexity of the SBM multiplier. TXOR and TAND 

denote the linear addition of the combinational delay 

of XOR and AND gates. Total  represents the total 

delay in the critical path of the multiplier. 

B. M-term Karatsuba-Like Multipliers An M-term 

Karatsuba-like multiplier breaks the operands into 

smaller size operands and uses a number of sub 

multipliers to recursively calculate the product. M-

term Karatsuba uses a similar concept as KOM but 

splits to a higher number of equal parts. For the rest of 

this article, we assume that each operand is split into 

M number of polynomials with equal length. Table I 

presents recursive products and reconstruction steps 

required for M-term Karatsuba-like multipliers from 

M =2 to M =7 for different operand sizes (n). Here, for 

simplicity, we chose n and M to be equal. Each 

operand polynomials are first split into M equal parts 

denoted as A0, A1,...,AM and B0, B1,...,BM. Partial 

products are represented as P0, P1,...,Pk, where “k” is 

the number of partial products. The recursive 

products and reconstruction steps required for each 

M-term are tabulated in this table. In each recursion, 

the partial products are calculated using sub 

multipliers followed by reconstruction step. The 

coefficients of the multiplication result polynomial 
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are presented as R0, R1,...,RC, where C =2M −2. Using 

the equations in Table I, the theoretical boundaries 

for XOR and AND gates space and time complexities 

were determined and presented where the following 

holds. 

 1) SXOR: Number of XOR gates required/additive 

cost.  

2) SAND: Number of AND gates 

required/multiplicative cost.  

3) TTotal: Combinational delay required to multiply 

the given operands.  

4) TG: Assume that both the combinational delay of 

AND and XOR gates are the same. 

 5) Rec: Number of recurrent stage required. The total 

space complexity of the multiplier could be calculated 

using the following equation:  

STotal = SXOR +SAND.  

Rec denotes the number of recurrence stages required. 

The main advantage of employing M-term Karatsuba-

like functions is that it reduces the number of 

recurrence stages compared to KOM. 

C. Discussion of Theoretical Complexities The time 

and space complexities for M-term Karatsuba-like 

multipliers dependon the number of stages and sub 

multipliers. 

It is obvious that, for each operand size of “n,” the 

number of recurrence stages required for larger values 

of “M” is smaller than the number of recurrent stages 

necessary for a two-term Karatsuba-like multiplier. 

Since each stage adds an extra delay to the total delay 

of the multiplier, it is expected that the delay of the 

two-term Karatsuba-like would be larger than 

multipliers with larger M. On the other hand, the size 

of the multiplier is smaller in two-term as it only has 

three sub multipliers. For example, in the seven-term 

multiplier, 22 sub multipliers have been employed, 

and as a result, it has a larger area than that of the 

two-term. The total number of gates (XOR and AND) 

and their corresponding delay are considered for 

theoretical evaluation of complexity. It is evident that 

the performance of each M-term Karatsuba-like varies 

depends on the size of the operands. However, the 

total number of gate utilization significantly increases 

when the number of recurrence iterations drops. 

Every term M-term Karatsuba-like multipliers were 

accessed  for different operand sizes, and the 

performance metrics, such as space and time 

complexities, were examined with a detailed 

comparison of theoretical data and FPGA 

implementation results. 

 

III.  PROPOSED WORK 

 

This work takes advantage of the low time complexity 

in SBM and low-space complexity in M-term 

Karatsuba by combining these two methods. 

Furthermore, the area–delay tradeoff was investigated. 

 
Fig.1: Proposed methodology using M-term Karatsuba 

A. Efficient M-term Karatsuba-Like Functions First, 

hardware description language (HDL) codes were 

developed for each multiplier according to the 

recursive products and reconstruction functions 

represented in Table I. A set of python frameworks 

for each split function was created where the 

frameworks automate the generation of the VHDL 

codes for operand size n for all the M-term Karatsuba-

like 

functions. Thereafter, HDL codes were synthesized on 

Xilinx Artix 7 FPGA (XC7A35TIC)device.To measure 
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the delay,the input/output(i/o) buffer was neglected 

during the experimental study. This FPGA family 

contains six input LUTs as building blocks. The data 

reported in this section are only for implementation 

on Xilinx Artix 7 FPGA. It is worth mentioning that 

these results could change according to FPGA device 

or synthesis tools since each tool has a set of setting, 

which can optimize results for the area, speed, power, 

and other criteria. Besides, different vendors have 

various algorithms for optimization with different 

boundary conditions. The total number of LUTs, 

combinational delay, and ADP for hardware 

implementation of M-term Karatsuba like multiplier 

for different operand sizes are presented in Figs. 3–

5(a)–(f). It needs to be acknowledged that the 

implementation results presented in this section do 

not include the delay and area for modular reduction 

operation. The reduction module adds a constant 

value of delay and later would be added to construct a 

finite field multiplier. The two-term function has 

been employed at all the last recurrent stages to 

reduce the zero paddings on some split functions. For 

example, if the operand size is 2, and if it needs to be 

reduced by a seven-term Karatsuba-like , there is a 

need to pad five zeros with the given operand, and 

hence, it increases the computing complexities.  

1) Area Complexity Comparison: Trend variations of 

area complexity, such as LUTs and theoretical gates to 

implement the all M-term Karatsuba-like multipliers, 

are illustrated. LUT complexities are recorded from 

the circuit implemented on the Xilinx Artix 7 FPGA, 

whereas the gate complexities were evaluated using it 

is visible that the number of gates and LUT 

utilizations increase when the operand size increases. 

Our implementation results confirm that the area 

complexity mainly depends on the number of 

recursive products and recurrent stages (Rec) used to 

break down the given operands. It is worth noting 

that the area required to compute the two term 

Karatsuba-like multiplier is smaller than the seven-

term Karatsuba-like for the given operand size. This is 

because the two-term uses only three recursive 

products, whereas the seven-term uses 22 recursive 

products. The area complexity of other M-term 

Karatsuba-like lies between two-term and seven-term, 

and it mainly depends on the number of recurrent 

stages for the operand size. From Table III, it is 

evident that there is a hike in LUT utilization 

whenever there is an increase in the number of 

recurrent stages (Rec). For example, for M =2, the 

difference in LUT consumption is not huge between n 

= 232 and 282 since it requires eight recurrent stages 

to compute the product. However, when the operand 

size increased to 409, there is a 185% increase in LUT 

since it requires nine recurrent steps. As the operand 

size grows, the same trend was experienced up to the 

operand size n =750.  

2) Time Complexity Comparison: In Fig. 3, the trend 

for time complexity, such as combinational delay and 

the theoretical gate path for all M-term Karatsuba-

like multipliers, is plotted. Delay complexities are also 

recorded on the Xilinx Artix 7 FPGA, whereas the 

gate path complexities were analyzed using. The 

graph shows that the FPGA data recorded from the 

implementation match the theoretical evaluation. As 

previously mentioned in the area complexity analysis, 

the number of recurrent stages (Rec) still plays a 

significant 

role in determining the curvature of the 

combinational delay. It is obvious that the number of 

the recurrent stages (Rec) and the critical path delay 

of each stage are considered important factors that 

determine the speed of the multiplication. The two-

term has a higher number of Rec, whereas each Rec 

stage has a lower critical path. Though seven-term has 

lower Rec stages for N = 232, 282, and 409, the FPGA 

delays are not lesser than three-term because of the 

higher critical path delay of each Rec stage. The two-

term function has less area utilization; on the other 

hand; it requires more delay because of the extensive 

recurrent stage (Rec). For n = 232 multiplication, two-

term requires 14.4ns,and seven-

termrequiresonly9.7ns, hence seven-term, which is 67% 

faster for given operand size. To understand the 
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performance behavior of the M-term Karatsuba-like 

for higher operand sizes, area and delay complexity 

analyses were extended up to n = 2500. Then, LUTs 

and combinational delays were recorded, and the 

ADP was computed to pick the efficient M-term 

Karatsuba-like functions for each operand size. 

B. Optimization Using Proposed Method After 

implementing the M-term Karatsuba-like for n = 232 

to 2500, the efficient M-term multiplier is chosen for 

each operand size (n). The ADPs, along with the 

efficient M-term Karatsuba-like corresponding to the 

operand sizes, were tabulated in Table V. The main 

advantage of Karatsuba over SBM is having a lower 

area complexity. The tradeoff, however, is an increase 

in time complexity. The delay of M-term Karatsuba-

like multipliers required is competitive to SBM, yet it 

does not suffer from the very high space complexity 

of the SBM. It is evident that the M-term Karatsuba-

like multipliers have better performance in the higher 

bound of the recurrent stage (Rec), and SBM is more 

efficient in lower bounds. To make the multiplier 

more efficient, the composite model was presented by 

investigating the tradeoff between the area and time 

complexities. Phase B introduces the composite 

method with different levels by combining SBM with 

M-term Karatsuba-like multipliers. Combined designs 

were developed by using the M-term function on top 

levels and SBM on bottom levels. Fig. 4 demonstrates 

the different levels of composite level explorations for 

an operand size n. In level 1, the M-term Karatsuba 

function is implemented in the first recurrent stage 

for operand size n, and the single-step SBM is 

implemented on the next recurrent step (n/M). In 

level 2, two M-term functions have been employed on 

the top-two recurrent stages continued by SBM with 

a size of (n/M2). In level 3, SBM is implemented in 

the fourth recurrent stage with a size of (n/M3). All of 

these levels were tested on Xilinx Spartan 7, and 

performance metrics were recorded. Table VI 

summarizes the results for all three composite levels 

based on the ADP. As the data in Table VI show, after 

finding the efficient M-term Karatsuba-like, our 

proposed method was able to find the more efficient 

multiplier, which outperforms the current findings. It 

was confirmed with the experimental evaluation, and 

the highlighted data show the efficient composite 

levels for each operand size. two iterative steps of 

MTK. Area complexity trends are vice versa. When 

the delays decrease, area consumption becomes 

slightly larger since we use larger SBM in level I and 

smaller SBM in different levels. However, here, the 

proposed method still outperforms the efficient split 

method in terms of ADP. Fig. 5 demonstrates the 

hardware description blocks from the top level to the 

inner logic level. For the illustration of the proposed 

method, four-term composite level 3 was used with 

the operand size n. The top-level four-term 

Karatsuba-like has two input operand A and B of bit 

length n and has an output of M with[2n−2]bit length. 

The next two levels of four-term Karatsuba-like have 

n/4 and n/16 correspondingly. The SBM has been used 

at a lower level with the operand size n/64. In Fig. 6, 

the gate-level design of four-term Karatsuba-like is 

depicted for operand A and B with size n. The design 

uses nine recursive products and reconstruction,  to 

generate the product M with bit length [2n−1]. 

Depiction of the data-flow graph (DFG) of gate-level 

design for hardware implementation of n-bit SBM. 

The input operands are A and B with the size of n and 

the output of M with the operand size of 2n−1. For 

the smaller operand sizes, such as n = 232 to 409, 

composite level I is more efficient than other levels. 

In contrast, levels II and III give better performance 

for operand sizes n =750 to 2500. 

 

IV. EXPERIMENTAL RESULTS 

 

 
Fig.2: Simulation result 

 

The above figure shows the simulated output of 

project. 
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  Fig.3:Power Analysis 

The above figure represents the power analysis of our 

project. 

 
     Fig.4:Area 

 
     Fig.4:Technological Schematic 

The above is the technological schematic view of our 

project. 

V. CONCLUSION 

 

In this article, first M-term Karatsuba-like binary 

multipliers were analysed in terms of space and time 

complexities for different values of M and various 

operand sizes (n). Performance parameter’s trends 

were pictured for the Xilinx Artix FPGA device. Later, 

a novel composite method is introduced to take 

advantage of the low-space complexity of M-term 

Karatsuba-like and low time complexity SBM. The 

proposed method was extensively tested on different 

FPGAs to attain the improvement graph over other 

similar works. The proposed work offers power 

efficient with 55.87mW. In FPGA devices, 

implementation results show that the composite 

method requires 11% additional resources and drops 

the delay complexity 26% lower, and it is 15% more 

efficient in ADP than standard KOM. This work 

achieved the suitable trade-off between space and 

time complexities, which minimizes the ADP 

requirement of the multiplier. 
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