

International Journal of Scientific Research in Science and Technology

Available online at : www.ijsrst.com

Print ISSN: 2395-6011 | Online ISSN: 2395-602X

doi : https://doi.org/10.32628/IJSRST52310566

Bijubala A. Patel^{1*}, Dilipkumar D. Patel²

¹Research Scholar Department of Biology, B.K.M. Science College, Valsad, Gujarat state, India,
²Associate Professor Department of Biology, B.K.M. Science College, Valsad, Gujarat state, India
Corresponding Auther[•]: E-mail : ddpbkm.botany@gmail.com

ARTICLEINFO

Article History:

ABSTRACT

Accepted: 10 Sep 2023 Published: 17 Oct 2023

Publication Issue Volume 10, Issue 5 September-October-2023 Page Number 502-511 Algae are pre dominantly aquatic and are mainly found in fresh or marine water. The rivers from Dang District are select for Taxonomy of Algae. The present study is a part of survey being conducted to study the algal flora of Dang which is situated at an altitude of 1200 meter south Gujarat. Lots of variety of Algal species are found in nature. Some of them are very useful in various fields. Lots of variety of Algal species were collected and identified along with their family. Total of 78 Species belonging to 27 genera and 10 orders of Green Algae have been so far recorded from the locality under present investigation. **Keywords :** Taxonomy, Algal species

I. INTRODUCTION

The Dang district covers 1764 sq. km. The Dang is located 1500km from sea level. An extensive study was carried out and 87 species belonging to 43 genera of Cyanophyceae, Chlorophyceae, Xanthophyceae, Bacillariophyceae, Charophyceae, Odeogoniaceae, Chaetophoraceae were reported from Dang district.

Main objective of selecting Algal flora survey as a research topic is due to its diverse applications. To study the local algal flora in Dang district, as many algae still need to be research and identify. A large number of species of Algae are used as a source of food by human beings. Algae increase the soil fertility by fixing atmospheric Nitrogen. Algae are also used as Bio fertilizers and few algae are used for Biomass Utilization. Many algae contain a high percentage of iodine content and also contain Vitamin B12, thus they are used in medicines. The green algae Chlorella yield Antibiotics. Algae are economically important as a source of crude oil and also as oxygen producers.

II. STUDY AREA

The Dang District is situated at Western state of Gujarat. The Dang District covers 1764 sq. km and its coordinates are Longitude 73.6899 degrees North and Latitude 20.7572 degrees East. The Dang District is bounded on the north by Tapi district, on the west by Navasari District and also on east and south by the State of Maharashtra. In the Dang district, mostly

Copyright © 2023 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution **4.0 International License (CC BY-NC 4.0)** which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited.

tropical moist deciduous forests occurs..The Dang also known as mini Cherrapunji's of Gujarat with average annual rainfall exceeding covers 1200 mm and its major rivers like Ambika, Purna, Khapari, Dhodad and Gira. The Dang District covers 3 Talukas : Waghai, Ahwa and Subir.

III. METHODS AND MATERIAL

IV. Methodology

Choose site that is representative of the bulk water being assessed. Field visits to the research area in the selected interval of time. Samples should be collected in 500 ml plastic or glass sampling bottles. Collected algal samples by hand or scrapers / spatula. Samples should be washed with running tap water. Label sample bottles with waterproof Pen. Place the sample bottle in cool box with ice for transport to the analyzing Laboratory. Record the site name, sample name, Date & Time, sampler name and any general observation about the site. After collection of algae, sample identification is done. The sample identification mainly is to be done with the help of concerned literatures or with the help of the sample's external morphology and with compound microscope and light microscope. The objective used were 10x, 40x, 100X.The sample were Identified with the help of book : College Botany. Preservation of samples were done by standard preservatives like formalin

solution. Storage of the Algal samples in glass the present study are enlisted and described below. containers. The species collected and identified during

V. RESULTS

Serial	Class	Order	Family	Botanical	Type of	Uses
No.				Name	Thallus	
1	Chlorophyceae	Volvocales	Chlamydomona	Chlamydomon	Colonial,	
			daceae	as	biflagellat	
					e, small	
					epiliptical	
					oval cells.	
2	Chlorophyceae	Volvocales	Volvocaceae	Volvox	Spherical	
				Tetraspora	hollow	
					sphere of	
					colony of	
					algal cells.	
3	Chlorophyceae	Chlorococcales	oocystaceae	Chlorella		
4	Chlorophyceae	Sphaeropleales	Scendesmaceae	Scendesmas	Non	To study
				(Mayen,1829)	motile,	pollution,
					colonial,u	used in
					ni cellular	sewage
			1 1			treatment
5	Chlorophyceae	Sphaeropleales	Hydrodictyacea	Hydrodictyon	colonial,	
			e	reticulatum	fillamento	
					us-	
					pentagona	
					1 Of	
					itexagonal	
					of	
					colonies	
6	Chlorophyceae	Sphaeropleales	Hydrodictyacea	Pediastrum	colonial	
Ŭ	Cinorophyceue	opilaciopicales	e	angulosum. P.	unmistaka	
				tetras	ble star	
					shape.	
7	Chlorophyceae	Cheatophorale	Cheatophoracea	Stigeoclonium	colonial	Provides
		S	e	0	branching	essential
					patterns	water for
					filaments(drinking and
					hair like)	industry in
						dessert
						region.
8	Chlorophyceae	Oedogoniales	oedogoniaceae	Oedogonium	Unbranch	Fixation of
					ed	heavy metals
					filamentou	in fresh
					S	water

						ecosystem
0	Chlorophycene	Sphaeropleales	Scendesmaceae	Tetradomus	Non	ceosystem
,	Chiorophyceae	Spilaeropicales	Scenaciac		fillemente	
				accummatus	illialliento	
					us,	
10				<i>a</i> 1	ni cellular	
10	Chlorophyceae	Sphaeropleales	Scendesmaceae	Coelastrum	colonial,	
				reticulatum(Na	non	
				geli,1899)	filamentou	
					S	
11	Ulvophyceae	Cladophorales	Ulvophyceae	Cladophora	Unicells,	
					colonies	
					with	
					flagella	
					reticulated	
					,	
					filamentou	
					S.	
12	Trebouxiophycea	Chlorellales	Oocystaceae	<i>Oocystis</i> spp.	Non	
	e				filamentou	
					S	
13	Trebouxiophycea	Chlorellales	Chlorellaceae	Chlorella	Single	It contain
	e			vugaris	celled	vitamins,B12,
					spherical	folate and
					green cell.	iron.
14	Zygnematophyce	Zygnematales	Zygnemataceae	Spirogyra spp.	Multicellu	Antibiotic,
	ae				lar	anti oxidant,
					filamentou	antiviral.
					S	used for
						treatment of
						Diabetes.
15	Zygnematophyce	Zygnematales	Zygnemataceae	Zygnima (C.	Unbranch	
	ae			agaris- 1897)	ed	
					filaments	
					with	
					cylindrical	
					cells.	
16	Zygnematophyce	Desmidiales	Closteriaceae	Closterium	Single	
	ae				celled	
					crescent	
					shaped,	
					unicellular	
17	Charophyceae	Charales	Characeae	Chara	Multicellu	It stabilizes
				globularis	lar, small	bottom
					plant like	sediments
					branches.	provides food
						for small
						fishes.

18	Euglenophyceae	Euglenales	Euglenaceae	Euglena	Motile,	It's important
	5 1 7	0	0	phacus	spindle	components
				1	shaped	of certain
					single	aquatic
					celled	environment.
19	Cyanophyceae	Oscillatoniales	Oscillatoriaceae	Oscillatoria	Filamento	Fixing
				curviceps,O.	us	atmospheric
				lilosa,O.	trichomes	N2 increase
				princeps		soil fertility
						used as bio
						fertilizer in
						paddy fields.
20	Cyanophyceae	Oscillatoniales	Oscillatoriaceae	Lyngbya spp.	Unicellula	
					r, long,	
					unbranchi	
					ng	
					filamentou	
					S.	
21	Cyanophyceae	Chroococcales	Chroococcaceae	Gloeocapsa	Unicellula	
				<i>Kutzing</i> , 1843	r, Non	
					filamentou	
					s grouped	
					family	
22	Cyanophyceae	Nostocales	Nostocaceae	Anabaana	colonial	used for the
22	Gyanophyceae	ivostocales	INOStOCACCAC	2 madacina	filamentou	Nitrogen
					s	fixation as
					5	bio fertilizer.
23	Cyanophyceae	Nostocales	Nostocaceae	Nostoc	colonial	used for the
					citis called	Nitrogen
					fresh	fixation as
					water	bio fertilizer.
					graps cells.	
24	Cyanophyceae	Nostocales	Rivulariaceae	Rivularia	colonial,	
					trichomes	
25	Cyanophyceae	Nostocales	Scytonematacea	Scytonema	Filamento	
			e	spp.	us	
26	Cyanophyceae	Synechococcal	Merismopediac	Merismopedia	Spherical	
		es	eae	(Meyen,1839)	shape	
					unicellular	
					organisms	
					in colonial	
07					torm.	D. 1
27	Cyanophyceae	Chroococales	Chroococaceae	Chroococcus		Kichest
					r, Ovoid	source of
					snaped	cnioropnyll
					macroscop	used as
	1	1		1	ic colony	pnarmaceutic

					with trichomes.	al and cosmetics industry.
28	Bacillariophyceae	Pennales	Bacillariophyce ae	<i>Asterionella Hassall</i>	Frustules ingirdle heteropola r, boneshape d	Filtration of oils and syrups, toothpaste. used as an insecticide
29	Bacillariophyceae	Pennales	Bacillariophyce ae	Synedra	colonial, elongated needles shaped	used for formation of bio diesel.
30	Bacillariophyceae	Pennales	Bacillariophyce ae	Carticula cupsidata	Elongated and rectangula r colonial	Filtration of oils and syrups
31	Bacillariophyceae	Pennales	Bacillariophyce ae	Carticula ambigua	Large, elongated needle shaped.	Filtration of oils and syrups
32	Bacillariophyceae	Pennales	Bacillariophyce ae	Nitzschia sigmoidea	Spindle shapes	Filtration of oils and syrups
33	Bacillariophyceae	Pennales	Bacillariophyce ae	Cymbello cistula	Elongated large stick like shaped	
34	Bacillariophyceae	Pennales	Bacillariophyce ae	Navicula cryptocephala	Elongated in shape.The y can divided bilaterally	
35	Bacillariophyceae	Pennales	Bacillariophyce ae	Stauronesis onceps	Large, elongated needle shaped.	

ACKNOWLEDGEMENT: The author is thankful to Dr. Takhtsinh G. Gohil and Jennifer vinodbhai Parmar B.K.M Science College, Valsad for their guidance and support.

Diatoms : BACILLARIOPHYCEAE:(A) Aulocosiero thwaites; (B) Diatoma spp.;(C) Stauronrsis onceps; (D) Gyrosingma spp; (E) Navicula cryptocephala; (F) Pinnularia viridiforms.

(A) Rivularia; (B) Nostoc.; (C) Chlorococcum; (D) Chlorella; (E) Eugleana; (F) Spirogyra;(G)
Cylindrospermum; (H) Zygnem; (I) Volvox; (J) ;Oedogonium;(K) Pandorina spp.;(L) Oscillatoria;(M) Nitella;(N)
Chara;(O) Pediastrum;(P) Cladophora.

VI.CONCLUSION

This study will help to know the morphology of various Algae. This research work helps to Algae's Geographical distribution and Ecology of algae. This research work was carried out without harming other fauna and flora surrounding the research area. This study will help future researchers and biology students to know about morphology and ecology various algae. Collected information was used to inform the local community. The study will also help to know positive and negative effects of algae on water or environment.

VII.REFERENCES

- [1]. Lim R.K. and Kairesalo T.1997. Biodiversity and ecosystem process in freshwater sendiments, Ambio, 26(8).
- [2]. Das S.M. and Srivastava, V.K.1956. Quantitative studies on freshwater plankton and hydrobiological factors. Indian J. Ecology,10(6):40-55
- [3]. Anand N. and Hopper R.S.S. (1987) Blue green algae from rice fields in Kerala state, India. Hydrobiology, 144, , 226-240
- [4]. Anand N. (1989) Hand book of blue-green algae (Bishen Singh Mahendra Pal Singh, 23-A, Connaught Place, Dehra Dun, India, 1989).

- [5]. Biswas, K. 1949: Common fresh and brackish water algal flora of India and Burma, 15, Rec. Bot. Surv. India. 105.
- [6]. Biggs B.J.F., and Smith R.A. (2002) Taxonomic richness of stream benthic algae: Effects of flood disturbance and nutrients, Limnol. Oceanogr., 47(4), 2002, 1175–1186.
- [7]. College Botany (volume 2):Hirendra Chandra Gangulee,Asok Kar (1970)
- [8]. Desikachary T.V. (1958), Cyanophyta (I.C.A.R., New Delhi, 1959).
- [9]. G.W.Prescott, (1964) The fresh water algae (W.M.C. Brown Co, Publ. Dubuque, 1964).
- [10]. Janauer G. and Dokulil (2006) Biological monitoring of Rivers (John Wiley and Sons, Ltd, 2006).
- [11]. Jose J. (2008) An Investigation on the fresh water flora of Idukki district, doctoral diss., M.G. University Kottayam, Kerala, India.
- [12]. Kalipada biswas, (1929): "Algal flora of the Chilka lake, Asiatic society of Bengal", Vol: XI, No: 5, pp. 165-198.
- [13]. Kalipada biswas, (1934): "Observation on algal collections from khasia and Jaintia Hills, Asam, India", Sonderbdruck Band[] 74.1934.
- [14]. Krishnamurthy V. (2000) Algae of India neighboring countries I. Chlorophycota-Oxford and IBH Publishing Co. Pvt. Ltd.
- [15]. Munn M., Frey J., and Tesoriero A., (2010) The Influence of Nutrients and Physical Habitat in Regulating Algal Biomass in Agricultural Streams, Environmental Management, 45(3), 2010,603-615.
- [16]. Stevenson R.J. (1996), Algal ecology:
 Freshwater benthic ecosystem (Academic press.1996). Ushadevi K. and Panicker M.V.N. (1994) Species of the genus spirogyra from Kerala India, Bibliotheca Phycologica,1-124.

Cite this article as :

Bijubala A. Patel, Dilipkumar D. Patel, "Algal Flora of Dang District of Gujarat State India", International Journal of Scientific Research in Science and Technology (IJSRST), Online ISSN : 2395-602X, Print ISSN : 2395-6011, Volume 10 Issue 5, pp. 502-511, September-October 2023. Available at doi :

https://doi.org/10.32628/IJSRST52310566 Journal URL : https://ijsrst.com/IJSRST52310566