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 This study aims to evaluate effect of noise on the robustness of semantic 

segmentation models for Magnetic Resonance Imaging (MRI) head images 

with tumor. We implemented the MobileNetV2+U-Net architectural model. 

We tested the segmentation model with Gaussian and Poisson noises in 

various levels. The addition of noise was performed five iterations with a 

variance of 0.01 each iteration. We carried out evaluations by examining the 

segmentation results, loss function values, accuracy and dice score. Based on 

the results, increase in noise affects model performance. Evaluation using loss 

function shows that graph instability is influenced by the noise level. The 

accuracy results on the highest and lowest validation data were 99.47% and 

98.99% for Gaussian noise and 99.64% and 99.5% for Poisson noise. Apart 

from that, the highest and lowest dice scores were 82.80% and 69.18% for 

Gaussian noise and 87.83% and 83.10% for Poisson noise. We recommend 

training the segmentation model using noisy data so that the model can adapt 

to noisy images. 
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I. INTRODUCTION 

 

Semantic segmentation is an algorithm technique 

based on the Deep Learning (DL) which is applied in 

computer vision. The advancement of this technique 

raises the ability to carry out classification at pixel 

level [1]. This algorithm has the ability to group parts 

of the same image by entering labels into the same 

object class [2]. The aim of semantic segmentation is 

to obtain smooth infers that are useful for predicting 

labels by assigning a class label that corresponds to the 

object or region in each image pixel [3]. Several 

architectural models have been successful in 

presenting segmentation semantically, including Fully 

Convolutional Network (FCN) [4], U-Net [5], SegNet 

[6], and U-Net++ [7]. 

 

U-Net is a semantic segmentation architectural model 

that is successful in segmenting biomedical images. 

Ronneberger et al.  proposed this architectural model 

based on an encoder-decoder structure [5]. The main 

feature of U-Net is that it has a symmetrical structure 

model and a skip connection between the encoder and 

decoder. The function of this task is to combine low-

level and high-level features to preserve image details 

and help to produce an accurate segmentation [8]. 
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Segmentation using DL requires large data for training, 

persistent labelling, and good image quality. When 

the training process is performed, it is noted that noise 

is important for obtaining good image quality. The 

presence of noise can affect segmentation model 

training and can greatly influenced by poor labelling 

[9]. Disturbances in the training process can affect 

decision making by the model [10]. 

 

Techniques for reducing the effect of noise can be 

divided into two categories, namely: identifying noisy 

data and filtering the data to train the model, and 

training the model directly using noisy data so that 

the model is adapt to noisy data [11]. To the best of 

our knowledge, there is still little discussion regarding 

the effect of noise on the stability of segmentation 

models. Therefore, this study aims to examine the 

effect of noise on training architectural semantic 

segmentation models for Magnetic Resonance Imaging 

(MRI) head images containing tumor. 

 

II. METHODS AND MATERIAL 

 

A. Datasets 

We used a public dataset of 330 images obtained from 

kaggle [12] and figshare [13]. A sample of the dataset 

used in this study is depicted in Figure 1. This dataset 

contains information on a collection of medical 

images using MRI modality with a diagnosis of brain 

tumor. The anatomical sections contained in the 

dataset are axial with a matrix size of 512 × 512 pixels, 

and also have -jpg and -mat extensions. We selected 

the data with the following criteria: head anatomy 

with clear tumor edges in the axial plane. This 

criterion is applied so that we obtain labels that tend 

to be consistent. 

 

B. Model training 

Training was carried out using a computer with a 

specification of Intel i7-6700HQ processor, Nvidia 

GeForce GTX 960M graphics card, and 16 GB memory. 

To run the DL platform and image processing, we 

used Python 3. The main library used in building this 

architectural model was Tensorflow-gpu 2.8. 

 

C. Setup datasets 

The purpose of determining setup datasets is to obtain 

consistent image conditions and lead to a more in-

depth evaluation. We modified the images that have 

some artifact in the background. This process will 

improve the labelling performance in the training 

stage. The image background was uniformed to black 

(R:0, B:0, G:0). This image improvement was carried 

out using Adobe Photoshop. Meanwhile, to determine 

labels, we used the labelme framework [14]. 

Next, Gaussian and Poisson noise at a variance level of 

0.01 were added to the image. The addition of noise 

was carried out in stages over five iterations. Hence, 

the noise level increased with each iteration. We used 

the scikit-image library to generate the noise. We also 

determined the distribution of the dataset in the 

proportion of 80:10:10 for training, validation and 

testing, respectively. Meanwhile, the hyperparameter 

design used was batch size 2, epoch 100, and Adam 

optimizer. 

 

D. Model architecture 

The model architecture used in this study was the 

MobileNetV2+U-Net. This model is based on the U-

Net architectural model [5]. This model has a 

symmetrical "U" shaped structure consisting of an 

encoder and decoder. An important part in this model 

architecture is the presence of a skip connection 

between the two parts of the encoder and decoder. 

This section has a function to transmit low level 

features to order local information [15]. This section is 

useful in recovering unclear object details and 

functions to produce more detailed segmentation 

masks on complex backgrounds [16]. On the other 

hand, the encoder applied in developing this model 

was MobileNetV2 which has the advantage of the few 

parameters obtained. The trained model can help to 
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speed up the training process, and the trained encoder 

can help the model achieve better performance [17]. 

The architectural scheme that we developed adopted 

the model developed by [18], illustrated in Figure 2. 

 
Figure 1. Sample of image dataset. 

 
Figure 2. MobileNetV2+U-Net architecture model. 

E. Matrix evaluation 

The model performance was evaluated by observing 

the loss function, accuracy, and dice score from 

training and validation data. The loss function is a 

value that functions to calculate prediction 

uncertainty based on how much the prediction varies 

from the actual value. This function is the sum of the 

errors made for each sample in the training and 

validation dataset. Accuracy is a parameter to measure 

the performance of a classification model. This 

method is used to calculate predictions. In general, 

this value is presented in percentage units. The dice 

score is a parameter for measuring image similarity 

between ground truth images and images predicted by 

the model. This function can be calculated using 

Equation (1). 

 

𝐷𝐶𝑆 =
2𝑇𝑂

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

=
2|𝑋 ∩ 𝑌|

|𝑋| + |𝑌|
 

(1) 
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where |X ∩ Y| represents an element between sets X 

and Y, |X| represents the number of elements in sets X, 

and |Y| represents the number of elements in set Y. 

 

III. RESULTS AND DISCUSSION 

 

A. Segmentation results 

Figures 3 and 4 show the segmentation results of the 

model we developed for Gaussian and Poisson noises, 

respectively. T1 and T2 are examples of segmentation 

with training data input, while V1 and V2 are 

examples of segmentation with validation data input. 

In general, the segmentation results show correct 

segmentation for most cases. Several segmentation 

discrepancies were observed in V2 with Gaussian 

noise level 2, 3, and 4 (Figure 3). The discrepancies in 

the prediction results were influenced by the noise 

level, where the higher the noise level used, the 

farther the prediction results obtained were from the 

ground truth image. In Poisson noise, segmentation 

results generally show correct segmentation at all 

noise levels (Figure 4). 

 

B. Loss function 

Figure 5 and 6 display the loss function graphs for 

Gaussian and Poisson noises, respectively. It can be 

observed that for both types of noise, the higher noise 

level results in the more unstable the loss function. 

These results show that noise affects training 

performance. Higher noise makes it more challenging 

for the model to extract the features and recognize it 

into a correct category [19]. 

 

C. Accuracy 

Tables 1 and 2 present the results of evaluating the 

accuracy of the developed model for Gaussian and 

Poisson noises. In general, accuracy for both noises is 

close to 100%, with the majority of values above 99%. 

However, the noise level is considered to still affect 

model accuracy. Adding noise at level 1 reduces the 

accuracy compared to without noise. However, for the 

Gaussian noise, the accuracy increases at level 3 and 

decreases gradually until level 5. Meanwhile, at the 

Poisson noise, the accuracy increased at level 2, 

decreases at levels 3 and 4, then increased at level 5. 

 

The higher noise given to the training data lead to the 

lower the accuracy [20]. This was also reported by 

Jang et al. (2021) who used Deep Neural Networks 

(DNNs) for object classification to develop a visual 

system model. Similarly, our model shows a decrease 

in trend with noise level 1 to level 5, except at 

Gaussian noise level 2. 

 
Figure 3. Segmentation results on images with Gaussian noise. 
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Figure 4. Segmentation results on images with Poisson noise 
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Figure 5. Loss function for image without and with Gaussian noise. (a) without noise, Gaussian noise level: (b) 1, 

(c) 2, (d) 3, (e) 4, and (f) 5. 

 

Table 1. Accuracy results based on training. 

Accuracy 
Without 

noise 
Level 1 Level 2 Level 3 Level 4 Level 5 

Gaussian 99.96% 99.94% 99.78% 99.90% 99.82% 99.78% 

Poisson 99.96% 99.95% 99.97% 99.93% 99.91% 99.96% 

 

Table 2. Accuracy results based on validation. 

Accuracy 
Without 

noise 
Level 1 Level 2 Level 3 Level 4 Level 5 

Gaussian 99.62% 99.47% 99.08% 99.14% 99.14% 98.99% 

Poisson 99.62% 99.64% 99.61% 99.5% 99.54% 99.57% 
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Figure 6. Loss function for image without and with Poisson noise. (a) without noise, Poisson noise level: (b) 1, 

(c) 2, (d) 3, (e) 4, and (f) 5. 

 

D. Dice score 

Dice score was calculated from the similarity of the 

ground truth image with the predicted image. The 

dice score was determined by taking into account 

both training data and validation data. Tables 3 and 4 

present the dice scores for both types of noise. 

The dice score results for the training and validation 

datasets show a decrease with each increasing noise 

level. However, at Gaussian noise level 2, the score is 

decreased drastically, then rises again at level 3, then 

decreases gradually at levels 4 and 5. Meanwhile, for 

Poisson noise, the score increases at level 2 in the 

training data, but decreases in validation. The score 

increases again at levels 4 and 5 for training and 

validation data. 

Table 3. Dice score based on training data. 

Dice score 
Without 

noise 
Level 1 Level 2 Level 3 Level 4 Level 5 

Gaussian 98.71 % 97.75 % 79.19 % 95.29 % 91.59 % 89.65 % 

Poisson 98.71 % 98.71 % 98.90 % 95.69 % 96.29 % 98.49 % 
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Table 4. Dice score based on validation data. 

Dice score 
Without 

noise 
Level 1 Level 2 Level 3 Level 4 Level 5 

Gaussian 88.03 % 82.80 % 69.18 % 78.87 % 75.14 % 73.10 % 

Poisson 88.03 % 87.83 % 86.03 % 83.10 % 83.74 % 85.85 % 

 

The dice score decreases as the noise level increases 

[22]. However, at a certain noise level, the dice score 

can increase. This phenomenon can be called an 

anomalous condition. In this study, an anomalous 

condition is observed when adding level 2 Gaussian 

noise, where the score decreases and increases again 

at level 3, then decreases gradually up to level 5. An 

anomaly was also reported by Kascenas et al. (2022) 

[23] when providing denoising autoencoder (DAE) 

noise (16 × 16 noise), which experienced an increase 

in dice score compared to giving noise at the DAE 

level (8 × 8 noise). 

 

IV. CONCLUSION 

 

In conclusion, noise affects the segmentation results, 

loss function, accuracy, and dice score of a semantic 

segmentation model. Segmentation results show 

correct predictions in most cases, both for Gaussian 

and Poisson noises. Evaluation using loss function 

shows that graph instability is influenced by the noise 

level. Accuracy results from validation data with 

Gaussian and Poisson noise were respectively 

obtained 99.47, 99.08, 99.14, 99.14, 98.99% and 99.64, 

99.61, 99.5, 99.54, and 99.57%. Meanwhile, 

evaluation using dice scores for Gaussian and Poisson 

noise respectively obtained 82.80, 69.18, 78.87, 75.14, 

and 73.10% and 87.83, 86.03, 83.10, 83.74, and 

85.85%. We recommend to use noisy data in the 

training stage so that the model can adapt to noisy 

images. 
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