
Copyright © 2023 The Author(s): This is an open-access article distributed under the terms of the Creative

Commons Attribution 4.0 International License (CC BY-NC 4.0) which permits unrestricted use, distribution,

and reproduction in any medium for non-commercial use provided the original author and source are credited.

 International Journal of Scientific Research in Science and Technology

Available online at : www.ijsrst.com

Print ISSN: 2395-6011 | Online ISSN: 2395-602X doi : https://doi.org/10.32628/IJSRST

91

A Novel Binary Polynomial Multiplier Based on M-Term

Karatsuba for Finite Field Computation
Konduri Prasanna Lakshmi1, Dr. S. Leela Lakshmi2

1PG Scholar, Department of ECE, VEMU Institute of Technology, P.Kothakota, Andhra Pradesh, India.

2Professor, Department of ECE, VEMU Institute of Technology, P.Kothakota, Andhra Pradesh, India.

A R T I C L E I N F O

A B S T R A C T

Article History:

Accepted: 01 Sep 2023

Published: 10 Sep 2023

 This paper presents an optimized M-term Karatsuba-like binary,

polynomial multiplier for finite field arithmetic. The proposed method is

based on the traditional Karatsuba algorithm but incorporates

modifications to handle binary polynomials of arbitrary degree. The

proposed algorithm reduces the number of multiplications and additions

required for multiplication of binary polynomials by using a divide-and-

conquer approach. The algorithm also minimizes the number of temporary

storage registers required during the multiplication process, thereby

reducing the overall complexity of the algorithm. Experimental results

show that the proposed algorithm outperforms existing algorithms in

terms of speed and hardware complexity for polynomial multiplication in

finite fields. The proposed algorithm is suitable for hardware

implementation in applications such as error-correcting codes,

cryptographic systems and digital signal processing.

Keywords : Karatsuba algorithm, Finite field arithmetic, Polynomial

multiplier.

Publication Issue

Volume 10, Issue 5

September-October-2023

Page Number

91-98

I. INTRODUCTION

With the ever-growing expansion of modern

information technologies in almost every field, the

number of threats and importance of information

security are increasing day by day. Cryptography

systems play a crucial role in ensuring safety and

security of information .In these systems, a

fundamental and frequently used operation that

determines the overall speed and cost of systems is

finite field multiplication. Therefore, the efficiency of

the multiplier is of paramount importance . Among

various polynomial multiplication algorithms, school-

book multiplication (SBM) is the simplest form of

multiplication. For two polynomials of n−1 degree,

the SBM has complexity of O(n2). In order to improve

the efficiency of multiplication, several algorithms

have been proposed by researchers . One widely

known algorithm is the Karatsuba–Ofman multiplier

(KOM) . It is a recursive multiplicative approach that

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 10 | Issue 5

Konduri Prasanna Lakshmi et al Int J Sci Res Sci & Technol. September-October-2023, 10 (5) : 91-98

92

has a lower space complexity [O(nlog2 3)] compared

to conventional SBM . This approach splits the

operands into lower and upper parts, and uses three

sub multipliers to compute the product. Although

KOM can reduce resource requirements, it has the

disadvantage of higher delay compared to SBM

because of its sub multiplier-based recursive structure.

To overcome this problem, a series of Karatsuba

modifications and various implementation strategies

were proposed. Overlap-free Karatsuba was proposed

to eliminate the higher combinational delay of

general Karatsuba. A low-complexity Karatsuba

multiplier introduced a new implementation strategy

to eliminate the high register complexity in current

systolic implementation, which leads to an increase in

area and power consumption. Samanta et al. presented

a modified Karatsuba implementation for 8-bit

operands, in which terms are separated into different

formats to reduce operational latency. Li et al.

proposed a new type of non-recursive Mastrovito

multiplier for GF(2m) using an n-term Karatsuba

algorithm (KA). In Chiou-Yng et al.’s work, they

presented an efficient digit-level parallel-in– serial-

out (PISO) multiplier with sub quadratic space

complexity using the overlap-free Karatsuba

multiplication algorithm. Some of the relevant studies

are and the M-term Karatsuba-like approach has

received much attention in recent years. In these

Karatsuba-like algorithms, the operand can be divided

into a higher number of terms compared to only two

terms in Karatsuba. This allows reducing the number

of recurrent operations in the KOA and, hence,

increasing the speed of multiplication. In the M-term

Karatsuba-like multiplier, the more the number of

terms, the larger the number of sub multipliers is

needed. Montgomery introduced five-, six-, and

seven-term Karatsuba-like algorithms that split each

polynomial into five, six, and seven parts, and uses

recursive construction to perform the multiplication.

Based on Montgomery’s work, Fan et al. proposed a

method to obtain more Karatsuba-like formulas by

generalizing the division algorithm. Find and Peralta

gave a detailed account of M-term Karatsuba-like,

where M =4, 5, 6, and 7, and their theoretical

representation. Compared to previous works, they

achieved smaller size and depth by optimizing the

existing M-term Karatsuba-like algorithm. It has been

theoretically proven that M-term Karatsuba

multipliers, where M = 3, 4, 5, 6, and 7, have better

performance for large degree polynomials since it

reduces the number of recurrence stages and can be

recommended as a viable alternative to the regular

KOM . However, these Karatsuba-like formulas

contain combinations of the sub multipliers, and the

total delay and area are not linear, especially when

physically implemented on the hardware. To optimize

the combinational delay of these Karatsuba-like

multipliers, a new methodology is proposed and

verified with field-programmable gate array (FPGA)

implementation. The main contributions of this

article are given as follows.

1) We investigated the gate-level space and time

complexity analyses for a larger number of terms,

such as five-, six-, and seven-term Karatsuba-like

algorithms.

2) We designed a road map to achieve an efficient

finite field multiplier using the M-term Karatsuba-like

algorithm.

3) We experimentally evaluated the proposed

hardware on FPGA where the result indicated the

average of 26% delay reduction and 15% lower area–

delay product compared to standard KOM.

In this article, first, the performance of M-term

Karatsuba like polynomial multipliers is evaluated

both theoretically and based on implementation

results. Furthermore, the hardware design space is

explored for the various operand sizes in terms of area

[number of look up tables (LUTs)], delay, and ADP.

We have six degrees of freedom to select the most

efficient M-term Karatsuba-like multiplier for each

operand size in this step. Second, an improved

composite model based on M-term Karatsuba-like and

SBM is proposed. This composite solution uses the M-

term Karatsuba-like at the higher level of recurrence

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 10 | Issue 5

Konduri Prasanna Lakshmi et al Int J Sci Res Sci & Technol. September-October-2023, 10 (5) : 91-98

93

and utilizes single-step conventional SBM in a lower

recurrence stage. The design has three degrees of

freedom for selecting the most efficient composite

model. Overall, there are 18 degrees of freedom in the

proposed road map to select the number of terms in

M-term Karatsuba-like and combination levels. The

proposed design was first validated against Python

results, described in VHDL, synthesized, and

implemented on various FPGA devices, and

furthermore, performance metrics and

implementation costs were determined. The proposed

multiplier demonstrated roughly 26% reduction in

combinational delay and collectively has 15% lower

ADP compared to the standard KOM method.

Comparison with state of the art also indicated the

effectiveness of the design. The rest of this article is

organized as follows. The generalization of M-term

Karatsuba-like algorithms is presented in Section II.

The implementation of the M-term Karatsuba like

model on FPGAs has been introduced in Section III.

Discussions and significance of the proposed method

are given in Section IV. Finally, Section V concludes

this article.

II. EARLIER WORK

In the finite field arithmetic, multiplication requires a

binary polynomial multiplier followed by the

modular reduction operation with an irreducible

polynomial. The multiplicative cost and additive cost

determine the space complexity of implementing this

multiplier. The number of combinational gates

required to implement the multiplier is used to assess

space complexity, while delay complexity is

determined by the linear addition of standard gate

delays. In this section, the space and delay

complexities of the SBM and M-term Karatsuba-like

are assessed.

SBM Algorithm Considering A and B as two degree

one binomial, the polynomial multiplier using SBM

could be realized as A(x) = A1x + A0 ,B(x) = B1x +B0

where A and B is split into two parts of (A0, A1) and

(B0, B1).

A(x).B(x)= A1.B1x2 +(A1.B0 + A0.B1)x + A0.B0.

The polynomial multiplication of two degrees one

binomial could be calculated, as described in

trinomial, by employing four point multiplications

and three point additions. The theoretical

complexities for hardware implementation of this

multiplier are given by the number of AND and XOR

gates utilized. The maximum delay is the total

number of gates in the critical path of the multiplier.

The theoretical complexities are given as follows:

SXOR = (n−1)2

SAND = (n)2 ,STotal = SXOR +SAND ,TTotal = TAND

+TXOR.SXOR and SAND gives the space complexity

in terms of number of XOR and AND gates for

operand size of n. STotal provides overall space

complexity of the SBM multiplier. TXOR and TAND

denote the linear addition of the combinational delay

of XOR and AND gates. Total represents the total

delay in the critical path of the multiplier.

B. M-term Karatsuba-Like Multipliers An M-term

Karatsuba-like multiplier breaks the operands into

smaller size operands and uses a number of sub

multipliers to recursively calculate the product. M-

term Karatsuba uses a similar concept as KOM but

splits to a higher number of equal parts. For the rest of

this article, we assume that each operand is split into

M number of polynomials with equal length. Table I

presents recursive products and reconstruction steps

required for M-term Karatsuba-like multipliers from

M =2 to M =7 for different operand sizes (n). Here, for

simplicity, we chose n and M to be equal. Each

operand polynomials are first split into M equal parts

denoted as A0, A1,...,AM and B0, B1,...,BM. Partial

products are represented as P0, P1,...,Pk, where “k” is

the number of partial products. The recursive

products and reconstruction steps required for each

M-term are tabulated in this table. In each recursion,

the partial products are calculated using sub

multipliers followed by reconstruction step. The

coefficients of the multiplication result polynomial

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 10 | Issue 5

Konduri Prasanna Lakshmi et al Int J Sci Res Sci & Technol. September-October-2023, 10 (5) : 91-98

94

are presented as R0, R1,...,RC, where C =2M −2. Using

the equations in Table I, the theoretical boundaries

for XOR and AND gates space and time complexities

were determined and presented where the following

holds.

 1) SXOR: Number of XOR gates required/additive

cost.

2) SAND: Number of AND gates

required/multiplicative cost.

3) TTotal: Combinational delay required to multiply

the given operands.

4) TG: Assume that both the combinational delay of

AND and XOR gates are the same.

 5) Rec: Number of recurrent stage required. The total

space complexity of the multiplier could be calculated

using the following equation:

STotal = SXOR +SAND.

Rec denotes the number of recurrence stages required.

The main advantage of employing M-term Karatsuba-

like functions is that it reduces the number of

recurrence stages compared to KOM.

C. Discussion of Theoretical Complexities The time

and space complexities for M-term Karatsuba-like

multipliers dependon the number of stages and sub

multipliers.

It is obvious that, for each operand size of “n,” the

number of recurrence stages required for larger values

of “M” is smaller than the number of recurrent stages

necessary for a two-term Karatsuba-like multiplier.

Since each stage adds an extra delay to the total delay

of the multiplier, it is expected that the delay of the

two-term Karatsuba-like would be larger than

multipliers with larger M. On the other hand, the size

of the multiplier is smaller in two-term as it only has

three sub multipliers. For example, in the seven-term

multiplier, 22 sub multipliers have been employed,

and as a result, it has a larger area than that of the

two-term. The total number of gates (XOR and AND)

and their corresponding delay are considered for

theoretical evaluation of complexity. It is evident that

the performance of each M-term Karatsuba-like varies

depends on the size of the operands. However, the

total number of gate utilization significantly increases

when the number of recurrence iterations drops.

Every term M-term Karatsuba-like multipliers were

accessed for different operand sizes, and the

performance metrics, such as space and time

complexities, were examined with a detailed

comparison of theoretical data and FPGA

implementation results.

III. PROPOSED WORK

This work takes advantage of the low time complexity

in SBM and low-space complexity in M-term

Karatsuba by combining these two methods.

Furthermore, the area–delay tradeoff was investigated.

Fig.1: Proposed methodology using M-term Karatsuba

A. Efficient M-term Karatsuba-Like Functions First,

hardware description language (HDL) codes were

developed for each multiplier according to the

recursive products and reconstruction functions

represented in Table I. A set of python frameworks

for each split function was created where the

frameworks automate the generation of the VHDL

codes for operand size n for all the M-term Karatsuba-

like

functions. Thereafter, HDL codes were synthesized on

Xilinx Artix 7 FPGA (XC7A35TIC)device.To measure

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 10 | Issue 5

Konduri Prasanna Lakshmi et al Int J Sci Res Sci & Technol. September-October-2023, 10 (5) : 91-98

95

the delay,the input/output(i/o) buffer was neglected

during the experimental study. This FPGA family

contains six input LUTs as building blocks. The data

reported in this section are only for implementation

on Xilinx Artix 7 FPGA. It is worth mentioning that

these results could change according to FPGA device

or synthesis tools since each tool has a set of setting,

which can optimize results for the area, speed, power,

and other criteria. Besides, different vendors have

various algorithms for optimization with different

boundary conditions. The total number of LUTs,

combinational delay, and ADP for hardware

implementation of M-term Karatsuba like multiplier

for different operand sizes are presented in Figs. 3–

5(a)–(f). It needs to be acknowledged that the

implementation results presented in this section do

not include the delay and area for modular reduction

operation. The reduction module adds a constant

value of delay and later would be added to construct a

finite field multiplier. The two-term function has

been employed at all the last recurrent stages to

reduce the zero paddings on some split functions. For

example, if the operand size is 2, and if it needs to be

reduced by a seven-term Karatsuba-like , there is a

need to pad five zeros with the given operand, and

hence, it increases the computing complexities.

1) Area Complexity Comparison: Trend variations of

area complexity, such as LUTs and theoretical gates to

implement the all M-term Karatsuba-like multipliers,

are illustrated. LUT complexities are recorded from

the circuit implemented on the Xilinx Artix 7 FPGA,

whereas the gate complexities were evaluated using it

is visible that the number of gates and LUT

utilizations increase when the operand size increases.

Our implementation results confirm that the area

complexity mainly depends on the number of

recursive products and recurrent stages (Rec) used to

break down the given operands. It is worth noting

that the area required to compute the two term

Karatsuba-like multiplier is smaller than the seven-

term Karatsuba-like for the given operand size. This is

because the two-term uses only three recursive

products, whereas the seven-term uses 22 recursive

products. The area complexity of other M-term

Karatsuba-like lies between two-term and seven-term,

and it mainly depends on the number of recurrent

stages for the operand size. From Table III, it is

evident that there is a hike in LUT utilization

whenever there is an increase in the number of

recurrent stages (Rec). For example, for M =2, the

difference in LUT consumption is not huge between n

= 232 and 282 since it requires eight recurrent stages

to compute the product. However, when the operand

size increased to 409, there is a 185% increase in LUT

since it requires nine recurrent steps. As the operand

size grows, the same trend was experienced up to the

operand size n =750.

2) Time Complexity Comparison: In Fig. 3, the trend

for time complexity, such as combinational delay and

the theoretical gate path for all M-term Karatsuba-

like multipliers, is plotted. Delay complexities are also

recorded on the Xilinx Artix 7 FPGA, whereas the

gate path complexities were analyzed using. The

graph shows that the FPGA data recorded from the

implementation match the theoretical evaluation. As

previously mentioned in the area complexity analysis,

the number of recurrent stages (Rec) still plays a

significant

role in determining the curvature of the

combinational delay. It is obvious that the number of

the recurrent stages (Rec) and the critical path delay

of each stage are considered important factors that

determine the speed of the multiplication. The two-

term has a higher number of Rec, whereas each Rec

stage has a lower critical path. Though seven-term has

lower Rec stages for N = 232, 282, and 409, the FPGA

delays are not lesser than three-term because of the

higher critical path delay of each Rec stage. The two-

term function has less area utilization; on the other

hand; it requires more delay because of the extensive

recurrent stage (Rec). For n = 232 multiplication, two-

term requires 14.4ns,and seven-

termrequiresonly9.7ns, hence seven-term, which is 67%

faster for given operand size. To understand the

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 10 | Issue 5

Konduri Prasanna Lakshmi et al Int J Sci Res Sci & Technol. September-October-2023, 10 (5) : 91-98

96

performance behavior of the M-term Karatsuba-like

for higher operand sizes, area and delay complexity

analyses were extended up to n = 2500. Then, LUTs

and combinational delays were recorded, and the

ADP was computed to pick the efficient M-term

Karatsuba-like functions for each operand size.

B. Optimization Using Proposed Method After

implementing the M-term Karatsuba-like for n = 232

to 2500, the efficient M-term multiplier is chosen for

each operand size (n). The ADPs, along with the

efficient M-term Karatsuba-like corresponding to the

operand sizes, were tabulated in Table V. The main

advantage of Karatsuba over SBM is having a lower

area complexity. The tradeoff, however, is an increase

in time complexity. The delay of M-term Karatsuba-

like multipliers required is competitive to SBM, yet it

does not suffer from the very high space complexity

of the SBM. It is evident that the M-term Karatsuba-

like multipliers have better performance in the higher

bound of the recurrent stage (Rec), and SBM is more

efficient in lower bounds. To make the multiplier

more efficient, the composite model was presented by

investigating the tradeoff between the area and time

complexities. Phase B introduces the composite

method with different levels by combining SBM with

M-term Karatsuba-like multipliers. Combined designs

were developed by using the M-term function on top

levels and SBM on bottom levels. Fig. 4 demonstrates

the different levels of composite level explorations for

an operand size n. In level 1, the M-term Karatsuba

function is implemented in the first recurrent stage

for operand size n, and the single-step SBM is

implemented on the next recurrent step (n/M). In

level 2, two M-term functions have been employed on

the top-two recurrent stages continued by SBM with

a size of (n/M2). In level 3, SBM is implemented in

the fourth recurrent stage with a size of (n/M3). All of

these levels were tested on Xilinx Spartan 7, and

performance metrics were recorded. Table VI

summarizes the results for all three composite levels

based on the ADP. As the data in Table VI show, after

finding the efficient M-term Karatsuba-like, our

proposed method was able to find the more efficient

multiplier, which outperforms the current findings. It

was confirmed with the experimental evaluation, and

the highlighted data show the efficient composite

levels for each operand size. two iterative steps of

MTK. Area complexity trends are vice versa. When

the delays decrease, area consumption becomes

slightly larger since we use larger SBM in level I and

smaller SBM in different levels. However, here, the

proposed method still outperforms the efficient split

method in terms of ADP. Fig. 5 demonstrates the

hardware description blocks from the top level to the

inner logic level. For the illustration of the proposed

method, four-term composite level 3 was used with

the operand size n. The top-level four-term

Karatsuba-like has two input operand A and B of bit

length n and has an output of M with[2n−2]bit length.

The next two levels of four-term Karatsuba-like have

n/4 and n/16 correspondingly. The SBM has been used

at a lower level with the operand size n/64. In Fig. 6,

the gate-level design of four-term Karatsuba-like is

depicted for operand A and B with size n. The design

uses nine recursive products and reconstruction, to

generate the product M with bit length [2n−1].

Depiction of the data-flow graph (DFG) of gate-level

design for hardware implementation of n-bit SBM.

The input operands are A and B with the size of n and

the output of M with the operand size of 2n−1. For

the smaller operand sizes, such as n = 232 to 409,

composite level I is more efficient than other levels.

In contrast, levels II and III give better performance

for operand sizes n =750 to 2500.

IV. EXPERIMENTAL RESULTS

Fig.2: Simulation result

The above figure shows the simulated output of

project.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 10 | Issue 5

Konduri Prasanna Lakshmi et al Int J Sci Res Sci & Technol. September-October-2023, 10 (5) : 91-98

97

 Fig.3:Power Analysis

The above figure represents the power analysis of our

project.

 Fig.4:Area

 Fig.4:Technological Schematic

The above is the technological schematic view of our

project.

V. CONCLUSION

In this article, first M-term Karatsuba-like binary

multipliers were analysed in terms of space and time

complexities for different values of M and various

operand sizes (n). Performance parameter’s trends

were pictured for the Xilinx Artix FPGA device. Later,

a novel composite method is introduced to take

advantage of the low-space complexity of M-term

Karatsuba-like and low time complexity SBM. The

proposed method was extensively tested on different

FPGAs to attain the improvement graph over other

similar works. The proposed work offers power

efficient with 55.87mW. In FPGA devices,

implementation results show that the composite

method requires 11% additional resources and drops

the delay complexity 26% lower, and it is 15% more

efficient in ADP than standard KOM. This work

achieved the suitable trade-off between space and

time complexities, which minimizes the ADP

requirement of the multiplier.

VI. REFERENCES

[1]. R. Abu-Salma, M. A. Sasse, J. Bonneau, A.

Danilova, A. Naiakshina, and M. Smith,

“Obstacles to the adoption of secure

communication tools,” in Proc. IEEE Symp.

Secur. Privacy (SP), May 2017, pp. 137–153.

[2]. B. Vembu, A. Navale, and S. Sadhasivan,

“Creating secure communication channels

between processing elements,” U.S. Patent 9

589 159, Mar. 7, 2017.

[3]. J. Yoo and J. H. Yi, “Code-based authentication

scheme for light weight integrity checking of

smart vehicles,” IEEE Access, vol. 6, pp. 46731–

46741, 2018.

[4]. P. Aparna and P. V. V. Kishore, “Biometric-

based efficient medical image watermarking in

E-healthcare application,” IET Image Process.,

vol. 13, no. 3, pp. 421–428, 2019.

[5]. T. D. Premila Bai, K. M. Raj, and S. A. Rabara,

“Elliptic curve cryptography based security

framework for Internet of Things (IoT) enabled

smart card,” in Proc. World Congr. Comput.

Commun. Technol. (WCCCT), Feb. 2017, pp.

43–46.

[6]. Z. U. A. Khan and M. Benaissa, “High-speed

and low-latency ECC processor implementation

over GF(2m) on FPGA,” IEEE Trans. Very

Large Scale Integr. (VLSI) Syst., vol. 25, no. 1,

pp. 165–176, Jan. 2017.

[7]. G. Chen, G. Bai, and H. Chen, “A high-

performance elliptic curve cryptographic

processor for general curves over GF(p) based

on a systolic arithmetic unit,” IEEE Trans.

Circuits Syst. II, Exp. Briefs, vol. 54, no. 5, pp.

412–416, May 2007.

[8]. H. Marzouqi, M. Al-Qutayri, K. Salah, D.

Schinianakis, and T. Stouraitis, “A high-speed

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 10 | Issue 5

Konduri Prasanna Lakshmi et al Int J Sci Res Sci & Technol. September-October-2023, 10 (5) : 91-98

98

FPGA implementation of an RSD-based ECC

processor,” IEEE Trans. Very Large Scale Integr.

(VLSI) Syst., vol. 24, no. 1, pp. 151–164, Jan.

2016.

[9]. K. C. C. Loi and S. B. Ko, “Scalable elliptic curve

cryptosystem FPGA processor for NIST prime

curves,” IEEE Trans. Very Large Scale Integr.

(VLSI) Syst., vol. 23, no. 11, pp. 2753–2756, Jan.

2015.

[10]. N. Y. Goshwe, “Data encryption and decryption

using RSA algorithm in a network

environment,” Int. J. Comput. Sci. Netw. Secur.

(IJCSNS), vol. 13, no. 7, p. 9, 2013.

[11]. R. J. McEliece, Finite Fields for Computer

Scientists and Engineers, vol. 23. Boston, MA,

USA: Springer, 2012.

[12]. N. Homma, K. Saito, and T. Aoki, “Toward

formal design of practical cryptographic

hardware based on Galois field arithmetic,”

IEEE Trans. Comput., vol. 63, no. 10, pp. 2604–

2613, Oct. 2014.

[13]. A. D. Piccoli, A. Visconti, and O. G. Rizzo,

“Polynomial multiplication over binary finite

fields: New upper bounds,” J. Cryptograph.

Eng., vol. 10, pp. 197–210, Apr. 2019.

[14]. F. Mallouli, A. Hellal, N. Sharief Saeed, and F.

Abdulraheem Alzahrani, “A survey on

cryptography: Comparative study between RSA

vs ECC algorithms, and RSA vs el-gamal

algorithms,” in Proc. 6th IEEE Int. Conf. Cyber

Secur. Cloud Comput. (CSCloud)/5th IEEE Int.

Conf. Edge Comput. Scalable Cloud (EdgeCom),

Jun. 2019, pp. 173–176.

[15]. B. Sunar, “A generalized method for

constructing subquadratic complexity GF (2k)

multipliers,” IEEE Trans. Comput., vol. 53, no.

9, pp. 1097–1105, Sep. 2004.

Cite this article as :

Konduri Prasanna Lakshmi, Dr. S. Leela Lakshmi, "A

Novel Binary Polynomial Multiplier Based on M-

Term Karatsuba for Finite Field Computation",

International Journal of Scientific Research in Science

and Technology (IJSRST), Online ISSN : 2395-602X,

Print ISSN : 2395-6011, Volume 10 Issue 5, pp. 91-98,

September-October 2023.

Journal URL : https://ijsrst.com/IJSRST52310511

