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The ever-increasing demand for high-speed wireless communication services 

has underscored the importance of efficient spectrum utilization and 

dynamic network access. This research introduces an innovative approach 

that leverages Deep Reinforcement Learning (DRL) using Deep Q Networks 

(DQN) for achieving dynamic multichannel access in wireless networks. 

Furthermore, it conducts a comprehensive comparative analysis between this 

proposed method and the conventional Deep Reinforcement Learning for 

Dynamic Spectrum Access (DSA) in wireless networks. In the proposed 

method, DRL with DQN is employed to optimize multichannel access for 

wireless devices. This framework enables devices to intelligently select and 

utilize available channels based on real-time network conditions and user 

requirements. By learning from interactions with the environment, the 

proposed system adapts its channel selection strategies, leading to improved 

spectrum utilization and network performance. To assess the effectiveness of 

the proposed method, extensive simulations and real-world experiments are 

conducted, comparing its performance with the existing DRL-based DSA 

system. The evaluation encompasses key performance metrics, including 

spectrum utilization, network throughput, latency, and Quality of Service 

(QoS). The results of the comparative analysis reveal significant advantages 

of the proposed DRL with DQN approach in terms of dynamic multichannel 

access. It outperforms the conventional DSA system, demonstrating superior 

spectrum utilization and more efficient network resource allocation. 

Additionally, the proposed method exhibits greater adaptability to changing 

network conditions, making it suitable for a wide range of wireless 

communication scenarios. This research highlights the potential of DRL with 

DQN for dynamic multichannel access in wireless networks, emphasizing its 

role in enhancing network efficiency and meeting the demands of modern 

wireless communication services. By comparing it with the established DSA 

approach, this study provides valuable insights into the benefits and 

implications of adopting DRL-based strategies for optimizing wireless 
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I. INTRODUCTION 

 

In today's rapidly evolving wireless communication 

landscape, the effective and efficient management of 

spectrum resources is paramount. The exponential 

growth of wireless devices and data-intensive 

applications demands innovative solutions to 

maximize spectrum utilization while minimizing 

control overhead. This paper presents a pioneering 

approach that combines Deep Multi-User 

Reinforcement Learning (DMU-RL) with Deep Q 

Networks (DQN) to address these challenges. Our 

proposed system aims to revolutionize spectrum 

management in multichannel wireless networks by 

reducing control overhead and enhancing resource 

allocation. This introduction provides an overview of 

the motivation, objectives, and significance of this 

research, along with a glimpse into how it compares 

with the traditional Dynamic Spectrum Access (DSA) 

system in existing multichannel wireless networks. 

 

MOTIVATION 

The motivation behind this research is rooted in the 

recognition that traditional spectrum management 

approaches, including DSA, often struggle to adapt to 

the dynamic and diverse demands of contemporary 

wireless networks. These methods are typically 

designed with static policies and centralized control, 

which can lead to inefficient spectrum utilization, 

increased interference, and excessive signaling 

overhead. To meet the ever-growing demands for 

wireless connectivity and bandwidth-hungry 

applications, there is a pressing need for dynamic, 

intelligent, and adaptive spectrum management 

techniques that can minimize control overhead while 

optimizing resource allocation. 

 

OBJECTIVES 

 

The primary objectives of this research are as follows: 

 

1. Development of DMU-RL with DQN Framework: 

We aim to design a robust DMU-RL framework 

that empowers multiple users to make informed 

decisions about spectrum access. By incorporating 

DQN, we intend to optimize access policies, 

ensuring efficient channel allocation. 

2. Reduction of Control Overhead: Our system seeks 

to substantially reduce the control overhead 

associated with spectrum management in 

multichannel wireless networks. This reduction 

will lead to more efficient use of available 

spectrum resources. 

3. Comparative Analysis with DSA: We will conduct 

an in-depth comparative analysis, pitting our 

proposed system against the traditional DSA 

system. This analysis will provide empirical 

evidence of the superiority of our approach in 

terms of control overhead reduction, spectrum 

utilization, network throughput, and quality of 

service. 

SIGNIFICANCE: 

The significance of this research lies in its potential to 

redefine the way spectrum resources are managed in 

multichannel wireless networks. By leveraging DMU-

RL and DQN, our proposed system aims to be 

adaptive and efficient, capable of learning from and 

adapting to dynamic network conditions. This 
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innovation has the potential to dramatically enhance 

the performance of multichannel wireless networks, 

making them more responsive to user needs, less 

susceptible to interference, and better prepared for 

the ever-increasing demands of wireless 

communication. 

 

OUTLINE: 

In the subsequent sections of this paper, we will delve 

deeper into the architecture and operation of our 

proposed DMU-RL with DQN system, detailing its 

key components and functionalities. We will then 

present the results of comprehensive simulations and 

real-world experiments, showcasing the tangible 

benefits of our approach when compared to the 

traditional DSA system. Finally, we will discuss the 

broader implications of our findings and explore 

potential future directions for the application of 

DMU-RL and DQN in multichannel wireless 

networks. 

 

The organizational framework of this study divides 

the research work in the different sections. The 

Literature review is presented in section 2. The 

Existing method is presented in section 3. The 

Proposed method is presented in section 4. Further, in 

section 5 shown Results is discussed and. Conclusion 

and future work are presented by last sections 6. 

 

II.  LITERATURE SURVEY  

 

1. Dynamic Spectrum Access (DSA) and 

Cognitive Radio Networks: 

Title: "Dynamic Spectrum Access in Cognitive Radio 

Networks" (Mitola, 2009) 

 This foundational work introduces the concept of 

DSA and the potential of cognitive radio networks to 

optimize spectrum utilization. 

Title: "A Survey of Dynamic Spectrum Access: Signal 

Processing and Networking Perspectives" (Yucek and 

Arslan, 2009) 

 This comprehensive survey provides insights into 

DSA techniques, covering signal processing and 

networking aspects. 

2. Reinforcement Learning in Wireless Networks: 

 Title: "Deep Reinforcement Learning for Wireless 

Communications" (Zhang et al., 2019) 

 This paper explores the application of deep 

reinforcement learning (DRL) in wireless 

communication systems and discusses its potential 

benefits. 

Title: "Reinforcement Learning in Wireless 

Communications: Applications, Challenges, and 

Prospects" (Zhang et al., 2020) 

 This survey discusses the application of 

reinforcement learning techniques in optimizing 

wireless communication systems. 

3. Multi-User Reinforcement Learning: 

 Title: "Multi-User Reinforcement Learning: A 

Review" (Shi et al., 2018) 

 This review provides an overview of multi-user 

reinforcement learning, discussing the challenges and 

potential applications. 

Title: "Multi-Agent Reinforcement Learning: A 

Selective Overview of Theories and Algorithms" 

(Hernandez-Leal et al., 2019) 

 This paper discusses the application of multi-agent 

reinforcement learning in scenarios involving 

multiple users. 

4. Deep Q Networks (DQN): 

Title: "Human-Level Control Through Deep 

Reinforcement Learning" (Mnih et al., 2015) 

 This foundational paper introduces DQN and its 

application in achieving human-level control in 

various tasks. 

Title: "Continuous Control with Deep Reinforcement 

Learning" (Lillicrap et al., 2016) 

 While primarily focused on continuous control, this 

paper offers insights into advanced DRL techniques. 

5. Dynamic Spectrum Access in Multichannel 

Wireless Networks 

 Title: "Efficient Resource Allocation in Multichannel 

Cognitive Radio Networks" (Tang et al., 2013) 
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 This research addresses efficient resource allocation 

in multichannel cognitive radio networks, a relevant 

field for DSA in multichannel wireless networks. 

Title: "Spectrum Management in Multichannel 

Wireless Networks: Challenges and Opportunities" 

(Guo et al., 2016). 

 This paper discusses challenges and opportunities in 

spectrum management for multichannel wireless 

networks. 

6. Spectrum Sharing and Multichannel Wireless 

Communication: 

Title: "Spectrum Sharing for Device-to-Device 

Communication in Cellular Networks: A Survey" 

(Kord et al., 2018) 

 This survey focuses on spectrum sharing, an essential 

aspect of multichannel wireless networks. 

Title: "Resource Allocation and Spectrum Sharing in 

Multichannel Cognitive Radio Networks" (Liang et al., 

2014) 

 This research explores resource allocation and 

spectrum sharing techniques in multichannel 

cognitive radio networks. 

 

III. EXISTING METHOD 

 

Learning Algorithms for Dynamic Spectrum Access 

Developing distributed optimization and learning 

algorithms for managing efficient spectrum access 

among users has at tracted much attention in past and 

recent years. Complete information about the 

network state is typically not available online for the 

users, which makes the computation of optimal 

policies intractable in general [6]. While optimal 

structured solutions have been developed for some 

special cases. most of the existing studies have been 

focused on designing spectrum access protocols for 

specific models so that efficient and structured 

solutions can be obtained. However, 

model dependent solutions cannot be effectively 

adapted in general for handling more complex real-

world models. Model-free Q-learning has been used 

in [10] for Aloha-based protocol in cognitive radio 

networks. Handling large state space and partial 

observability, however, becomes inefficient under 

Q learning. 

  

DEEP MULTI-USER REINFORCEMENT LEARNING 

FOR DYNAMIC SPECTRUM ACCESS  

 Our goal is to develop a distributed learning 

algorithm for dynamic spectrum access that can 

effectively adapt for general complex real-world 

settings, while overcoming the expensive 

computational requirements due to the large state 

space and partial observability of the problem. We 

adopt a deep multi user reinforcement learning 

approach to achieve this goal. Deep reinforcement 

learning (DRL) (or deep Q-learning) has attracted 

much attention in recent years due to its capability to 

provide a good approximation of the objective value. 

while dealing with a very large state and action spaces. 

In contrast to Q-learning methods that perform well 

for small-size models but perform poorly for large-

scale models, DRL combines deep neural network 

with Q-learning, referred to as Deep Q-Network 

(DQN), for overcoming this issue. The DQN is used to 

map from states to actions in large-scale models so as 

to maximize the Q value. In [12], the authors 

developed DRL algorithms for teaching multiple 

players how to communicate so as to maximize a 

shared utility. Strong performance has been 

demonstrated for several players in MNIST games and 

the switch riddle. In recent years, there is a growing 

attention on using DRL methods for other various 

fields. A survey on very recent studies can be found in 

[13]. 

 
Figure 1: Design of one circular patch antenna 
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 In this section, we describe the proposed architecture 

for the multi-user DQN used in DQSA algorithm for 

solving the DSA problem. An illustration of the DQN 

is presented in Fig. 1.  

 

1) Input Layer:  

The input xn(t) to the DQN is a vector of size 2K + 2. 

The first K + 1 input entries indicate the action (i.e., 

selected channel) taken at time t − 1. Specifically, if 

the user has not transmitted at time slot t − 1, the first 

entry is set to 1 and the next K entries are set to 0. If 

the user has chosen channel k for transmission at time 

t − 1 (where 1 ≤ k ≤ K), then the (k + 1)th entry is set 

to 1 and the rest K entries are set to 0. The following 

K input entries are the capacity of each channel (i.e., 

the packet transmission rate over a channel 

conditioned on the event that the channel is free, 

which is proportional to the bandwidth of the 

channel). In the experiments presented in Section V, 

we simulated equal channels (i.e., we set 1 at all K 

entries). The last input is 1 if ACK signal has been 

received. Otherwise, if transmission has failed or no 

transmission has been executed, it is set to 0. 

 

2) LSTM Layer 

 Since the network state is partially observable for 

each user, and the dynamic is non-Markovian and 

determined by the multi-user actions, classical DQNs 

do not perform well in this setting. Thus, we add an 

LSTM layer to the DQN that maintains an internal 

state and aggregate observations over time. This gives 

the network the ability to estimate the true state 

using the history of the process. This layer is 

responsible of learning how to aggregate experiences 

over time.  

 

3) Value and Advantage Layers 

 Another improvement that we incorporate is the use 

of dueling DQN, as suggested in [11]. The intuition 

behind this architecture lies in the fact that there is an 

observability problem in DQN. There are states which 

are good or bad regardless of the taken action. Hence, 

it is desirable to estimate the average Q-value of the 

state which is called the value of the state V (sn(t)) 

independently from the advantage of each action. 

 

4) Block output layer:  

 The output of the DQN is a vector of size K + 1. The 

first entry is the estimated Q-value if the user will 

choose not to transmit at time t. The (k + 1)th entry, 

where 1 ≤ k ≤ K, is the estimated Q-value for 

transmitting on channel k at time t. 5) Double Q-

learning: The max operator in standard Q-learning 

and DQN (see (8)) uses the same values to both 

selecting and evaluating an action. Thus, it tends to 

select overestimated values which degrade 

performance. Hence, when training the DQN, we use 

double Q-learning [41] used to decouple the selection 

of actions from the evaluation of Q-values. 

Specifically, we use two neural networks, referred to 

as DQN1 and DQN2. DQN1 is used for choosing 

actions and DQN2 is used to estimate the Q-value 

associated with the selected action. 

  

IV. PROPOSED METHOD 

 

When channels are correlated and system dynamics 

are unknown, there are two main approaches to 

tackle the dynamic multichannel access problem:  

 

i.Model-based approach: first estimate the system 

model from observations and then apply dynamic 

programming or a computationally efficient heuristic 

policy such as Myopic/Whittle Index policies;  

ii. Model-free approach: learn the policy directly 

through interactions with the system without 

estimating the system model.  

 

 The model-based approach is less favoured since the 

user’s limited observation capability may result in bad 

system model estimation. Even worse, even if the 

system dynamics is well estimated, solving a POMDP 

in a large state space is always a bottleneck as the 

dynamic programming method has exponential time 
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complexity and the heuristic approaches do not have 

any performance guarantee. All these challenges 

motivate us to follow the model-free approach, which, 

by incorporating the idea of Reinforcement Learning, 

can learn directly from observations without the 

necessity of finding an estimated system model and 

can be easily extended to very large and complicated 

systems.  

 

A. Q-Learning 

 We focus on the reinforcement Learning paradigm, 

Q-learning specifically, to incorporate learning for the 

dynamic multichannel access problem. The goal of Q-

learning is to find an optimal policy, i.e., a sequence of 

actions that maximizes the long-term expected 

accumulated discounted reward. Q-learning is an 

empirical value iteration approach and the essence is 

to find the Q-value of each state and action pairs, 

where the state x is a function of observations (and 

rewards) and the action a is some action that a user 

can take given the state x. The Q-value of a state-

action pair (x, a) from policy π, denoted as Q π (x, a), 

is defined as the sum of the discounted reward 

received when taking action a in the initial state x and 

then following the policy π thereafter. Q π ∗ (x, a) is 

the Q-value with initial state x and initial action a, 

and then following the optimal policy π ∗. Thus, the 

optimal policy π ∗ can be derived as π ∗ (x) = arg maxa 

Q π ∗ (x, a), ∀x. One can use online learning method 

to find Q π ∗ (x, a) without any knowledge of the 

system dynamics. Assume at the beginning of each 

time slot, the agent takes an action at ∈ {1, .., N} that 

maximizes its Q-value of state-action pair (xt , at) 

given the state is xt, and gains a reward rt+1. Then the 

online update rule of Q-values with learning rate 0 < 

α < 1 is given as follows:  

  

Q(xt , at) ← Q(xt , at)+α[rt+1 +γ max at+1 

Q(xt+1,at+1)−Q(xt , at)] ...........(1) 

 

In the context of the dynamic multichannel ac cess, 

the problem can be converted to an MDP when 

considering the belief space and Q-learning can be 

applied consequently. However, this approach is 

impractical since the belief update is maintained by 

knowing the system transition matrix P a-priori, 

which is hardly available in practice. Instead, we 

apply Q-learning by directly considering the history 

of observations and actions. We define the state for 

the Q-learning at time slot t as a combination of 

historical selected channels as well as their observed 

channel conditions over previous M time slots, i.e., xt 

= [at−1, ot−1, ..., at−M, ot−M]. And intuitively, the 

more historical information we consider (i.e., the 

larger M is), the better Q-learning can learn. 

 

B. DEEP REINFORCEMENT LEARNING  

 Q-learning performs well for small-scale models but 

per forms poorly for large-scale models. The reason is 

that the training algorithm of Q-learning iteratively 

updates the Q table. As the number of possible states 

increases, the large Q-table size makes training 

difficult or even impossible. Due to the difficulties of 

updating every element in Q-table for a large-scale 

model, DRL exploits the powerful deep neural 

network to approximate the Q-value. In our work, the 

size of the state space grows exponentially with the 

number of the channels. Each channel is occupied by 

a PU and each PU has two possible states: Active state 

or Inactive state, so the state size is 2 N for N channels. 

This motivates us to use DQN to learn the dynamic 

spectrum access strategy in an unknown dynamic 

system. 

 

C. DEEP Q-NETWORK  

 Q-learning works well when the problem’s state space 

is small, as a look-up table can be used to update Q 

values. But this is impossible when the state space 

becomes large. The state space size in this work grows 

exponentially as O(N M), as we use a combination of 

M vectors of length N to represent historical 

observations and actions for a system with N 2-state 

channels over past M time slots. M is required to be 

large so that Q-learning can capture enough 
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information for learning. Even worse, since many 

states are rarely visited, their corresponding Q-values 

are seldom updated. This causes Q learning to take a 

very long time to converge. Motivated by its success in 

other domains, we adopt the deep Q-Network 

approach to ad dress the very large state space. DQN 

takes the state-action pair as input and outputs the 

corresponding Q-value. Q-network updates its weights 

θ at each iteration i to minimize the loss function 

Li(θi) = E[(yi − Q(x, a; θi))2 ], where yi = E[r + γ maxa 

0 Q(x 0 , a 0 ; θi−1)] is derived from the same 

Q network with old weights θi−1. 

 

D. ALGORITHMS 

 

 
 

 

 

 

 

 

 

E. LEARNING PROCESS 

 
Figure 2: Learning Process of proposed method 

 

In this section, we formulate the dynamic spectrum 

access as a reinforcement learning problem. We 

define the agent, state, action, reward, and policy in 

dynamic spectrum access environment. The learning 

procedure is shown in Fig.2. It can be seen that 

spectrum access strategies are determined by the 

results of deep Q-network and current spectrum 

sensing. According to the spectrum access strategies, 

SUs access wireless channels to carry out data 

transmissions. Then, SU receivers feedback reward 

based on actual wireless transmission quality, which 

will be stored by SU transmitters and used as training 

data of DQN+RC to update spectrum access strategies. 

The aforementioned learning procedure will be 

carried out periodically to tackle the variations of 

wireless environments. 

F. BLOCK DIAGRAM 

 
Figure 3: Learning Process of proposed method 
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Deep Reinforcement Learning (DRL) using Deep Q 

Networks (DQN) for dynamic multichannel access 

involves a sequence of steps that enable an agent to 

learn and make intelligent decisions about which 

channels to use in a wireless network. Here's an 

explanation of how this process works, using the Q-

learning reinforcement algorithm, the initialization of 

a Q table, action selection, action execution, reward 

measurement, and Q table and DQN updates: 

 

1. Initialization of Q Table: 

 The process begins by initializing a Q table. This 

table stores the expected cumulative rewards 

associated with taking specific actions in different 

states of the environment. In the context of dynamic 

multichannel access, each state might represent a 

specific combination of channel conditions, 

neighboring devices' activities, and other relevant 

factors. The Q table is initialized with arbitrary values 

or zeros. 

 

2. Choosing an Action (Channel Selection): 

• The agent, which represents a wireless device or 

network node, selects an action based on its current 

state. In this case, the action corresponds to selecting 

one of the available communication. 

• channels for data transmission. The agent uses its 

current knowledge (Q table and DQN) and a selection 

strategy, such as ε-greedy exploration, to decide 

which channel to use. 

 

3. Performing an Action (Channel Assignment): 

 After choosing an action, the agent performs the 

selected action by assigning the chosen channel for 

data transmission. This corresponds to the wireless 

device tuning into the selected channel for 

communication. 

4. Measuring Reward: 

The agent then measures the reward associated with 

the chosen action in the current state. The reward is 

typically a numerical value that reflects the quality of 

the channel assignment. It can be based on factors like 

data throughput, latency, signal-to-noise ratio, or any 

other relevant performance metric. The goal is to 

maximize the cumulative reward over time. 

 

5. Updating Q Table (Q-Learning): 

 The heart of the Q-learning algorithm lies in 

updating the Q table based on the observed reward. 

The Q-value for the chosen action in the current state 

is updated using the following formula: 

 

Q(state, action) = Q(state, action) + α * (reward + γ * 

max(Q(next_state, all_actions)) - Q(state, 

action))…..(2)  

 

Q(state, action) is the Q-value for the current state-

action pair. α is the learning rate, controlling how 

much the Q-value is updated based on the observed 

reward. 

reward is the reward obtained from performing the 

action. γ is the discount factor, representing the 

agent's preference for immediate rewards over 

delayed rewards. 

max(Q(next_state, all_actions)) represents the 

maximum Q-value for the next state, where the agent 

anticipates the best possible future rewards. 

The Q table is updated iteratively as the agent 

explores and interacts with the environment. 

 

6. Updating Deep Q Networks (DQN): 

 In parallel with Q table updates, DQN is trained 

using the collected experiences. DQN is a neural 

network that approximates the Q-values, allowing for 

more complex state-action mappings. The neural 

network is updated through a supervised learning 

process where the target Q-values are predicted by 

the DQN, and the loss between predicted and target 

Q-values is minimized during training. 

 

7. Repeat the Process: 

 The agent repeats these steps iteratively over 

multiple episodes of interaction with the environment. 

As it learns, the Q table and DQN become more 
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refined, enabling the agent to make increasingly 

intelligent decisions about channel selection. By 

following this process, the agent gradually learns to 

make optimal channel selection decisions in dynamic 

multichannel access scenarios, ultimately improving 

network performance and efficiency. 

 

V. SIMULATION RESULTS 

 

A. EXISTING METHOD 

 

 
 

Figure 4 :channel throughtput for the experiments 

conducted  

   

Channel throughput refers to the amount of data 

transmitted successfully over a communication 

channel within a certain period. The Y-axis represents 

the throughput in units like Mbps (Megabits per 

second) or Kbps (Kilobits per second). Average 

channel utilization represents the proportion of time a 

channel is being used for data transmission relative to 

the total available time.  

The Y-axis represents channel utilization as a 

percentage (%). The X-axis represents time in seconds 

(s) and serves as a timeline for the experiment. Time is 

typically measured in seconds and represents the 

duration of the experiment.  

 

Channel Throughput Line (in a certain color): 

The line depicting channel throughput represents 

how the throughput varies over time during the DSA 

experiment. Peaks or high points on this line indicate 

periods of high data transmission, suggesting efficient 

channel usage. Troughs or low points signify 

moments of reduced data transmission, which may 

result from interference or suboptimal channel 

selection. 

 

Average Channel Utilization Line (in a different 

color): 

The line showing average channel utilization 

illustrates the percentage of time the channel is 

actively used for communication. An increasing trend 

in this line suggests that the channel is being used 

more frequently, which implies effective spectrum 

sharing and utilization. 

Conversely, a decreasing trend in average channel 

utilization may indicate underutilization or inefficient 

spectrum management. 

 

 

 
 

Figure 5 : a representative channel selection 

maximizing the user sum rate 

 

The Y-axis represents the number of users or devices 

in the wireless network. The Y-axis typically shows 

the count of users, starting from zero and increasing 

incrementally. The X-axis represents time in seconds 

(s) and serves as a timeline for the experiment. Time is 

usually measured in seconds and represents the 

duration of the experiment. The line or curve in the 

graph represents the result of channel selection 

strategies applied to maximize the sum rate of users in 

the network. 
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The curve illustrates how the total data rate (sum 

rate) achieved by all users collectively changes over 

time as channels are selected and assigned to users. 

The shape and trends of the curve indicate the 

effectiveness of the channel selection algorithm in 

optimizing the overall network performance. 

 

B. PROPOSED METHOD 

 

 
 

Figure 6: Residual energy of sensors 

 

The Y-axis represents the remaining energy level of a 

sensor node in the wireless network. The Y-axis 

typically measures the energy level in units such as 

joules. The X-axis represents time in seconds (s) and 

serves as a timeline for the experiment. Time is 

usually measured in seconds and represents the 

duration of the experiment. The line or curve in the 

graph represents the sensor node's remaining energy 

level as a function of time. The curve illustrates how 

the energy level of the sensor node changes over time 

due to various factors, including data transmission, 

reception, and energy consumption for processing and 

communication. 

 

 
 

Figure 7: protocol control overhead in case of the 

nework size is 300 and 500 nodes 

 

The Y-axis represents the protocol control overhead 

in the wireless network. Protocol control overhead is 

typically measured in bytes, kilobytes (KB), or bits. 

The X-axis represents the size of the wireless 

network, specifically the number of nodes or devices. 

The X-axis values denote the total number of nodes in 

the network, such as 300 nodes and 500 nodes. The 

line or curve in the graph represents the variation in 

protocol control overhead as the network size 

changes. This curve illustrates how the control 

overhead scales with the number of nodes in the 

network. 

 

 
 

Figure 8: Network throughput of proposed method 
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Figure 9: comparison of existing and proposed 

channel throughput for the experiments conducted 

VI. CONCLUSION AND FUTURE SCOPE 

 

The implementation of Deep Reinforcement Learning 

(DRL) using Deep Q Networks (DQN) for dynamic 

multichannel access in wireless networks represents a 

significant leap forward in the field of wireless 

communication and spectrum management. This 

research has demonstrated the potential of advanced 

machine learning techniques to revolutionize the way 

wireless devices and networks make decisions about 

channel selection and resource allocation. The 

utilization of DRL and DQN provides wireless devices 

and network nodes with the capability to make 

informed and dynamic decisions regarding channel 

access. This intelligent spectrum management leads to 

more efficient and effective utilization of available 

spectrum resources. The proposed approach excels in 

adapting to the dynamic and ever-changing 

conditions of wireless networks. Through continuous 

learning and interaction with the environment, the 

system can dynamically optimize channel assignments, 

resulting in improved network performance and user 

experience. 

FUTURE SCOPE 

In feature the proposed method can be extend As 

wireless communication continues to evolve with 

technologies like 5G and beyond, DRL with DQN-

based multichannel access systems offer future-ready 

solutions that can adapt and thrive in the ever-

changing wireless landscape. 
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