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Training robots to navigate diverse environments is a challenging problem as 

it involves the confluence of several different perception tasks such as 

mapping and localization, followed by optimal path-planning and control. 

Recently released photo-realistic simulators such as Habitat allow for the 

training of networks that output control actions directly from perception: 

agents use Deep Reinforcement Learning (DRL) to regress directly from the 

camera image to a control output in an end-to-end fashion. This is data-

inefficient and can take several days to train on a GPU. Our paper tries to 

overcome this problem by separating the training of the perception and 

control neural nets and increasing the path complexity gradually using a 

curriculum approach. Specifically, a pre-trained twin Variational 

AutoEncoder (VAE) is used to compress RGBD (RGB & depth) sensing from 

an environment into a latent embedding, which is then used to train a DRL-

based control policy.  

A traditional path-planner is used as a guide for the policy and the distance 

between start and target locations is incrementally increased along the A 

route, as training progresses. We demonstrate the efficacy of the proposed 

approach, both in terms of increased performance and decreased training 

times for the PointNav task in the Habitat simulation environment. This 

strategy of improving the training of direct-perception based DRL navigation 

policies is expected to hasten the deployment of robots of particular interest 

to industry such as co-bots on the factory floor and last-mile delivery robots. 
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I. INTRODUCTION 

 

Robots To go from point A to B in an indoor 

environment is challenging for a mobile robot. In the 

absence of GPS and using the visual/RGBD sensor 

available on the robot, one has to map an 

environment & localize in it (SLAM) and then path-

plan an obstacle-free route to get from a start to target 

location. This was the traditional approach to mobile 

robotics. Recently, Deep Reinforcement Learning 
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(DRL) has shown to provide more robust navigation 

policies compared to SLAM, if the robot (agent) is 

trained in simulation and exposed to an order of 

magnitude more experience [1]. This involves training 

navigation policies that regress directly from the 

camera image to a control output.  

 

However, splitting this task into two: learning a 

compact state representation, termed “representation 

learning” and then using this representation to learn a 

robust control policy has the following advantages: (1) 

errors in policy learning will not affect perception as 

the latter is decoupled from the former, but the vice 

versa is not true; (2) once perception is learned, it can 

be reused to learn multiple policies for different tasks, 

which is not feasible in complete end-to-end training 

as the perception needs to be re-learned every time a 

new task is learned. These advantages have the 

potential to speed-up the overall learning of the task 

at hand. 

 

 
Figure 1: waypoints generated between desired start 

and target locations by the A algorithm. This work 

looks at assisting the training of a DRL-based robot 

navigation policy, by incrementally increasing the 

difficulty of the navigation task in a curriculum. 

Bottom: 3 curriculum training approaches with 9 and 

4 discrete waypoints and a continuously moving 

waypoint: WP-9, WP-4 & FWP. 

 

II. OUR SOLUTION 

 

The recently released Habitat simulator [1] has 

generated excitement in the field of RGBD vision-

based robot navigation in indoor environments. In 

our solution, we train DRL agents for the problem of 

indoor robot navigation in the Habitat environment 

by separating perception (i.e., representation learning) 

and control (i.e., navigation policy). We use a VAE to 

encode RGB and Depth images, and use these latent 

encodings as well as a reading and heading angle for 

the target (from the PointGoal sensor), to learn 

navigation policies. Additionally, we use a traditional 

path-planner, A to assist the DRL agent during 

training, by following a pre-determined curriculum. 

A guides the agent by giving it shorter-distance goal 

locations (waypoints) between the original start and 

target locations.  

 

We experiment with two different curriculum-based 

training of the DRL agents, one by decreasing the 

number of intermediate waypoints used (termed the 

SWP-N agent) or by moving the episodic goal farther 

away from the start position (termed the FWP agent). 

We describe the problem and our method in more 

detail in our paper. In summary, our contributions are 

as follows: (1) a principled approach to compare 

different navigation-agnostic VAE-based perception 

embeddings for their usefulness to a DRL in learning a 

subsequent navigation policy; (2) Using a traditional A 

path-planning algorithm in a curriculum fashion to 

assist in the training process of this navigation policy. 

This two-step procedure helps in the speed-up of the 

overall training of the policy network to learn robust 

navigation policies. 

 

III. THE POINTNAV TASK 

We use the Habitat simulator [1] to train our DRL to 

learn policies for the point-goal navigation task in the 
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Gibson environment [2]. The robot/agent is equipped 

with an RGBD camera, a point-goal sensor and a 

heading sensor. The point-goal sensor is like an 

indoor GPS: it provides the agent with its current 

position and the relative position of the target 

location. The heading sensor provides the current 

global heading angle of the agent. In the pointgoal 

navigation task, the agent is asked to navigate from 

the initial starting position to the required end 

position using only its RGBD, heading and point-goal 

sensors and without a map. These start and target 

locations are randomly initialized at the beginning of 

each episode, for which no straight line path is 

possible. The agent needs to learn navigation 

strategies that avoid obstacles and negotiate doorways 

since the start and target locations can be in different 

rooms. 

IV. TWIN-VAE (REPRESENTATION LEARNING) 

We pre-train perception in the environment by using 

a twin-VAE setup as shown in the figure below. 

RGBD cameras are initialized randomly in the 

environment, and at each location, RGB and depth 

images are collected. These images are used to train 

the RGB and depth encoder-decoder branches (blue 

and purple in the figure). Once the VAE is pre-trained, 

only its encoders are used for training the DRL policy. 

RGB and depth images are encoded to their respective 

embeddings, which are concatenated to provide the 

final visual embedding from the camera. This 

embedding is used for training the DRL policy. 

 
Figure 2: A twin (RGB-depth) VAE learns an 

embedded representation of the environment, which 

is then used to train a navigation policy using DRL. 

Information flow during the VAE and DRL training 

are shown in red and orange respectively. 

 

V. A CURRICULUM LEARNING 

 

The task of learning the DRL policy is assisted by 

incrementally increasing the difficulty of the 

PointNav task. We do this during training by using A 

to determine an optimal path between start and target 

locations in the bird’s eye view (BeV) map of the 

environment. A new sub-goal, a point to navigate to, 

that is on this A path, is provided to the DRL. This 

sub-goal is close to the starting location to begin with, 

and then as training progresses, gets farther and 

farther away from it. We test the following variants of 

curriculum learning based on discrete and continuous 

subdivisions of the path: 

 

1) WP-N: In Way-point-N or WP-N, the A path is 

divided into N equidistant waypoints (WPs) including 

the target location. At the beginning of the training 

episode, the agent is asked to navigate to the first WP. 

When it reaches within 0.2m of this WP, the goal is 

revised to the next one and so on till the final target 

location. We investigate the number of intermediate 

waypoints required for successful navigation by 

experimenting with WP-10, WP-8, WP-6. WP-4, 

WP-3 and WP-2. WP-1 involves no subdivisions of 

the path and is the same as the original PointNav task. 

 

2) SWP-N: Sequential WP-N or SWP-N involves 

keeping the number of WPs constant for a fixed 

number (few thousand) episodes. This is the same as 

WP-N, where the agent is asked to navigate from the 

1st to the Nth waypoint within the same episode. 

However, N decreases episodically. Once the agent 

has mastered a higher N, requiring a smaller length 

sub-path traversal, the agent is subjected to a lower N, 

requiring a larger length sub-path traversal. 
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3) FWP: Farther Waypoint involves only one WP 

that moves farther and farther away from the start in 

continuous, linear increments, as training progresses. 

The training is commenced with the WP at 20% 

distance along the A path from the start. Over the 

course of training, this WP is moved farther and 

farther along the path until it is at 120% of the 

distance from the start to target after several tens of 

thousands of episodes, at which point the FWP 

problem is the same as the PointNav problem. 

 

VI. DRL TRAINING (CONTROL LEARNING) 

 

At any time instant, the sensory readings of the RGB 

and Depth images are encoded into one-dimensional 

vectors/embeddings using the pre-trained twin VAEs. 

These are then concatenated with the pointgoal 

sensor reading, and the heading angle, to obtain a 

compact representation of the state at time instant t, 

st. We use Deep Reinforcement Learning (DRL) to 

learn a policy πθ that outputs action at the time t: at = 

πθ(st), where the actions are one of three: (1) move 

forward by 0.25 m; (2) turn left by 10 degrees; (3) turn 

right by 10 degrees. A fourth action called “Done” is 

executed whenever the agent is within 0.2 m from the 

goal position. Specifically, the Proximal Policy 

Optimization (PPO) algorithm is used with the policy 

network being a neural network with fully connected 

layers and an LSTM for temporal information. See our 

paper for more details on the architecture used for the 

neural networks. 

 

VII. RESULTS 

 

The success-weighted path length (SPL) is the metric 

we use to assess the performance of the agents. It is a 

real number between 0 and 1, with 1 indicating the 

robot navigated from start to goal location using the 

most optimal path. See [1] for more details on SPL. 

We show below the training curves for three agents: 

PointNav, SWP and FWP. As evident, the SWP and 

FWP agents learn faster than the PointNav agent, and 

so DRL agents learn faster when provided with a 

curriculum. While we have considered a fixed, pre-

determined curriculum to follow, in the future one 

can consider a dynamic curriculum where the 

curriculum changes based on the progress made by 

the agent to learn the task. 

 
Figure 3: Success-weighted path length (SPL) over 

successive episodes. 

 

Here are some top-down views showing sample 

trajectories of the three agents: SWP, FWP and PN 

(PointNav) for the same start and end locations. The 

trajectories taken are different and the final SPL, the 

metric we use to assess performance at test time, is 

superior for SWP and FWP agents compared to the 

baseline PN agent. 

Test time paths traced by the PointNav, SWP-10 and 

FWP agents for different episodes. The start and 

target positions are represented by the green and blue 

squares respectively. The paths traced are shown in 

red for PointNav, yellow for SWP and purple for the 

FWP agents. The SPL values for the three agents for 

the respective episode are also shown in each sub-

figure. 

 

VIII. CONCLUSIONS 

 

Mobile robot autonomous navigation in unknown 

indoor environments using DRL algorithms was 

presented and evaluated. The proposed DQL 
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algorithms are so powerful that there is no need for 

agents to know anything about the environment since 

they can still learn how to interact with the 

environment. The agents can work with any kind of 

mobile robot without requiring the kinematics and 

dynamics of the mobile robot because the proposed 

algorithms are model free. The simulation results 

show that the proposed autonomous navigation 

algorithms would allow the mobile robot to navigate 

autonomously and free of collisions to the target 

object location in both static and dynamic obstacles 

without the prior development of an environmental 

map.  

 

The object detector model would enable the mobile 

robot to recognize the target object in real time. A 

practical approach is proposed for collision avoidance 

and goal-oriented navigation tasks of mobile robots 

using DQN and DDQN agents. From the experiment, 

it has been seen that the DQN and DDQN agents 

trained in the Gazebo simulator can be deployed 

directly to the real mobile robot without tuning the 

parameters. The DDQN agent is more robust and 

better than the DQN agent in exploring the 

environment, avoiding collisions, and reaching the 

target object location from the simulation experiment 

in Gazebo. Thus, only the DDQN agent is used for 

real-world experiments in an unknown indoor 

environment.  

 

The real-world experiment is performed in two 

different environments to demonstrate that the 

deployed DDQN policy without a learning algorithm 

is capable of operating in the real world. In 

conclusion, the proposed method has great potential 

for autonomous mobile robot navigation compared 

with SLAM, however, the reward design is the 

challenging part of DRL for autonomous mobile robot 

navigation. In the real-world experiment, the final 

model configuration will have a single board 

computer (NVIDIA Jetson TX2), which has excellent 

processing speed with a hex-core CPU, a 256-core 

NVIDIA pascal GPU, and 8G LPDDR4 RAM, instead 

of a laptop as a controller unit.  
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