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ABSTRACT 

Indoor positioning systems are becoming increasingly popular because they enable location-based services in 

indoor environments. GPS is not effective for indoor positioning because its performance degrades in urban 

areas, around walls and buildings, and indoors. The strength of the GPS signal is very low in indoors, making it 

ineffective. Wi-Fi technology has emerged as a cost-effective and widely available solution for indoor 

positioning due to its ubiquity. This research paper presents Wi-Fi-based indoor localization method that 

leverage Channel State Information (CSI) for enhanced accuracy and reliability. We explore the theoretical 

foundations, practical implementation, and experimental results of using CSI for indoor localization. The 

proposed methodology demonstrates promising results in real-world indoor environments. 
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I. INTRODUCTION 

 

Indoor localization is essential for facilitating location-

aware applications in indoor environments such as 

malls, hospitals, airports, and smart buildings. While 

Global Positioning System (GPS) is the solution of 

choice for outdoor positioning, signal attenuation and 

multipath effects make it ineffective indoors[1]–[3]. 

Wi-Fi-based indoor localization techniques have 

acquired popularity because they utilize existing 

infrastructure and offer more precise and cost-

effective solutions. 

 

A. Wi-Fi Based Indoor localization 

 

Although there are numerous advancements that can 

be used for indoor localization, a Wi-Fi network 

already installed within a building can serve as a 

platform for implementing indoor localization at no 

additional cost[4]–[6]. Wi-Fi based indoor positioning 

has been appealing due to its free accessibility and 

low-cost characteristics[7]. A typical Wi-Fi-based 

indoor localization system employs a received signal 

strength indicator for estimation. However, the 

distance assumption based on the received signal 

strength indicator (RSSI) is readily affected by the 

temporal and spatial variation caused by the multipath 

environment.[8]. These modifications account for the 

majority of estimation errors in the current 

localization system. [9]  This work investigates the 

frequency diversity of subcarriers in orthogonal 

frequency division multiplexing systems and proposes 

an alternative method for position detection that 

employs subcarrier-level information. Each 

subcarrier's channel state information (CSI) is used to 

construct a propagation model[10]. I'm utilizing off-

the-shelf 802.11 NICs to realize the indoor 

localization system, and the entire system has been 

implemented and analysed for efficacy in indoor 

scenario. The primary observation demonstrates that 
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the precision and latency of position calculation can 

be vastly enhanced by employing the CSI value as 

opposed to the typical RSSI[11]. 

 

II. BACKGROUND 

 

A. Types of Wi-Fi-based indoor localization 

techniques  

Wi-Fi-based indoor localization techniques can be 

broadly classified into three categories: fingerprinting-

based methods, trilateration and triangulation, and 

proximity-based approaches[6]. 

 

1) Fingerprinting-based methods 

 

Fingerprinting is a method where location attributes 

are collected and stored in a database during the 

training phase. During the online phase, new 

attributes are extracted and compared to previously 

stored data. This method is cost-effective and can be 

designed entirely in software, making it a better 

alternative to time-based or angulation-based 

positioning systems[12]. The process is divided into 

two phases: offline, which involves collecting maps 

manually or using propagation models, and online, 

where mobile stations measure signal attributes at test 

locations and compare them to the database[13]. 

 

2) Trilateration and Triangulation based methods 

 

Trilateration and triangulation are based on the 

principle of measuring the distance between the 

device to be localized and at least three reference 

points. To localize a device using trilateration, the 

device measures its distance to at least three reference 

points. The reference points can be Wi-Fi APs, other 

devices, or known locations. Once the device has 

measured its distance to the reference points, it can 

use the trilateration algorithm to calculate its absolute 

position. 

To localize a device using triangulation, the device 

measures its angle of arrival to at least three reference 

points. The reference points can be Wi-Fi APs, other 

devices, or known locations. Once the device has 

measured its angle of arrival to the reference points, it 

can use the triangulation algorithm to calculate its 

relative position.  

 

Trilateration and triangulation can achieve high 

accuracy, but they require the distance or angle of 

arrival to be measured to at least three reference 

points. This can be challenging in indoor 

environments due to multipath propagation and 

interference.[14], [6]. 

 

3) Proximity-based methods 

 

Proximity-based approaches detect the presence of 

Wi-Fi APs near a device, allowing it to infer its 

location based on known locations. These methods are 

simple but less accurate than fingerprinting-based 

methods and trilateration and triangulation. Common 

approaches include using the number of visible APs, 

which indicates density or remoteness, or using 

received signal strength (RSS), which measures the 

strength of the signal received from an AP. However, 

RSS is not a reliable measure of distance due to 

environmental factors like multipath propagation and 

interference, making proximity-based approaches less 

accurate than fingerprinting-based methods[15]. 

 

B. Channel State Information (CSI) 

 

Channel state information (CSI) in Wi-Fi is a set of 

data that describes the characteristics of the wireless 

channel between a transmitter and receiver. CSI 

includes information such as the amplitude, phase of 

the signal at subcarrier level. CSI is used for advanced 

applications, including beamforming, MIMO 

(Multiple Input, Multiple Output) techniques, channel 

equalization, and interference cancellation [16], [17], 

[18]. Figure-1 shows the MIMO OFDM system and 

channel response for each Tx-Rx antenna pair. 
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Figure 1 MIMO-OFDM system  

 

In MIMO system, in the time domain, the received 

signal r(t) is the convolution of transmitted signal s(t) 

and channel impulse response ℎ(t). 

 

𝑟(𝑡) = 𝑠(𝑡) ∗ ℎ(𝑡) 

 

It indicates that the received signal is generated from 

the transmitted signal after it has propagated through 

a multipath channel. In frequency domain it is 

presented by  

 

𝑅(𝑓) = 𝑆(𝑓)𝐻(𝑓) 

 

The sampled version of H(f) are called channel state 

response of each subcarriers and can be presented by. 

 

𝐻(𝑓𝑘) = |𝐻(𝑓𝑘)|𝑒
𝑗∠𝐻 

 

where H(fk) is a channel state information sampled at 

the kth subcarrier. It represents a complex number 

with magnitude and phase angle of every 

subcarrier[16], [17]. 

 

III. METHODOLOGY  

 

A. CSI data collection 

 

To collect the real-world CSI data, Linux based 

802.11n CSI Tool is used. The Linux 802.11n CSI Tool 

is based on the Intel Wi-Fi Wireless Link 5300 

802.11n MIMO radios as shown in Figure-2 and uses 

custom firmware and open-source Linux wireless 

drivers. The tool contains all the necessary software 

and programs for reading and parsing channel 

measurements[10], [19]. 

 

 

Figure 2 Intel 5300 NIC 

For use with the Linux 802.11n CSI Tool, a computer 

with an Intel Wi-Fi Wireless Link 5300 radio and the 

Linux operating system are required. Additionally, 

you must install CSI Tool and compile the modified 

firmware. After installing the tool, one can start 

accumulating CSI measurements as displayed in below 

commands[20]. 

 

This command will start recording CSI measurements 

into L1AP1.dat file. The Ping command generate 

traffic between AP and Computer through Wi-Fi 

channel. 

 

 Above command run the script that extract important 

CSI data from the .dat and generate csi_trace file.  

Following matlab script and command display the CSI 

data value and generate the CSI Vs. Subcarrier plot for 

recorded trace file. 

cd ~/netlink 
sudo ./log_to_file L1AP1.dat 
ping 172.16.1.110 

csi_trace = read_bf_file('L1AP1.dat'); 
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Figure 3 SNR Vs Subcarrier index 

 

B. Test-Bed Environment for CSI data collection 

 

To accurately evaluate the system, the chosen test 

environment must correspond to a real-world scenario. 

Consequently, we can say that the test environment is 

a generic representation of comparable real-world 

settings. For our test environment, we selected a 

laboratory chamber. The total area of the testing space 

is divided into 1x1 meter locations. And observations 

are considered for each square meter.  

 

Figure 4 Test-Bed Environment 

 

The access point is located on the front wall at a 

height of 2 meters for collecting readings and 

conducting tests. Figure-4 present the Test-Bed area. 

 

Signals received at any indoor location will be 

multipath signals by definition. varied locations will 

receive multipath signals with varied magnitude and 

phase characteristics. When collected for a long 

enough period of time, the received channel response 

for each subcarrier contains valuable information for 

fingerprinting that location. According to the 

accumulation of multiple multipath signals at a given 

location, it has been observed that location-specific 

multipath signals maintain stable patterns. These 

consistent patterns for each location can be used to 

implement localisation at the meter scale level. 

Figure-3 represent SNR Vs Subcarrier plot for a 

location. The shape of the plot and the number of 

magnitude clusters are unique and location-dependent. 

Consequently, they maximize the likelihood of 

>> csi_entry = csi_trace{1} 

 

csi_entry =  

 

timestamp_low: 1.6277e+09 

bfee_count: 1564 

Nrx: 3 

Ntx: 2 

rssi_a: 38 

rssi_b: 30 

rssi_c: 39 

noise: -88 

agc: 22 

perm: [3 1 2] 

rate: 8463 

csi: [2x3x30 double] 

 

>> csi = get_scaled_csi(csi_entry); 

>> plot 

(db(abs(squeeze(csi(1,:,:)).'))) 

 

>> legend ('RX Antenna A', 'RX 

Antenna B', 'RX Antenna C', 

'Location','SouthEast’); 

 

>> xlabel('Subcarrier index'); 

>> ylabel('SNR [dB]'); 
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discovering or extracting the characteristics of each 

location and construct the fingerprint database. Most 

of the locations have single cluster of values while fee 

having two or three magnitude clusters.  Figure 5 

shows the graphical representation of magnitude 

cluster in terms of mean and variance.  

 

 
 

Figure 5 CSI magnitude cluster for single subcarrier 

 

Figure 6 CSI plot for Different Locations 

 

Figure-6 depicts the consistent pattern of CSI 

magnitude across multiple test locations.  

 

C. Fingerprinting-based localization 

 

The process of fingerprint-based localization can be 

divided into two distinct parts. The first phase, known 

as the offline phase, involves the generation of a 

dataset. The second phase, referred to as the online 

phase, is when the actual localization takes place. 

 

1) Training Phase 

 

The offline phase, also known as the training phase or 

calibration phase, involves the collection of 

fingerprinting maps.  During this stage, it is necessary 

to record radio maps for the designated site where the 

positioning system is intended to operate. In essence, a 

radio map can be defined as a compilation of attributes 

that are distinct to certain locations. The CSI value, as 

well as the mean and deviation, and phase 

information, collectively contribute to the 

construction of the fingerprint identification 

associated with a particular location. Each individual 

fingerprint is rigorously gathered and thereafter 

stored within the database. 

Figure-4 shows different CSI magnitude plots of 

different locations. It is visible that every location has 

its own pattern and data clusters. In any given 

scenario, the quantity of magnitude clusters seen for a 

single antenna does not exceed three clusters. This 

insight helps the clustering process and enables the 

application of algorithms that are efficient in terms of 

running time. The K-means method was employed in 

our study. The K-means clustering algorithm is 

utilized to divide a given dataset into a predetermined 

number of clusters. The clusters are derived by 

calculating their nearest mean value. 

 

2) Localization phase 

 

The online phase refers to the stage of localization. 

During the online phase, the mobile station collects 

data on signal quality at the designated test location. 

Subsequently, the present measured signal values are 

compared in order to identify the most suitable match 

within a database. 
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3) Classification Algorithm 

 

A classification module estimates the minimum 

distance between the fingerprint database and the 

currently set CSI values. Based on the given 

information, the system will determine the potential 

candidate locations. Subsequently, determine the most 

probable geographical position as the intended 

location. 

Let’s consider the data set of mean value and variance 

for different locations, which are stored as M = {M1, 

M2, …. Mi} and for variance as V = {V1,, V2, ….Vi}.   

Here, the M and V values for every location include 

all subcarrier values. Now let us consider the test 

location to be identified from its mean and variance 

values. The given equation compares T’s value with 

the fingerprint dataset and identifies the most 

probable location. 

 

𝑑(𝑇,𝑀𝑖) = ∑ 𝑙𝑜𝑔

30

𝑓=1

𝑉𝑓
𝑖 +∑(

|𝑇𝑓 −𝑀𝑓
𝑖|
2

𝑉𝑓
𝑖2

)

𝑓

𝑓=1

 

 

Figure 7 shows the fingerprint-based localization 

system architecture. 

 

Figure 7 Clustering Architecture 

 

 

 

 

 

IV. RESULTS AND DISCUSSION 

 

For evaluating the performance of the proposed 

system, we selected a test location as shown in Figure 

4. All the CSI traces for the 33 locations shown were 

recorded during the offline phase. In the online phase, 

we randomly gather CSI traces with different settings, 

as mentioned below, and evaluate the robustness and 

accuracy of the proposed system. 

 

• The receiver has three receiving antennas, and the 

optimal antenna for retrieving a single trace is 

chosen using permutation data. Tests indicate that 

the choice of antenna has a significant impact on 

the achievable accuracy. 

 

• The extent of recording windows will increase 

measurement latency while simultaneously 

improving precision. Consequently, there is a 

trade-off between measurement windows and 

intended precision. 

 

• It is not mandatory to utilize all the subcarrier 

values for localizing the target. As the number of 

subcarriers increases from a minimum of five to 

thirty, measurement precision progressively 

improves. 

 

The following table presents a comparative analysis of 

performance metrics based on the selection of various 

subcarriers and the corresponding number of received 

packets. The database was compiled for a total of 33 

sites, after which the online data was entered using 

various configurations across 10 distinct testing times. 

 

Parameter Accuracy 

No. of subcarriers 5 65% 

10 82% 

15 91% 

No. of received 

packets 

(window size) 

1 55% 

5 73% 

30 85% 
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The test setting chosen for our study was two-

dimensional space. In order to locate the target in a 

practical setting, it will be necessary to engage in 

three-dimensional reading. The process of collecting 

3D data will take a long time because fingerprint-

based positioning is extremely complex. Modifications 

to the interior environment, particularly alterations in 

the metallic structure, might induce changes in the 

pattern of multipath channel state information (CSI) 

traces. Regular intervals are necessary for the revision 

of the CSI database. 

 

 

V. CONCLUSION 

 

Localization is one of the most appealing applications, 

and it is becoming more prevalent in our daily lives. 

The significance of indoor localization and the 

limitations of GPS are emphasized. A literature survey 

shows that Wi-Fi-based localization techniques have 

minimal overhead costs, are adaptable, and have 

appropriate speed and accuracy. RSSI is environment-

dependent, device-specific, and creates significant 

temporal fluctuations. Hence, RSSI induces errors in 

localization. A new approach is described that uses 

channel response at the sub-carrier level to retrieve 

relevant features for localization. This location-

specific signal clustering is used to accomplish indoor 

positioning at the meter level. Location detection is 

implemented here by employing magnitude values for 

various subcarriers. As a future enhancement, the 

phase information can also be integrated to improve 

accuracy and efficiency. 
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