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With the usage of Internet of Things (IoT) edge sensors, we’re going to 

implement a less massive neural network to detect Electro-Cardiogram 

(ECG) anomaly. The network comprises of both Long Short Term Memory 

cells (LSTM) as well as Multi-Layer Perceptron in aggregation. The MLP 

layer receives the characteristics produced from instants of heart rate and the 

LSTM is fed with a series of coefficients of the denoised signal which are 

denoised using moving average filter constitutes the characteristics of ECG 

beat. By simultaneously training the blocks, the entire network is driven to 

learn unique characteristics that complement one another for decision-

making. The network's accuracy, computational complexity were evaluated 

using data from the MIT-BIH arrhythmia database. To address the dataset's 

class imbalance, we increased the dataset using the SMOTE network training 

technique. The network's categorization accuracy averaged 98% over several 

database records. The suggested solution outperforms existing approaches in 

terms of computational complexity, and it has the advantage of standalone 

operation in the edge node without requiring constant wireless 

communication, which makes it perfect for Internet of Things wearable 

devices. 
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I. INTRODUCTION 

 

This will add sampling bias, overfitting problems, and 

other problems to the reported works in real-world 

circumstances. A fixed-point model, which is the 

typical and economical environment in most IoT 

devices, has not been successfully produced by many 

works. Existing works don't do a good job of 

addressing the quantization issues and performance 

reduction that can occur when converting floating 

point algorithms. Our study addresses all of the 

aforementioned research gaps as well as the problem 

of previous techniques' performance degrading in the 

presence of unknown real-world situations. By 

creating a low complexity machine learning method 

for binary classification of the ECG signal that may be 

locally implemented on an IoT sensor, this work 

seeks to overcome the aforementioned issues. 

Wireless communication won't be available until the 

classifier determines that an ECG beat is abnormal, 
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which will limit the amount of power used by the 

sensors. Additionally, the Synthetic Minority 

Oversampling Technique (SMOTE) technique is used 

to supplement the training data in order to address 

the problem of class imbalance in the MIT-BIH 

Arrhythmia database. This lessens differences 

between the suggested technique's real-world 

performance and the test data. 

The suggested new architecture incorporates a simple 

Multi-Layer Perceptron (MLP) based block that learns 

the underlying relationship between the extracted 

features, such as activation maps of Principal 

Component Analysis (PCA) coefficients of sequence 

of beats and ventricular rates, and a Long Short Term 

Memory (LSTM) based recurrent block to identify the 

regularity of a typical time-series like data. The whole 

architecture will be pushed to learn various aspects of 

the sequence and complement one another while 

making a decision similar to ensemble learning 

approach thanks to our new approach to simultaneous 

training of all blocks. In order to make model 

construction in a floating-point environment and the 

subsequent mapping to a fixed-point implementation 

easier, we additionally built floating and fixed-point 

versions of various machine learning building blocks 

for this work. We also introduced fast approximate 

functions and their derivatives. Our method differs 

from the popular Tensor Flow method in that our 

technique leaves out the implementation loss, which 

results from pruning, quantization, and look-up table-

based approximation losses. While achieving state-of-

the-art performance, the network suggested in this 

research has a greatly reduced footprint (number of 

parameters and complexity). 

 

Traditional syntactic methods carefully extract ECG 

signal features using signal processing and feature 

extraction techniques like frequency domain 

analysis, wavelet transform (WT), and 

morphological features. The extracted features are 

then subjected to hand-engineered algorithms and 

rules to detect arrhythmia. ECG signals are classified 

using a combination of signal features and 

morphologies as feature vectors by machine 

learning-based techniques like Decision Tree, 

Random forest, K-Nearest Neighbour, Support 

Vector Machine (SVM), Artificial Neural Network 

(ANN), Reservoir computing with logistic regression 

(RC), Linear discriminants (LD), Hidden Markov 

Models (HMM), hyper box classifiers, optimum-

path forest, conditional random fields and rules-

based models, as well as Bayesian models. 

MLP is the abbreviation for multi-layer perception. 

It is made up of dense, completely connected layers 

that may change any input dimension into the 

desired dimension. A neural network with 

numerous layers is referred to as a multi-layer 

perception. In order to build a neural network, we 

combine neurons so that some of their outputs are 

also their inputs. One input layer is present in a 

multi-layer perceptron, and for each input, There is 

one neuron (or node), one output layer, with one 

node for each output, and any number of hidden 

layers, with any number of nodes in each hidden 

layer. Below is a schematic illustration of a Multi-

Layer Perceptron (MLP). 

 

 

Fig 1: A Multi-Layer Perceptron (MLP) Network 

 

A unique type of recurrent neural network called 

Long Short Term Memory (LSTM) is able to learn 

long-term dependencies in input. This is made 

possible by the model's recurring module, which 

consists of four levels that interact with one another. 
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Fig 2: Long Short Term Memory (LSTM) Network 

 

Four neural network layers are shown above as 

yellow boxes, pointwise operators are shown as 

green circles, input is shown as yellow circles, and 

cell state is shown as blue circles. A cell state, three 

gates, and an LSTM module provide them the ability 

to selectively learn, unlearn, or retain information 

from each of the units. By allowing only a small 

number of linear interactions, the cell state in LSTM 

aids in the uninterrupted flow of information across 

the units. Each component contains an input, an 

output, and a forget gate that can add or remove 

data from the cell state. The forget gate utilizes a 

sigmoid function to determine which information 

from the previous cell state should be ignored. 

II. RELATED WORKS 

 

For the automatic detection and classification of 

cardiac arrhythmias from ECG data, numerous 

methodologies have been proposed in the literature. 

The classification of arrhythmias is a pattern 

recognition job that can be carried out utilizing 

machine learning or syntactic techniques [17]. 

Traditional syntactic methods carefully extract ECG 

signal features using signal processing and feature 

extraction techniques like frequency domain analysis, 

wavelet transform (WT), and morphological features. 

The extracted features are then subjected to hand-

engineered algorithms and rules to detect arrhythmia. 

artificial neural networks (ANN), reservoir 

computing with logistic regression (RC), linear 

discriminants (LD), hidden markov models (HMM), 

decision trees, random forests, K-Nearest Neighbour, 

support vector machines (SVM), optimum-path 

forests, conditional random fields, rules-based 

models, and to categorize ECG signals, Bayesian 

models employ feature vectors that combine signal 

morphologies and characteristics [18]. The training 

data's type and the learning approach chosen, 

however, have a significant impact on these methods' 

accuracy, and the data is frequently constrained by 

the wide range of patient morphologies. 

 

Fast Dynamic Time Warping (FDTW) with a 

constraint window is used in Veeravalli et al.'s study 

[17] to formulate the cost feature matrix between the 

first 30 beats in a patient's record, and K-means 

clustering is used to find the maximum cluster to 

designate a beat as the global normal beat for that 

specific patient. After that, the DTW distances 

between each incoming beat and the chosen global 

normal beat were calculated. Furthermore, a Hampel 

filter is used to find anomalies in the data. Although 

most occurring beats may not always be the clinical 

normal beat, the approach falls short in situations 

where multiple classes (i.e., Normal and Abnormal) 

are absent during the initial clustering phase. K-

means Clustering is an additional Only 15 records 

were chosen from the MIT-BIH arrhythmia database 

for the NP-hard problem and performance 

evaluation. 

In Zadeh et al.'s[13] pre-processing method, a 

bandpass filter is used, and an SVM classifier based on 

characteristics of a Continuous Wavelet Transform is 

employed. From a small collection of 8 carefully 

chosen patient records (118, 124, 207, 208, 209, 214, 

222, and 223), the method has obtained 97% of 

Normal (N) vs. Abnormal (S, V, F, and Q) test 

accuracy across 17,784 beats. A similar method was 

used by Jiang et al. [14] to identify aberrant beats 

with 95.6% accuracy using a block-based neural 

network and Hermite transform characteristics over 

49,600 chosen beats. The beat selection criteria 

utilized in this work, however, were not made 

explicit. 

Using a balanced downsampling of the data to create 

an equal probability set of AAMI classes, Dan Li et al. 

[15] used a 1D Convolution Neural Network (CNN) 

to categorize ECG signals and obtained more than 

98% test accuracy on selected 13,200 beats. ECG 



International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 10 |  Issue 5 

Rajani et al Int J Sci Res Sci & Technol. September-October-2023, 10 (5) : 156-162 

 

 

 
159 

signals are pre-processed using wavelet 

decomposition, and a SoftMax classifier is used in the 

neural network. 

III. METHODOLOGY 

 

The MIT-BIH arrhythmia database [21], which 

contains 48 ECG records but excludes the paced1 beat 

records, is used in this study to assess performance. 

The following 25 records comprise complex 

ventricular, junctional, and supraventricular 

arrhythmias, while the remaining 23 records are 

meant to serve as a representative sample of typical 

clinical recordings. The records are recorded at 360 

Hz and bandpass filtered at 0.1-100 Hz. The moving 

average filter stage will then be used to further filter 

the bandpass filtered data. There are 15 different 

types of heartbeats, totaling approximately 100,000 

labelled beats.  

 

Fig 3: Showing the PCA coefficient extractor with 

Moving Average Filter 

 

There are two ECG leads on each file. The second 

lead is modified lead V1, or occasionally V2, V4, or 

V5. The first lead is modified limb lead II (ML II) at 

least two cardiologists. Each 30-minute tape that was 

chosen from the 24-hour recordings was individually 

annotated [6], [14]. The database lists 15 different 

beat kinds. The beats identified as Supra Ventricular 

Ectopic Beats (SVEB - S), Ventricular Ectopic Beats 

(VEB - V), Fusion Beat (F), and Unclassified Beat (Q) 

are categorized as "Abnormal" beats for the purposes 

of this work, whereas the remaining beats are 

categorized as "Normal." This classification adheres to 

AAMI requirements. From the original ECG data 

samples, two feature vectors are created, namely:  

X: Input to the LSTM_X Layer, and,  

RR: Input to the MLP_R Layer 

 

Fig 4: Block Diagram of our Proposed Method 

 

Feature Vectors: 

X: With respect to the principal Normal=N, RBBB=R, 

LBBB=L, Ventricular=V, Supra-Ventricular=S, and 

Fusion=F beats, respectively, we then compute Xi, a 

vector of Principal Component Analysis (PCA) 

coefficients of length 6 for each beat, where i is the 

current beat index. Fig. depicts the generation of a 

PCA feature vector for two random beats. The 5 beat 

window should be used in the same way. 

 

RR: The second feature vector is [RRi, RRi+1, RRi, 

RRwSDNNi, RRIndexi], of length 5. It is based on 

ECG RR interval data. The RR intervals immediately 

before and after the current ECG beat, respectively, 
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make up the first two elements of this vector. The 

average of 11 RR-intervals from RRi=9 to RRi=+1 

makes up the third component. Heart Rate 

Variability (HRV) metrics2, such as RRwSDNN and 

RRIndex, are based on [26 and are defined in Fig. 

 

 

Fig 5: LSTM cell pipeline as part of LSTM_X 

 

All other simple extracted characteristics employ 

MLP layers to understand the underlying relationship 

to forecast aberrant beats, while the LSTM based 

recurrent block is chosen to determine the regularity 

property of the typical time-series signal. In contrast 

to ensemble learning of models, simultaneous 

training of the blocks will produce complimentary 

learning, meaning that the blocks will typically learn 

different features of the sequence and support one 

another when reaching a decision. As in the work by 

Zhang et al. [27], the LSTM_X block in Fig. 3 

generates an attention map at its output (Y) that 

keeps track of the characteristics of previous beats. 

The LSTM_X block is depicted in more depth in Fig. 

3. For every ECG beat, the LSTM cell is run five times 

with the inputs Xi4 through Xi coming one after the 

other. For each iteration, the LSTM cell's output, h 

(of length 10), and internal state vectors are changed. 

Additionally, the MLP_L layer receives each output 

vector h, which creates a vector (Yk) of length two as 

illustrated in Fig. 3. These two outputs are combined 

over the course of five execution cycles to create the 

vector Y, which has a length of 10. 

 

The MLP_R layer (Fig. 2) runs in parallel with the 

LSTM_X block and outputs an RR_1 of length 2 from 

the input feature vector, RR. An MLP network 

(MLP_1, MLP_2) with a single hidden layer of five 

neurons and two outputs (C_3) receives this output 

after concatenating it with the vector Y from the 

LSTM_X block. After being transmitted to a SoftMax 

layer, which categorizes the beat as Normal (N) or 

Abnormal (A), these two outputs are combined. 

 

(a) Sigmoid Activation Function (σ): For fine-tuning 

the weights of the neurons in ANNet, we used the 

Sigmoid cell activation function. The original 

sigmoid (3) and its derivative (4) are presented in 

the equations below. 

 

 

(b) Tanh Activation Function: It serves primarily as 

the candidate gate Ct (Fig. 3) activation function 

inside the LSTM cell. The original (9) and its 

derivative (10), as well as its quick approximation 

fixed point implementation (influenced by 

Anguita et al. [29]), are presented below. This 

work uses the original (9) with certain 

modifications to its coefficients that take bit level 

manipulation into account for efficiency. 

 

 

(c) SoftMax Function: The classification layers are 

where this is typically employed. It computes a 

normalized vector, s (15), based on the vector, x, 

of outputs from the last fully connected layer 
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instead of being related to a single-neuron output: 

 

Despite all earlier efforts using greater sampling rates 

(360 Hz) and floating point implementations, the 

suggested method outperformed them all while 

keeping lower complexity. Although [13], [17], and 

[15] have reported performance that is comparable to 

or slightly ( 1%) greater than ours, the training and 

testing do not adhere to AAMI standards [12] and 

only include about half the number of test beats for 

[13], [17], and [15]. Similar to [11], which offers 

somewhat higher accuracy, it uses LSTM cells 

erratically and relies on two lead ECG data, which is 

challenging to obtain in a wearable device. [6] and 

[16] adopt a CNN-based design and solely rely on the 

local morphology of a single beat ECG segment. 

These methods wouldn't be able to extract and use 

the RR interval information, and using them isn't 

advised because patient morphologies differ 

significantly, which could lead to subpar performance 

in an unfamiliar context. Additionally, [11], [16], 

[35], and [6] take more than a million instruction 

cycles to classify a single beat in order to reach that 

subpar performance, and [35]'s 1D-CNN architecture 

is only seldom used for the extraction of temporal and 

morphological features. The MIT-BIH dataset, which 

is used by the majority of the aforementioned 

methodologies for performance evaluation, is an 

unbalanced dataset. 

 

IV. RESULTS AND DISCUSSIONS 

The below figures are the experimental outputs of 

ANNet: 

 

Fig 6: Training Progress 

 

The above figure is considered as the training progress 

of the constructed ANNet architecture where it’s been 

trained on the both types of signals i.e., normal as 

well as abnormal. The training progress will take 

some time depending on the amount of data that 

we’ve fed to the classifier. So, it is better to choose the 

features in less amount that constitutes the exact 

resemblance of the type of the signal easily is a 

challenge here, but, we’ve used PCA for feature 

extraction which extracts better and less features that 

almost resembles the type of signal easily. 

 

Table 2: Performance Comparison 

Method Feature Algorithm Test Beats Test Accuracy Parameter 

Existing PCA/RR 

interval 

LSTM / MLP-NN 10*5 min 0.97 712 

Proposed PCA and 

Moving 

Average Filter 

/RR interval 

LSTM / MLP-NN 10*5 min 0.98 700 
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Fig 8: Training Validation 

 

V. CONCLUSION 

 

In this paper, we suggested a straightforward neural 

network to classify ECG beats into normal and 

pathological ones. The network uses a temporal 

feature vector generated from the ventricular R-R 

interval rate and 5 consecutive beats and accepts as 

input a feature vector made up of PCA coefficients. 

For a greater reduction of noise from the input signal, 

we have employed the moving average filter in this 

case. The suggested method can achieve minimal 

complexity in normal clinical recordings while 

having better anomalous signal detection accuracy 

and acceptable accuracy in challenging records. After 

retraining, the approach was converted to an 

embedded platform with the least amount of 

implementation loss and the least amount of 

implementation cost by replacing many activation 

functions with approximations and mapping to fixed 

point. Compared to the state of the art, a 

computationally complicated design. 

We showed that gating the wireless transmission 

with a binary classifier so that only abnormal beats 

are broadcast can greatly lower the total system 

power consumption when compared to continuous 

data transfer. 
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