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 Many organizations around the world use cloud computing Testing as 

Service (Taas) for their services. Cloud computing is principally based on 

the idea of on-demand delivery of computation, storage, applications, and 

additional resources. It depends on delivering user services through 

Internet connectivity. In addition, it uses a pay-as-you-go business design 

to deliver user services. It offers some essential characteristics including 

on-demand service, resource pooling, rapid elasticity, virtualization, and 

measured services. There are various types of virtualization, such as full 

virtualization, para-virtualization, emulation, OS virtualization, and 

application virtualization. Resource scheduling in Taas is among the most 

challenging jobs in resource allocation to mandatory tasks/jobs based on 

the required quality of applications and projects. Because of the cloud 

environment, uncertainty, and perhaps heterogeneity, resource allocation 

cannot be addressed with prevailing policies. This situation remains a 

significant concern for the majority of cloud providers, as they face 

challenges in selecting the correct resource scheduling algorithm for a 

particular workload. The authors use the emergent artificial intelligence 

algorithms deep RM2, deep reinforcement learning, and deep 

reinforcement learning for Taas cloud scheduling to resolve the issue of 

resource scheduling in cloud Taas. 
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I. INTRODUCTION 

 

Cloud computing Testing as a Service (Taas) is an 

emergent technology utilized by most organizations. 

Cloud computing is principally based on the idea of 

on-demand delivery of computation, storage, 

applications, and various other resources. Instead of 

purchasing, possessing, and maintaining physical data 
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centres and servers, users can access technology 

services, such as computing power, storage, and 

databases, on an as-needed basis from a cloud provider 

such as Amazon Web Services. However, the 

development of cloud computing faces a number of 

challenges including security and scheduling. Figure 1 

shows a basic cloud architecture proposed by Madni 

et al. [1] that includes three main layers: data centre, 

virtual machine (VM), and individual. All hardware 

and storage, along with the operating system, resides 

in the info centre layer. In the VM layer, the cloud 

administrator and automated systems can handle the 

creation of various VMs with different operating 

systems that are not the same as the base system. The 

third layer provides for the submission of client jobs 

and tasks to the cloud. 

 
Figure 1: Open in figure viewerPowerPoint 

 

A Taas cloud must be capable of effectively 

scheduling [2-7] assets according to user requests. The 

scheduling problem must address various user inputs, 

such as deadlines, performance issues, execution costs, 

transmission costs, energy efficiency, load balancing, 

and makespan. Furthermore, it is necessary to 

consider service level agreements (SLAs) with users 

throughout the scheduling process. During the 

execution process, there is a probability that a 

resource will go offline or become invalid, or a delay 

may exist because of network congestion or latency. A 

complete or partial schedule could be required for 

client satisfaction. Nevertheless, task dependency 

must be considered. A good scheduler may be the one 

that can adjust to environmentally friendly change 

and cloud load. Furthermore, the scheduler must use 

cloud assets efficiently and maintain superior quality 

of services (QoSs). Artificial intelligence (AI) is an 

emergent technology found in many applications 

including military, transportation, and networks. AI 

involves many techniques and algorithms, such as 

case-based reasoning, rule-based systems, artificial 

neural networks, fuzzy models, genetic algorithms, 

cellular automata, multi-agent systems, swarm 

intelligence, and reinforcement learning. One of the 

essential algorithms that has substantially changed 

neuroscientific AI is deep learning. Although deep 

learning is not new, it has recently been reused in 

different ways to solve many difficult problems. 

Our paper was written for a deep understanding of 

how to resolve the Taas scheduling problem. 

Specifically, we utilize reinforcement learning to 

resolve the Taas cloud scheduling problem by 

introducing deep reinforcement learning for Taas 

cloud (DRLTC) scheduling. 

 

II. LITERATURE SURVEY 

Herein, we have selected five scheduling algorithms 

from the literature. The remainder of this paper 

compares these with the previously mentioned 

scheduling algorithms. 

A. First come first serve scheduling algorithm 

For random and backfill scheduling, Hamscher et al. 

[1] discuss specific heuristic-based algorithms such as 

the first come first serve (FCFS) algorithm. To 

estimate and stimulate this algorithm in FCFS, tasks 

are defined and executed in ‘their submission 

requests’. In the event that the particular machines 

are not currently empty, the scheduler must wait 

until the start of the job. In random scheduling, the 

resulting function for scheduling is determined 

https://ietresearch.onlinelibrary.wiley.com/cms/asset/eb7c1c88-16f4-47f9-9b09-617a12ff854d/cit212041-fig-0001-m.jpg
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arbitrarily; because of this, scheduling is ‘non-

deterministic’. Additionally, in the unsystematic 

strategy, there is no inclination for tasks. The backfill 

algorithm may additionally be treated as ‘out-request 

rendering of FCFS’, a plan to maintain a strategic 

distance from unnecessary idle time due to long-term 

jobs. 

B. Max-min (maximum-minimum) algorithm 

Max-min is a resource assignment and scheduling 

algorithm used in cloud computing and grid-based 

computing for makespan, costs and benefits in 

environments with limited resource utilization. Bhoi 

and Ramanuj [8] present an upgraded max-min task 

scheduling algorithm in cloud computing in which 

they consider normal or more noteworthy tasks as 

opposed to consistently choosing and allotting 

enormous assignments first as in the conventional 

max-min scheduling algorithm, and they see a 

generous decrease in makespan and successful load 

adjustment when the outcomes are actualized (Mao et 

al.). 

[9] with Li et al. [10] sets max-min calculations for 

task scheduling to accommodate the exact loads of a 

flexible cloud. The stipulated algorithm secures a 

work status surface to approximate the outstanding 

burden of VMs and the uncertain implementation 

time of enterprises. Simulation results show that the 

max-min algorithm increases the use of assets and 

decreases the time used for scheduled tasks. Wang 

and Yu [11] propose a min-min modified high-

performance scheduling algorithm for task scheduling 

to enhance organization of the cloud computing 

framework. The min-min algorithm satisfies 

maximum and complete throughput times for a 

continuous task and then depicts essential scheduling 

completed within a short timeframe. The resulting 

computations are used for job scheduling in cloud 

computing. Zhang with Xu [12] recommends a min-

min task scheduling algorithm dependent on QoSs 

imperatives in cloud computing that compares 

proposed computation resources or task estimates and 

then fills customer requests. They thus demonstrate 

that basic-QoS-min-min outperforms the min-min 

algorithm in execution time and QoS fulfilment in 

satisfying cloud computing needs. Tsai et al. [13] 

suggest breeding techniques made up of minimum-

minimum, shortest job first (SJF), and longest job first 

(LJF) algorithms to decrease the makespan in task 

determination under an odd grid condition. 

Simulation results verify that the suggested system is 

superior in making changes for decreased makespan 

time. Chen et al. [14] introduce cloud computing with 

two novel scheduling algorithms to improve resource 

utilization and meet customer needs. The loadbalance 

improved min-min (LBIMM) and user priority aware 

LBIMM (PA-LBIMM) algorithms depend on the min-

min algorithm. Simulation results show that both 

LBIMM and PA-LBIMM algorithms exhibit 

performance superior to that of the fundamental 

minimum-minute algorithm for improving 

consumption times and load adjustments and meeting 

customer needs. 

C. Round robin algorithm 

Helmy with Dekdauk [15] introduces a burst round-

robin (RR), which presents relative offer scheduling 

algorithms in attempts to consolidate scheduling 

above that of the RR algorithm and support concise 

task scheduling. Mohanty et al. [16] propose short 

resting burst RR scheduling algorithms to engage 

processors to use dynamic time quantum to create 

forms with a brief outstanding burst in a RR approach. 

Yaashuwanth with Ramesh [17] creates an algorithm 

for scheduling that uses intelligent time slices for RR 

planning tasks for continuous work frameworks. 

Mostafa et al. [18] propose the discovery of better 

(quantum) RR CPU scheduling algorithms when all 

are stated in registered frameworks using number 

programming. Yadav et al. [19] propose RR and SJF 

with another calculation. From the investigation, the 

results demonstrate that this mixture is superior to 

unreserved RR. Panda with Bhoi [20] suggests 

compelling RR algorithms using the min-max 
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scattering ratio of residual CPU burst time. This 

calculation outperforms RR as far as normal 

turnaround time, normal holding time interval and 

particular switch setting techniques. The weighted RR 

is another closely drawn [21] introduction with the 

goal of settling all recurring tasks to deactivate the 

VM. The weighted RR algorithm was conceived from 

the customary RR. The proposed RR designates 

functions for assets using the RR style, although the 

traditional RR account relies on the strength of 

payment demand rather than the current stack of 

VMs. Although constrained parameters are used in 

the results test, the weighted RR is shown to exhibit 

one of the best performances related to time in the 

tested results. 

D. Priority-based job scheduling algorithm 

Li Yang, ChengShang Pan, Erhan zhang, Haiyan Liu 

[22] propose a type of weight-appropriate scheduling 

algorithm. It relies on the critical burglarize needs 

class, which includes an external necessity line based 

on the establishment of a class-based rated booking 

count (CBWFQ). This algorithm overcomes the 

drawbacks of traditional weight-appropriate 

scheduling algorithms. This weight-scheduling 

algorithm differentiates the administration of every 

dynamic line based on the weight of each business 

stream at the point when a new location shows the 

classifier attributing jobs to different categories. At 

that particular point, the cradle is checked for every 

classification, and in the event that the cushion is not 

overburdened, employment is kept away at that point 

with the occupation usually removed. Each activity 

enters an alternate virtual line. The weight, dispatch, 

discard and ROB terms are the four standard 

principles of this calculation. The fundamental 

position favouring this calculation is that it introduces 

the ransom rule as well as leaving the standard. Exams 

are performed on NS-2 programming to reproduce the 

SRPQ-CBWFQ algorithms. This new algorithm is 

added to support executives and line booking and 

ensures less distortion of continuous bus applications. 

Additionally, it was thought to make a satisfactory 

and better use of cushions. Transmission efficiency 

has two exceptional points of interest in this 

algorithm, throughput allocation and distortion 

without reducibility. Chtourou, H. and Haouari, M. 

[23] propose a two-step requirement standard-based 

algorithm to solve the resource-constrained project 

scheduling problem (RCPSP). These algorithms 

introduce a two-order algorithm for strong resource-

bound enterprise scheduling. The initial stage 

instructs the RCPSP to limit the makespan using a 

rule-based approximation. The second phase is 

expected to discover the most robust timetable that 

does not exceed the limit determined in the first 

phase. Both phases are considered as two phases. In 

the single phase, every cycle consists of three stages: 

1. Value must be provided by the chosen requirement 

rule.  

2. Unilateral choice of qualified practice is made 

according to one's determined possibilities.  

3. The chosen exercise is planned for assets.  

In phase II, the same emphasis is given as was used in 

phase I. Each cycle begins with the execution of 

further iterations that allow the task makespan to be 

fixed. Reverse restoration is performed to obtain the 

most recent achievement time of each activity. This 

above advance is made only if the makespan is not 

more sizeable than the edge resolved in step I. 

Agarwal, Dr and SaloniJain [24] in their work they 

named CC, the generalized priority algorithm, as the 

wrong scheme for a new algorithm. The calculations 

were tested both ways, and RR algorithms were used 

for the changing number of VMs and the remaining 

functions that followed, and the CloudSense test 

system was used. The results demonstrate that the 

proposed algorithms were more productive than RR- 

or FCFS-based algorithms. Pal, A. J. [25] has created a 

modified prioritized deadline scheduling algorithm 

(MPDSA) that proposes to use board algorithms for 

productive employment execution with cutoff time 

limits for client businesses. The MPDSA performs 

tasks with the nearest cut-off time postponed in a 



International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 10 |  Issue 5 

Prerna Jain et al Int J Sci Res Sci & Technol. September-October-2023, 10 (5) : 484-493 

 

 

 
488 

cyclic mode using a dynamic time slot quantum. It 

expects each activity to be characterized through its 

process-id, cut-off time, and burst-time with arrival-

time. This amount of time is retrieved by estimating 

the LCM of all consumed time. At that point, 

businesses with the least amount of distortion are 

chosen for execution. If the jobs are delayed at the 

matching time, the FCFS calculation is prepared for 

scheduling. Employees depend on premature 

quantum, and if a business finishes its execution 

prematurely, that activity is erased from the line. This 

algorithm meets the requirements of the framework 

and supports adaptability under heavy remaining 

workloads. 

E. Genetic algorithm 

GE Junwei [22] has demonstrated a stable genetic 

algorithm that considers task completion time, project 

culmination, and cost as mandatory. One of the 

problems in scheduling is to estimate the correct 

property for the show functions. This dynamic 

scheduling procedure performs poorly when 

enterprises arrive together. For that reason, S. 

Ravichandran with D. E. Naganathan [26] designed a 

framework to avoid this issue, enabling the shown 

tasks to be placed in a queue so the plan could be 

revised and the tasks serialized. Thus, the scheduling 

ends by assuming the primary assignment from the 

queue, and an appeal is made to the property best 

suited for GA use. The goal of this framework is to 

increase the utilization of assets whilst reducing 

implementation time. 

R. Kaur with S. Kinger [27] has introduced a task 

scheduling algorithm build correction genetic 

algorithm (GA). They make use of another welfare 

potential dependent to signify impressive qualities. 

They assert that these algorithms are available to be 

executed on both assignments with supply planning. 

Z. Zheng et al. [28] present an algorithm relying on 

GA to manage scheduling issues in a cloud computing 

situation called the parallel-computing GA to 

scientifically raise or substream cloud computing 

scheduling issues. S. Singh [29] has given an in-depth 

idea about GA by introducing some changes to the 

task design for this cloud computing situation. This 

started with a careful calculation for work scheduling 

issues by adjusting the GA in which the introductory 

populations are created to rapidly achieve ideal results 

in the form of ‘pop-ups’ by way of max-min. V.V. 

Kumar with S. Palaniswami [30] has presented an 

investigation that focusses on expanding the 

organization of task scheduling algorithms with 

continuous cloud registration administration. In 

addition, he introduced an algorithm using 

turnaround time to account for the high need for 

early-time work and the low need for premature birth 

issues. 

In this section, we review the newest Taas cloud 

scheduling solutions. The authors of [31] proposed a 

strategy for a task scheduling algorithm. They 

proposed a concept predicated on load balancing in 

cloud computing. The algorithm is founded on two 

amounts, and the prospective algorithm not only met 

the user's requirements but also fulfilled top-quality 

resource utilization. In [32], the authors proposed an 

algorithm for a cloud scheduling problem predicated 

on a mixture of genetic and simulated annealing. The 

algorithm considered different parameters such as the 

QoS requirements for completion time, bandwidth, 

cost, distance, and reliability of different type tasks. A 

hieratical scheduling algorithm is proposed in [33] 

where user SLAs are accomplished in minimum time. 

The priority here was predicated on job deadlines 

where completion time is approximated by the 

algorithm predicated on available assets. The authors 

of [34] proposed what is called the activity-based 

costing algorithm. The primary idea is to assign 

importance to each task combined with the cost. 

Similarly, paper [35] presents a transaction-intensive 

cost-constrained cloud workflow scheduling 

algorithm. The algorithm considers both execution 

cost and time as key parameters and attempts to 

reduce the price of providing the work deadline. The 

authors of [36] utilized the CloudSim simulator to 
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implement a fresh VM load-balancing algorithm. 

They made an effort to assign the very best VM for 

mandatory tasks. The task in [37] also utilized the 

CloudSim for cloud scheduling using the essential 

algorithm OS for tasks such as priority scheduling, SJF, 

and FCFS. Ant colony optimization can be used to 

resolve the cloud scheduling problem [38]. The idea of 

randomized optimization search, allocation of 

incoming jobs to obtainable VMs, and positive 

feedback leads to other assignments. In 2018, the 

authors of [12] proposed a hybrid GA–particle swarm 

optimization algorithm for cloud resource scheduling. 

They consider a few critical parameters such as 

makespan, cost, and load balancing. In 2017 and 2018, 

a large number of algorithms were proposed to resolve 

the cloud resource scheduling problem. In [9], the 

authors proposed a heuristic approach that combines 

the modified analytic hierarchy process, bandwidth 

aware divisible scheduling + BAR optimization, 

longest expected processing time pre-emption, and 

divide-and-conquer solutions to perform task 

scheduling and resource allocation. In [8], the authors 

proposed what is called ‘crowd-funding’ whilst idle 

resources are collected from a pool of cloud resources. 

They then proposed a GA to allocate resources 

predicated on the crowd-funding findings. In [10], the 

authors proposed a PerfGreen as a powerful cloud 

resource scheduling algorithm with the primary 

objective of saving cloud energy. Therefore, 

PerfGreen is an energy-aware application-placement 

technique founded on a heuristic approach. In [11], 

the same authors provided a quantitative analysis of 

virtualization overheads for two hypervisor-based 

(XEN, KVM) and two OS-based (LXC, Docker) 

platforms. More algorithms and techniques 

summarized from recent surveys and indicating the 

state of the art are presented in [39, 40]. Both articles 

show that the cloud scheduling problem needs further 

investigation. Furthermore, they show that AI 

techniques are actually a suitable solution. Among the 

recent algorithms used for resource scheduling is the 

DeepRM [14]. DeepRM tries to resolve the generic 

resource scheduling problem using reinforcement 

learning. We use a modified version of the DeepRM 

to match the offline Taas cloud scheduling problem. 

F. DEEP REINFORCEMENT LEARNING 

Reinforcement learning, as demonstrated in Figure 2, 

is founded on the concepts of agents, environment, 

states, actions, and rewards. The agent is usually 

accountable for taking actions. The actions are the 

group of all possible moves the agent could make. 

However, the agent must select from amongst a 

couple possible actions. Additionally, there is what is 

called a ‘discount factor’, which is multiplied by 

another reward to reduce accumulated rewards based 

on agent actions. The surroundings are the world 

with borders that restrict the agent. The surroundings 

inputs are the agent's current state and its own action. 

It returns the agent reward and the state. The state 

may be the immediate configuration that the agent 

discovers or what is returned from the surroundings. 

Reward is the feedback by which the success or 

failure of an agent's actions is measured. 

 
Figure 2: Open in figure viewerPowerPoint 

Action–reward feedback loop of a generic 

reinforcement learning model 

Policy (π) is regarded as the strategy the agent follows 

to determine its next action predicated on the current 

state. 

Value (V) is the expected return to the current long-

term state under Policy (π). 

Q-value or action-value (Q) is similar to V except it 

considers the existing action. It maps the state and 

action to rewards. 

Trajectory is just the sequence of states and actions 

that influences the states. 

Environment: Physical world in which the agent 

operates. 
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State: Current situation of the agent. 

Reward: Feedback from the environment. 

Policy: Method to map agent's state to actions. 

Value: Future reward that an agent receives by taking 

an action in a particular state. 

This is simply the sum of the reward function r over 

enough time steps t. Additionally, x represents the 

state at confirmed time step, a may be the state action, 

and r may be the reward function for state x and 

action a. In this instance, neural networks could 

possibly be used as the agent that learns to map state–

action pairs to rewards. Convolutional neural 

networks have already been found to identify agent 

states in many applications. Certainly, the 

performance of neural networks is founded on 

choosing the best coefficients, or weights. In our 

research, we follow the footsteps of DeepRM2 [15] in 

designing deep reinforcement learning. The changes 

made in DeepRM2 used the convolutional neural 

network (CNN) structure shown in Table 1. 

Table 1. DeepRM2 convolutional neural network 

structure 

Layer Name Output Size Deep RM2 

Conv1 20 × 224 5 × 5,8,stride 1,relu 

Pool1 10 × 112 2 × 2 avg pool, stride 2 

Conv2 10 × 112 5 × 5,16,stride 1, relu 

Pool2 5 × 56 2 × *2 avg pool, stride 2 

PCI 1 × 1 72-days fc, tanh 

FC2 1 × 1 11-days fc, softmax 

The convolution layer is the core building block of 

the CNN. It carries the main portion of the network's 

computational load. This layer performs a dot product 

between two matrices, where one matrix is the set of 

learnable parameters otherwise known as a kernel, 

and the other matrix is the restricted portion of the 

receptive field.  

The pooling layer replaces the output of the network 

at certain locations by deriving the summary statistics 

of nearby outputs. This helps to reduce the spatial size 

of the representation, which reduces the required 

computations and weights. The pooling operation is 

processed on every slice of the representation 

individually. 

In cloud scheduling, there will be parameter 

variations to address such as the required CPU, 

memory, job deadline, and VM load balancing. We 

follow the same approach utilized by DeepRM and 

DeepRM2 [14]. However, DeepRM and DeepRM2 

considered only CPU and memory parameters. 

Consequently, DeepRM and DeepRM2 are altered to 

match the Taas cloud scheduling problem. Let V 

become the number of available VMs in the following 

configurations: 

• Ux-the VM CPU. 

• Mx-the VM memory, and 

• Sx-the VM storage. 

However, these assets are considered obtainable in a 

pool or cluster regardless of their VM or location. 

Simultaneously, we assume the resource profile for 

every job is j: 

• Ui-job i required CPU. 

• Mi-job i required memory. 

• Ti-job deadline, and 

• Ri-job expected running time. 

 

III. RL REPRESENTATION 

 

In the current section, the issue of cloud scheduling 

[16-30, 41-44] is structured to match the 

reinforcement learning representation, so the cloud 

assets in our paper are usually formed as states in 

distinct images as demonstrated in Figure 3. The 

additional images, job slots, will be the needed jobs to 

be scheduled and their resource requirements. Those 

jobs are arranged according to their time stamps. As a 

result, since it is definitely offline scheduling, jobs 

could be sorted according to their deadlines. Ideally, 

we assume that people have N jobs waiting to be 

scheduled at a particular point in time. The output of 

the scheduler can be the work Schedule, Postpone, 

Missed, or Rejected. The ‘Postpone’ decision implies 

that existing available resources usually do not satisfy 
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the work requirements, whilst ‘Missed’ implies that 

the scheduler will never be capable of satisfying the 

work deadline. However, the ‘Reject' decision implies 

that there is absolutely no way to fulfil the job 

because of cloud resource limitations. In other words, 

the available cloud resources usually do not fit the 

requirements of the job. 

 
Figure 3: Open in figure viewerPowerPoint 

 

Jobs are assumed pre-emptive if employment was 

started under the assumption of never stopping until 

the job is completed. Therefore, the mandatory 

resources will never be available till the work finishes. 

The scheduler agent works on employment by job 

scheduling. The job schedule could possibly be 

parallelized if the number of scheduled jobs, N, is 

minimized. However, we believe the reward function 

works better with sequential scheduling. The reward 

function is utilized to steer the scheduler towards 

better scheduling predicated on the problem goals. 

The reward function is recognized as the controller of 

the convergence process. 

 

IV. EVALUATION 

 

In the Evaluation section, we generate a couple jobs 

and cloud assets randomly; 80% of the produced data 

are used for training, and the remaining 20% are used 

for testing. We also implement four different 

algorithms: SJF, LJF, tetries [16], and random. In SJF, 

LJF, and tetries, there is absolutely no training phase. 

For each algorithm, we gauge the discounted total 

reward and common job slowdown. The discounted 

total reward is approximately 150 points. Furthermore, 

the common job slowdown is approximately 10% of 

the number of jobs. In addition, available resources 

are fixed through multiple trials. Figures 4 and 5 show 

the obtained results and the discounted reward and 

work slowdown values for the DRLTC scheduling 

algorithm through the testing phase. The figures show 

that the DRLTC appears to perform well, as the 

reward is certainly high, and the slowdown is quite 

low. Additionally, its performance is superior to that 

of the other three algorithms. However, tetries 

slowdown values appear to be high, even greater than 

those for SJF and LJF. 

 
FIGURE 4: Open in figure viewerPowerPoint 

Total discounted reward 

 
Figure 5: Open in figure viewerPowerPoint 
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Average job slowdown. DRLTC, deep reinforcement 

learning for Taas cloud; LJF, longest job first; SJF, 

shortest job first. 

Another performance measure is to judge the software 

development life cycle algorithm against an algorithm 

with two different extremes where the complete 

cloud resources can be found in a single case, and the 

number of jobs is either low or high. 

We note that when few jobs are planned, DRLTC is 

nearly the same as various other algorithms, whilst on 

the other extreme, DRLTC performance is superior to 

that of the other three algorithms—quite simply, 

when small jobs arrive for scheduling, the 

performance of the four schedulers is nearly the same 

in terms of the number of delayed jobs. In addition, 

when the number of jobs to be scheduled increases, 

the number of delayed jobs, is higher using SJF, LJF, 

and tetries compared with the types of delays using 

DRLTC, as proven in Figure 6. 

 
FIGURE 6: Open in figure viewerPower Point 

 

(a). Average small load percentage in Taas. (b). 

Average high load percentage in Taas. DRLTC, deep 

reinforcement learning for Taas cloud; LJF, longest 

job first; SJF, shortest job first; Taas, Testing as a 

Service 

 

V. CONCLUSION 

 

We have introduced the deep reinforcement learning 

approach for the offline Taas cloud resource 

scheduling process. We extended the DeepRM and 

DeepRM2 to be utilized with an increase in resource 

configuration. With different sets of experiments, the 

proposed technique showed performance comparable 

to that of standard methods. This is regarded as a 

proof of concept that deep reinforcement learning 

could possibly be found in similar optimization 

problems. Our potential investigation will be on the 

use of reinforcement deep learning in other 

optimization problems such as routing problems when 

working with Taas clouds. We are presently doing 

some work based on DeepRM, including modifying 

neural networks, expanding usage situations, and 

refining the convergence speed of training. However, 

many further improvements can be made. 
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