
Copyright © 2023 The Author(s): This is an open-access article distributed under the terms of the Creative

Commons Attribution 4.0 International License (CC BY-NC 4.0) which permits unrestricted use, distribution,

and reproduction in any medium for non-commercial use provided the original author and source are credited.

 International Journal of Scientific Research in Science and Technology

Available online at : www.ijsrst.com

Print ISSN: 2395-6011 | Online ISSN: 2395-602X doi : https://doi.org/10.32628/IJSRST

484

Resource Scheduling Approach in Cloud Testing as a Service

Using Deep Reinforcement Learning Algorithms
Prerna Jain1, Mr. Rohit Kumar Gupta2

1Research Scholar, Bharat Institute of Technology, Meerut, India
2Professor, Bharat Institute of Technology, Meerut, India

A R T I C L E I N F O

A B S T R A C T

Article History:

Accepted: 01 Sep 2023

Published: 10 Sep 2023

 Many organizations around the world use cloud computing Testing as

Service (Taas) for their services. Cloud computing is principally based on

the idea of on-demand delivery of computation, storage, applications, and

additional resources. It depends on delivering user services through

Internet connectivity. In addition, it uses a pay-as-you-go business design

to deliver user services. It offers some essential characteristics including

on-demand service, resource pooling, rapid elasticity, virtualization, and

measured services. There are various types of virtualization, such as full

virtualization, para-virtualization, emulation, OS virtualization, and

application virtualization. Resource scheduling in Taas is among the most

challenging jobs in resource allocation to mandatory tasks/jobs based on

the required quality of applications and projects. Because of the cloud

environment, uncertainty, and perhaps heterogeneity, resource allocation

cannot be addressed with prevailing policies. This situation remains a

significant concern for the majority of cloud providers, as they face

challenges in selecting the correct resource scheduling algorithm for a

particular workload. The authors use the emergent artificial intelligence

algorithms deep RM2, deep reinforcement learning, and deep

reinforcement learning for Taas cloud scheduling to resolve the issue of

resource scheduling in cloud Taas.

Keywords: DRL, Job Scheduling, Taas cloud, deep RM2

Publication Issue

Volume 10, Issue 5

September-October-2023

Page Number

484-493

I. INTRODUCTION

Cloud computing Testing as a Service (Taas) is an

emergent technology utilized by most organizations.

Cloud computing is principally based on the idea of

on-demand delivery of computation, storage,

applications, and various other resources. Instead of

purchasing, possessing, and maintaining physical data

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 10 | Issue 5

Prerna Jain et al Int J Sci Res Sci & Technol. September-October-2023, 10 (5) : 484-493

485

centres and servers, users can access technology

services, such as computing power, storage, and

databases, on an as-needed basis from a cloud provider

such as Amazon Web Services. However, the

development of cloud computing faces a number of

challenges including security and scheduling. Figure 1

shows a basic cloud architecture proposed by Madni

et al. [1] that includes three main layers: data centre,

virtual machine (VM), and individual. All hardware

and storage, along with the operating system, resides

in the info centre layer. In the VM layer, the cloud

administrator and automated systems can handle the

creation of various VMs with different operating

systems that are not the same as the base system. The

third layer provides for the submission of client jobs

and tasks to the cloud.

Figure 1: Open in figure viewerPowerPoint

A Taas cloud must be capable of effectively

scheduling [2-7] assets according to user requests. The

scheduling problem must address various user inputs,

such as deadlines, performance issues, execution costs,

transmission costs, energy efficiency, load balancing,

and makespan. Furthermore, it is necessary to

consider service level agreements (SLAs) with users

throughout the scheduling process. During the

execution process, there is a probability that a

resource will go offline or become invalid, or a delay

may exist because of network congestion or latency. A

complete or partial schedule could be required for

client satisfaction. Nevertheless, task dependency

must be considered. A good scheduler may be the one

that can adjust to environmentally friendly change

and cloud load. Furthermore, the scheduler must use

cloud assets efficiently and maintain superior quality

of services (QoSs). Artificial intelligence (AI) is an

emergent technology found in many applications

including military, transportation, and networks. AI

involves many techniques and algorithms, such as

case-based reasoning, rule-based systems, artificial

neural networks, fuzzy models, genetic algorithms,

cellular automata, multi-agent systems, swarm

intelligence, and reinforcement learning. One of the

essential algorithms that has substantially changed

neuroscientific AI is deep learning. Although deep

learning is not new, it has recently been reused in

different ways to solve many difficult problems.

Our paper was written for a deep understanding of

how to resolve the Taas scheduling problem.

Specifically, we utilize reinforcement learning to

resolve the Taas cloud scheduling problem by

introducing deep reinforcement learning for Taas

cloud (DRLTC) scheduling.

II. LITERATURE SURVEY

Herein, we have selected five scheduling algorithms

from the literature. The remainder of this paper

compares these with the previously mentioned

scheduling algorithms.

A. First come first serve scheduling algorithm

For random and backfill scheduling, Hamscher et al.

[1] discuss specific heuristic-based algorithms such as

the first come first serve (FCFS) algorithm. To

estimate and stimulate this algorithm in FCFS, tasks

are defined and executed in ‘their submission

requests’. In the event that the particular machines

are not currently empty, the scheduler must wait

until the start of the job. In random scheduling, the

resulting function for scheduling is determined

https://ietresearch.onlinelibrary.wiley.com/cms/asset/eb7c1c88-16f4-47f9-9b09-617a12ff854d/cit212041-fig-0001-m.jpg

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 10 | Issue 5

Prerna Jain et al Int J Sci Res Sci & Technol. September-October-2023, 10 (5) : 484-493

486

arbitrarily; because of this, scheduling is ‘non-

deterministic’. Additionally, in the unsystematic

strategy, there is no inclination for tasks. The backfill

algorithm may additionally be treated as ‘out-request

rendering of FCFS’, a plan to maintain a strategic

distance from unnecessary idle time due to long-term

jobs.

B. Max-min (maximum-minimum) algorithm

Max-min is a resource assignment and scheduling

algorithm used in cloud computing and grid-based

computing for makespan, costs and benefits in

environments with limited resource utilization. Bhoi

and Ramanuj [8] present an upgraded max-min task

scheduling algorithm in cloud computing in which

they consider normal or more noteworthy tasks as

opposed to consistently choosing and allotting

enormous assignments first as in the conventional

max-min scheduling algorithm, and they see a

generous decrease in makespan and successful load

adjustment when the outcomes are actualized (Mao et

al.).

[9] with Li et al. [10] sets max-min calculations for

task scheduling to accommodate the exact loads of a

flexible cloud. The stipulated algorithm secures a

work status surface to approximate the outstanding

burden of VMs and the uncertain implementation

time of enterprises. Simulation results show that the

max-min algorithm increases the use of assets and

decreases the time used for scheduled tasks. Wang

and Yu [11] propose a min-min modified high-

performance scheduling algorithm for task scheduling

to enhance organization of the cloud computing

framework. The min-min algorithm satisfies

maximum and complete throughput times for a

continuous task and then depicts essential scheduling

completed within a short timeframe. The resulting

computations are used for job scheduling in cloud

computing. Zhang with Xu [12] recommends a min-

min task scheduling algorithm dependent on QoSs

imperatives in cloud computing that compares

proposed computation resources or task estimates and

then fills customer requests. They thus demonstrate

that basic-QoS-min-min outperforms the min-min

algorithm in execution time and QoS fulfilment in

satisfying cloud computing needs. Tsai et al. [13]

suggest breeding techniques made up of minimum-

minimum, shortest job first (SJF), and longest job first

(LJF) algorithms to decrease the makespan in task

determination under an odd grid condition.

Simulation results verify that the suggested system is

superior in making changes for decreased makespan

time. Chen et al. [14] introduce cloud computing with

two novel scheduling algorithms to improve resource

utilization and meet customer needs. The loadbalance

improved min-min (LBIMM) and user priority aware

LBIMM (PA-LBIMM) algorithms depend on the min-

min algorithm. Simulation results show that both

LBIMM and PA-LBIMM algorithms exhibit

performance superior to that of the fundamental

minimum-minute algorithm for improving

consumption times and load adjustments and meeting

customer needs.

C. Round robin algorithm

Helmy with Dekdauk [15] introduces a burst round-

robin (RR), which presents relative offer scheduling

algorithms in attempts to consolidate scheduling

above that of the RR algorithm and support concise

task scheduling. Mohanty et al. [16] propose short

resting burst RR scheduling algorithms to engage

processors to use dynamic time quantum to create

forms with a brief outstanding burst in a RR approach.

Yaashuwanth with Ramesh [17] creates an algorithm

for scheduling that uses intelligent time slices for RR

planning tasks for continuous work frameworks.

Mostafa et al. [18] propose the discovery of better

(quantum) RR CPU scheduling algorithms when all

are stated in registered frameworks using number

programming. Yadav et al. [19] propose RR and SJF

with another calculation. From the investigation, the

results demonstrate that this mixture is superior to

unreserved RR. Panda with Bhoi [20] suggests

compelling RR algorithms using the min-max

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 10 | Issue 5

Prerna Jain et al Int J Sci Res Sci & Technol. September-October-2023, 10 (5) : 484-493

487

scattering ratio of residual CPU burst time. This

calculation outperforms RR as far as normal

turnaround time, normal holding time interval and

particular switch setting techniques. The weighted RR

is another closely drawn [21] introduction with the

goal of settling all recurring tasks to deactivate the

VM. The weighted RR algorithm was conceived from

the customary RR. The proposed RR designates

functions for assets using the RR style, although the

traditional RR account relies on the strength of

payment demand rather than the current stack of

VMs. Although constrained parameters are used in

the results test, the weighted RR is shown to exhibit

one of the best performances related to time in the

tested results.

D. Priority-based job scheduling algorithm

Li Yang, ChengShang Pan, Erhan zhang, Haiyan Liu

[22] propose a type of weight-appropriate scheduling

algorithm. It relies on the critical burglarize needs

class, which includes an external necessity line based

on the establishment of a class-based rated booking

count (CBWFQ). This algorithm overcomes the

drawbacks of traditional weight-appropriate

scheduling algorithms. This weight-scheduling

algorithm differentiates the administration of every

dynamic line based on the weight of each business

stream at the point when a new location shows the

classifier attributing jobs to different categories. At

that particular point, the cradle is checked for every

classification, and in the event that the cushion is not

overburdened, employment is kept away at that point

with the occupation usually removed. Each activity

enters an alternate virtual line. The weight, dispatch,

discard and ROB terms are the four standard

principles of this calculation. The fundamental

position favouring this calculation is that it introduces

the ransom rule as well as leaving the standard. Exams

are performed on NS-2 programming to reproduce the

SRPQ-CBWFQ algorithms. This new algorithm is

added to support executives and line booking and

ensures less distortion of continuous bus applications.

Additionally, it was thought to make a satisfactory

and better use of cushions. Transmission efficiency

has two exceptional points of interest in this

algorithm, throughput allocation and distortion

without reducibility. Chtourou, H. and Haouari, M.

[23] propose a two-step requirement standard-based

algorithm to solve the resource-constrained project

scheduling problem (RCPSP). These algorithms

introduce a two-order algorithm for strong resource-

bound enterprise scheduling. The initial stage

instructs the RCPSP to limit the makespan using a

rule-based approximation. The second phase is

expected to discover the most robust timetable that

does not exceed the limit determined in the first

phase. Both phases are considered as two phases. In

the single phase, every cycle consists of three stages:

1. Value must be provided by the chosen requirement

rule.

2. Unilateral choice of qualified practice is made

according to one's determined possibilities.

3. The chosen exercise is planned for assets.

In phase II, the same emphasis is given as was used in

phase I. Each cycle begins with the execution of

further iterations that allow the task makespan to be

fixed. Reverse restoration is performed to obtain the

most recent achievement time of each activity. This

above advance is made only if the makespan is not

more sizeable than the edge resolved in step I.

Agarwal, Dr and SaloniJain [24] in their work they

named CC, the generalized priority algorithm, as the

wrong scheme for a new algorithm. The calculations

were tested both ways, and RR algorithms were used

for the changing number of VMs and the remaining

functions that followed, and the CloudSense test

system was used. The results demonstrate that the

proposed algorithms were more productive than RR-

or FCFS-based algorithms. Pal, A. J. [25] has created a

modified prioritized deadline scheduling algorithm

(MPDSA) that proposes to use board algorithms for

productive employment execution with cutoff time

limits for client businesses. The MPDSA performs

tasks with the nearest cut-off time postponed in a

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 10 | Issue 5

Prerna Jain et al Int J Sci Res Sci & Technol. September-October-2023, 10 (5) : 484-493

488

cyclic mode using a dynamic time slot quantum. It

expects each activity to be characterized through its

process-id, cut-off time, and burst-time with arrival-

time. This amount of time is retrieved by estimating

the LCM of all consumed time. At that point,

businesses with the least amount of distortion are

chosen for execution. If the jobs are delayed at the

matching time, the FCFS calculation is prepared for

scheduling. Employees depend on premature

quantum, and if a business finishes its execution

prematurely, that activity is erased from the line. This

algorithm meets the requirements of the framework

and supports adaptability under heavy remaining

workloads.

E. Genetic algorithm

GE Junwei [22] has demonstrated a stable genetic

algorithm that considers task completion time, project

culmination, and cost as mandatory. One of the

problems in scheduling is to estimate the correct

property for the show functions. This dynamic

scheduling procedure performs poorly when

enterprises arrive together. For that reason, S.

Ravichandran with D. E. Naganathan [26] designed a

framework to avoid this issue, enabling the shown

tasks to be placed in a queue so the plan could be

revised and the tasks serialized. Thus, the scheduling

ends by assuming the primary assignment from the

queue, and an appeal is made to the property best

suited for GA use. The goal of this framework is to

increase the utilization of assets whilst reducing

implementation time.

R. Kaur with S. Kinger [27] has introduced a task

scheduling algorithm build correction genetic

algorithm (GA). They make use of another welfare

potential dependent to signify impressive qualities.

They assert that these algorithms are available to be

executed on both assignments with supply planning.

Z. Zheng et al. [28] present an algorithm relying on

GA to manage scheduling issues in a cloud computing

situation called the parallel-computing GA to

scientifically raise or substream cloud computing

scheduling issues. S. Singh [29] has given an in-depth

idea about GA by introducing some changes to the

task design for this cloud computing situation. This

started with a careful calculation for work scheduling

issues by adjusting the GA in which the introductory

populations are created to rapidly achieve ideal results

in the form of ‘pop-ups’ by way of max-min. V.V.

Kumar with S. Palaniswami [30] has presented an

investigation that focusses on expanding the

organization of task scheduling algorithms with

continuous cloud registration administration. In

addition, he introduced an algorithm using

turnaround time to account for the high need for

early-time work and the low need for premature birth

issues.

In this section, we review the newest Taas cloud

scheduling solutions. The authors of [31] proposed a

strategy for a task scheduling algorithm. They

proposed a concept predicated on load balancing in

cloud computing. The algorithm is founded on two

amounts, and the prospective algorithm not only met

the user's requirements but also fulfilled top-quality

resource utilization. In [32], the authors proposed an

algorithm for a cloud scheduling problem predicated

on a mixture of genetic and simulated annealing. The

algorithm considered different parameters such as the

QoS requirements for completion time, bandwidth,

cost, distance, and reliability of different type tasks. A

hieratical scheduling algorithm is proposed in [33]

where user SLAs are accomplished in minimum time.

The priority here was predicated on job deadlines

where completion time is approximated by the

algorithm predicated on available assets. The authors

of [34] proposed what is called the activity-based

costing algorithm. The primary idea is to assign

importance to each task combined with the cost.

Similarly, paper [35] presents a transaction-intensive

cost-constrained cloud workflow scheduling

algorithm. The algorithm considers both execution

cost and time as key parameters and attempts to

reduce the price of providing the work deadline. The

authors of [36] utilized the CloudSim simulator to

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 10 | Issue 5

Prerna Jain et al Int J Sci Res Sci & Technol. September-October-2023, 10 (5) : 484-493

489

implement a fresh VM load-balancing algorithm.

They made an effort to assign the very best VM for

mandatory tasks. The task in [37] also utilized the

CloudSim for cloud scheduling using the essential

algorithm OS for tasks such as priority scheduling, SJF,

and FCFS. Ant colony optimization can be used to

resolve the cloud scheduling problem [38]. The idea of

randomized optimization search, allocation of

incoming jobs to obtainable VMs, and positive

feedback leads to other assignments. In 2018, the

authors of [12] proposed a hybrid GA–particle swarm

optimization algorithm for cloud resource scheduling.

They consider a few critical parameters such as

makespan, cost, and load balancing. In 2017 and 2018,

a large number of algorithms were proposed to resolve

the cloud resource scheduling problem. In [9], the

authors proposed a heuristic approach that combines

the modified analytic hierarchy process, bandwidth

aware divisible scheduling + BAR optimization,

longest expected processing time pre-emption, and

divide-and-conquer solutions to perform task

scheduling and resource allocation. In [8], the authors

proposed what is called ‘crowd-funding’ whilst idle

resources are collected from a pool of cloud resources.

They then proposed a GA to allocate resources

predicated on the crowd-funding findings. In [10], the

authors proposed a PerfGreen as a powerful cloud

resource scheduling algorithm with the primary

objective of saving cloud energy. Therefore,

PerfGreen is an energy-aware application-placement

technique founded on a heuristic approach. In [11],

the same authors provided a quantitative analysis of

virtualization overheads for two hypervisor-based

(XEN, KVM) and two OS-based (LXC, Docker)

platforms. More algorithms and techniques

summarized from recent surveys and indicating the

state of the art are presented in [39, 40]. Both articles

show that the cloud scheduling problem needs further

investigation. Furthermore, they show that AI

techniques are actually a suitable solution. Among the

recent algorithms used for resource scheduling is the

DeepRM [14]. DeepRM tries to resolve the generic

resource scheduling problem using reinforcement

learning. We use a modified version of the DeepRM

to match the offline Taas cloud scheduling problem.

F. DEEP REINFORCEMENT LEARNING

Reinforcement learning, as demonstrated in Figure 2,

is founded on the concepts of agents, environment,

states, actions, and rewards. The agent is usually

accountable for taking actions. The actions are the

group of all possible moves the agent could make.

However, the agent must select from amongst a

couple possible actions. Additionally, there is what is

called a ‘discount factor’, which is multiplied by

another reward to reduce accumulated rewards based

on agent actions. The surroundings are the world

with borders that restrict the agent. The surroundings

inputs are the agent's current state and its own action.

It returns the agent reward and the state. The state

may be the immediate configuration that the agent

discovers or what is returned from the surroundings.

Reward is the feedback by which the success or

failure of an agent's actions is measured.

Figure 2: Open in figure viewerPowerPoint

Action–reward feedback loop of a generic

reinforcement learning model

Policy (π) is regarded as the strategy the agent follows

to determine its next action predicated on the current

state.

Value (V) is the expected return to the current long-

term state under Policy (π).

Q-value or action-value (Q) is similar to V except it

considers the existing action. It maps the state and

action to rewards.

Trajectory is just the sequence of states and actions

that influences the states.

Environment: Physical world in which the agent

operates.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 10 | Issue 5

Prerna Jain et al Int J Sci Res Sci & Technol. September-October-2023, 10 (5) : 484-493

490

State: Current situation of the agent.

Reward: Feedback from the environment.

Policy: Method to map agent's state to actions.

Value: Future reward that an agent receives by taking

an action in a particular state.

This is simply the sum of the reward function r over

enough time steps t. Additionally, x represents the

state at confirmed time step, a may be the state action,

and r may be the reward function for state x and

action a. In this instance, neural networks could

possibly be used as the agent that learns to map state–

action pairs to rewards. Convolutional neural

networks have already been found to identify agent

states in many applications. Certainly, the

performance of neural networks is founded on

choosing the best coefficients, or weights. In our

research, we follow the footsteps of DeepRM2 [15] in

designing deep reinforcement learning. The changes

made in DeepRM2 used the convolutional neural

network (CNN) structure shown in Table 1.

Table 1. DeepRM2 convolutional neural network

structure

Layer Name Output Size Deep RM2

Conv1 20 × 224 5 × 5,8,stride 1,relu

Pool1 10 × 112 2 × 2 avg pool, stride 2

Conv2 10 × 112 5 × 5,16,stride 1, relu

Pool2 5 × 56 2 × *2 avg pool, stride 2

PCI 1 × 1 72-days fc, tanh

FC2 1 × 1 11-days fc, softmax

The convolution layer is the core building block of

the CNN. It carries the main portion of the network's

computational load. This layer performs a dot product

between two matrices, where one matrix is the set of

learnable parameters otherwise known as a kernel,

and the other matrix is the restricted portion of the

receptive field.

The pooling layer replaces the output of the network

at certain locations by deriving the summary statistics

of nearby outputs. This helps to reduce the spatial size

of the representation, which reduces the required

computations and weights. The pooling operation is

processed on every slice of the representation

individually.

In cloud scheduling, there will be parameter

variations to address such as the required CPU,

memory, job deadline, and VM load balancing. We

follow the same approach utilized by DeepRM and

DeepRM2 [14]. However, DeepRM and DeepRM2

considered only CPU and memory parameters.

Consequently, DeepRM and DeepRM2 are altered to

match the Taas cloud scheduling problem. Let V

become the number of available VMs in the following

configurations:

• Ux-the VM CPU.

• Mx-the VM memory, and

• Sx-the VM storage.

However, these assets are considered obtainable in a

pool or cluster regardless of their VM or location.

Simultaneously, we assume the resource profile for

every job is j:

• Ui-job i required CPU.

• Mi-job i required memory.

• Ti-job deadline, and

• Ri-job expected running time.

III. RL REPRESENTATION

In the current section, the issue of cloud scheduling

[16-30, 41-44] is structured to match the

reinforcement learning representation, so the cloud

assets in our paper are usually formed as states in

distinct images as demonstrated in Figure 3. The

additional images, job slots, will be the needed jobs to

be scheduled and their resource requirements. Those

jobs are arranged according to their time stamps. As a

result, since it is definitely offline scheduling, jobs

could be sorted according to their deadlines. Ideally,

we assume that people have N jobs waiting to be

scheduled at a particular point in time. The output of

the scheduler can be the work Schedule, Postpone,

Missed, or Rejected. The ‘Postpone’ decision implies

that existing available resources usually do not satisfy

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 10 | Issue 5

Prerna Jain et al Int J Sci Res Sci & Technol. September-October-2023, 10 (5) : 484-493

491

the work requirements, whilst ‘Missed’ implies that

the scheduler will never be capable of satisfying the

work deadline. However, the ‘Reject' decision implies

that there is absolutely no way to fulfil the job

because of cloud resource limitations. In other words,

the available cloud resources usually do not fit the

requirements of the job.

Figure 3: Open in figure viewerPowerPoint

Jobs are assumed pre-emptive if employment was

started under the assumption of never stopping until

the job is completed. Therefore, the mandatory

resources will never be available till the work finishes.

The scheduler agent works on employment by job

scheduling. The job schedule could possibly be

parallelized if the number of scheduled jobs, N, is

minimized. However, we believe the reward function

works better with sequential scheduling. The reward

function is utilized to steer the scheduler towards

better scheduling predicated on the problem goals.

The reward function is recognized as the controller of

the convergence process.

IV. EVALUATION

In the Evaluation section, we generate a couple jobs

and cloud assets randomly; 80% of the produced data

are used for training, and the remaining 20% are used

for testing. We also implement four different

algorithms: SJF, LJF, tetries [16], and random. In SJF,

LJF, and tetries, there is absolutely no training phase.

For each algorithm, we gauge the discounted total

reward and common job slowdown. The discounted

total reward is approximately 150 points. Furthermore,

the common job slowdown is approximately 10% of

the number of jobs. In addition, available resources

are fixed through multiple trials. Figures 4 and 5 show

the obtained results and the discounted reward and

work slowdown values for the DRLTC scheduling

algorithm through the testing phase. The figures show

that the DRLTC appears to perform well, as the

reward is certainly high, and the slowdown is quite

low. Additionally, its performance is superior to that

of the other three algorithms. However, tetries

slowdown values appear to be high, even greater than

those for SJF and LJF.

FIGURE 4: Open in figure viewerPowerPoint

Total discounted reward

Figure 5: Open in figure viewerPowerPoint

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 10 | Issue 5

Prerna Jain et al Int J Sci Res Sci & Technol. September-October-2023, 10 (5) : 484-493

492

Average job slowdown. DRLTC, deep reinforcement

learning for Taas cloud; LJF, longest job first; SJF,

shortest job first.

Another performance measure is to judge the software

development life cycle algorithm against an algorithm

with two different extremes where the complete

cloud resources can be found in a single case, and the

number of jobs is either low or high.

We note that when few jobs are planned, DRLTC is

nearly the same as various other algorithms, whilst on

the other extreme, DRLTC performance is superior to

that of the other three algorithms—quite simply,

when small jobs arrive for scheduling, the

performance of the four schedulers is nearly the same

in terms of the number of delayed jobs. In addition,

when the number of jobs to be scheduled increases,

the number of delayed jobs, is higher using SJF, LJF,

and tetries compared with the types of delays using

DRLTC, as proven in Figure 6.

FIGURE 6: Open in figure viewerPower Point

(a). Average small load percentage in Taas. (b).

Average high load percentage in Taas. DRLTC, deep

reinforcement learning for Taas cloud; LJF, longest

job first; SJF, shortest job first; Taas, Testing as a

Service

V. CONCLUSION

We have introduced the deep reinforcement learning

approach for the offline Taas cloud resource

scheduling process. We extended the DeepRM and

DeepRM2 to be utilized with an increase in resource

configuration. With different sets of experiments, the

proposed technique showed performance comparable

to that of standard methods. This is regarded as a

proof of concept that deep reinforcement learning

could possibly be found in similar optimization

problems. Our potential investigation will be on the

use of reinforcement deep learning in other

optimization problems such as routing problems when

working with Taas clouds. We are presently doing

some work based on DeepRM, including modifying

neural networks, expanding usage situations, and

refining the convergence speed of training. However,

many further improvements can be made.

REFERENCE

1. Jain, V., & Chatterjee, J. M. (2020). Machine

learning with health care perspective. Cham:

Springer, 1-415.

2. Madni, S.H.H., et al.: Resource scheduling for

infrastructure as a service (IaaS) in cloud

computing: challenges and opportunities. J.

Netw. Comput. Appl. 68, 173–200 (2016).

https://doi.org/10.1016/j.jnca.2016.04.016

3. Carlo, M., Michela, M., Papuzzo, G.:

Probabilistic consolidation of virtual machines

in self-organizing cloud data centers. IEEE

Trans. Cloud Comput. 1(2) 215–228 (2013)

4. Mell, P., Grance, T.: The NIST Definition of

Cloud Computing. National Institute of

Standards and Technology. Report No.: Special

Publication. 800–145 [cited 18 Sep 2017]. (2011)

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 10 | Issue 5

Prerna Jain et al Int J Sci Res Sci & Technol. September-October-2023, 10 (5) : 484-493

493

5. Prodan, R., Simon, O.: A survey and taxonomy

of infrastructure as a service and web hosting

cloud providers. In: 10th IEEE/ACM

International Conference on Grid Computing,

Melbourne (2009)

6. Chard, K., et al.: Social cloud: cloud computing

in social networks. In: 3rd IEEE International

Conference on Cloud Computing, Miami (2010)

7. Zhang, N., et al.: A genetic algorithm-based task

scheduling for cloud resource crowd-funding

model. Int. J. Commun. Syst. 31(1), e3394

(2018).

8. Gawali, M.B., Shinde, S.K.: Task scheduling and

resource allocation in cloud computing using a

heuristic approach. J. Cloud. Comp. 7(4), 1–16

(2018).

9. Tesfatsion, S.K., Wadbro, E., Tordsson, J.:

PerfGreen: Performance and Energy Aware

Resource Provisioning for Heterogeneous

Clouds. In: 2018 IEEE International Conference

on Autonomic Computing (ICAC): Paper

presented at 15TH IEEE International

conference on Autonomic Computing (ICAC

2018), Trento, Italy, (pp. 81-90) (2018)

10. Tesfatsion, S.K., Klein, C., Tordsson, J.:

Virtualization techniques compared:

performance, resource, and power usage

overheads in clouds. In: 2018 ACM/SPEC

International Conference on Performance

Engineering (ICPE) (2018)

11. Manasrah, A.M., Ali, H.B.: Workflow

scheduling using hybrid GA-PSO algorithm in

cloud computing. Wireless Commun. Mobile

Comput. 25(3), 393–405 (2018)

12. Google: Deepmind. https://deepmind.com/

(2018). Accessed 27 July 2018

13. Mao, H., et al.: Resource management with

Deep reinforcement learning. In: 15th ACM

Workshop on Hot Topics in Networks, pp. 50–

56 (2016)

Cite this article as :

Prerna Jain, Mr. Rohit Kumar Gupta, "Resource

Scheduling Approach in Cloud Testing as a

Service Using Deep Reinforcement Learning

Algorithms", International Journal of Scientific

Research in Science and Technology (IJSRST),

Online ISSN : 2395-602X, Print ISSN : 2395-6011,

Volume 10 Issue 5, pp. 484-493, September-

October 2023.

Journal URL : https://ijsrst.com/IJSRST22956888

