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 Predictive maintenance is critical to modern industrial operations, 

preventing unexpected equipment failures and minimizing downtime. 

Existing methods often encounter challenges related to data preprocessing, 

missing data imputation, and feature selection. This paper presents "AER-

HYBRITECH," a novel approach that addresses these challenges and 

enhances the predictive maintenance process. Traditional methods 

overlook the intricate relationships within the data, resulting in 

suboptimal predictive performance. To bridge this gap, the proposed AER-

HYBRITECH algorithm is introduced.  

AER-HYBRITECH stands out in several ways. Firstly, it utilizes a hybrid 

encoding technique that converts categorical data into a more informative 

numerical representation by incorporating the average values of label-

encoded data and its frequency, leading to improved feature utilization. 

Furthermore, it introduces the AER-MDI (Averaging Ensemble 

Regression-based Missing Data Imputation) technique, which combines 

M5P, REPTree, and linear regression models to impute missing data, 

ensuring a more complete dataset. The algorithm also implements Min-

Max normalization to scale numeric features, making them compatible for 

further analysis. One of the key innovations of AER-HYBRITECH is its 

enhanced hybrid feature selection (EHFS) approach. 

The AER-HYBRITECH algorithm transforms and preprocesses the data 

and ensures that predictive maintenance models are built on a solid 

foundation, resulting in more accurate predictions and reduced 

maintenance costs. 
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I. INTRODUCTION 

 

Predictive maintenance, a vital  component of 

modern industrial operations, is pivotal in preventing 

unexpected equipment failures, optimizing 

maintenance schedules, and reducing downtime [1]. 

By harnessing data-driven approaches, predictive 

maintenance aims to shift from reactive, costly, and 

often unscheduled maintenance practices to proactive 

and predictive strategies [2]. This transition ensures 

the longevity of critical industrial assets and leads to 

substantial cost savings and increased operational 

efficiency [3]. 

 

In recent years, machine learning techniques have 

become a potent asset in predictive maintenance, 

enabling the creation of models capable of forecasting 

equipment failures and suggesting maintenance 

actions using historical and real-time data [4]. 

Nevertheless, several challenges afflict existing 

methodologies [5, 6]. These encompass data 

preprocessing, which handles categorical data, 

addresses missing values, and selects pertinent 

features. Additionally, missing data imputation 

remains critical for maintaining data completeness, 

where current techniques may fall short. Optimal 

feature selection is another crucial aspect for accurate 

predictions in predictive maintenance, where 

traditional approaches often lack sophistication. 

Consequently, these challenges contribute to 

suboptimal predictive performance, highlighting the 

need for improvement in this field. 

 

To address these limitations, this paper introduces 

"AER-HYBRITECH," a novel approach specifically 

designed for predictive maintenance. AER-

HYBRITECH is developed to tackle the challenges of 

pre-processing, missing data imputation, and feature 

selection that has hindered the accuracy and 

practicality of predictive maintenance models. 

 

AER-HYBRITECH stands out with several 

groundbreaking features. It employs hybrid encoding, 

a unique technique that efficiently transforms 

categorical data into a more informative numerical 

format by considering label-encoded values and their 

frequencies, enhancing feature utilization and 

comprehension. AER-HYBRITECH introduces the 

AER-MDI (Averaging Ensemble Regression-based 

Missing Data Imputation) technique, which robustly 

combines various regression models (M5P, REPTree, 

and Linear Regression) to impute missing data, 

ensuring data completeness. Additionally, it 

incorporates an enhanced hybrid feature selection 

(EHFS) strategy that systematically identifies the most 

informative features by combining ReliefF, 

correlation analysis, and wrapper feature selection. 

This approach not only promotes model 

interpretability but also enhances predictive accuracy. 

This paper aims to comprehensively explore AER-

HYBRITECH, detailing its application and impact on 

predictive maintenance. The key contributions of this 

paper encompass introducing and elucidating the 

AER-HYBRITECH algorithm, its methodologies, and 

its advantages compared to existing techniques. 

Furthermore, it presents experimental results that 

showcase the effectiveness of AER-HYBRITECH, 

with a particular focus on its enhanced predictive 

performance within a real-world predictive 

maintenance dataset. 

 

The primary area of focus in this research lies at the 

dynamic crossroads of predictive maintenance, 

machine learning, and data preprocessing. It 

represents an important junction between these 

interrelated domains, with the overarching goal of 

tackling real-world challenges that significantly 

impact the accuracy and efficiency of predictive 

maintenance models. By harnessing the power of 

machine learning and innovative data preprocessing 

techniques, this work endeavours to enhance our 

understanding of predictive maintenance processes 

and ultimately optimize the performance of 
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maintenance models in practical, industrial settings. 

This interdisciplinary exploration is aimed at pushing 

the boundaries of predictive maintenance and forging 

a more robust and reliable connection between the 

diverse fields of study involved. 

 

The remainder of this paper is organized as follows: 

Section 2 provides a literature review, offering 

insights into the existing techniques and their 

limitations. Section 3 delves into the methodology of 

AER-HYBRITECH, explaining its key components. 

Section 4 presents the experimental setup and results, 

demonstrating the enhanced predictive performance 

of AER-HYBRITECH. Section 5 concludes the paper, 

summarizing the key findings and contributions. 

 

II. RELATED WORK 

 

Predictive maintenance has witnessed significant 

research endeavours over the years, leveraging 

various techniques to enhance the reliability and 

efficiency of industrial operations. This section 

reviews existing works in the field and identifies 

research gaps that necessitate the development of the 

AER-HYBRITECH algorithm. 

 

Hung et al. [7] discussed an ensemble-learning 

algorithm developed to improve predictive 

maintenance in the manufacturing process. They 

recognized that the efficiency and reliability of 

manufacturing systems largely depend on timely 

maintenance. The research aimed to enhance 

predictive maintenance techniques, which play a 

crucial role in reducing downtime and increasing the 

overall reliability of manufacturing systems. By using 

ensemble learning, the authors likely combined 

multiple predictive models to improve the accuracy 

and efficiency of maintenance predictions. It can 

result in cost savings and increased productivity for 

manufacturing companies. 

 

Lee et al. [8] introduced the "Semi-GAN" method, a 

novel approach for handling missing data imputation 

in the semiconductor industry. Semiconductor 

manufacturing is highly sensitive to data integrity, 

and missing data can disrupt the process and lead to 

product defects. The authors used Generative 

Adversarial Networks (GANs), a powerful deep 

learning technique, to fill in the missing data and 

improve data completeness and reliability. The "Semi-

GAN" approach likely involved generating synthetic 

data to replace the missing values, ensuring that 

semiconductor manufacturing processes are more 

robust and less susceptible to data gaps. 

 

Gao et al. [9] delved into using graph neural networks 

for imputing missing pavement performance data, 

primarily focusing on transportation research. 

Pavement performance is vital for road safety and 

infrastructure planning. The authors aimed to 

enhance the quality and consistency of pavement 

performance data by leveraging graph neural 

networks. Graph neural networks are well-suited for 

modelling relationships between data points, making 

them suitable for handling missing data in 

transportation research. The research likely resulted 

in more accurate and complete pavement 

performance data, crucial for infrastructure 

maintenance and planning. 

 

Liu et al. [10] concentrated on imputing missing 

values in industrial Internet of Things (IoT) sensor 

data. IoT sensor data is often noisy and incomplete, 

hindering decision-making in industrial processes. 

This research aimed to improve the quality and 

reliability of sensor data by addressing substantial data 

gaps. By developing robust imputation techniques, the 

authors likely enabled industrial organizations to 

make more informed decisions, enhance process 

control, and reduce the risks associated with 

incomplete sensor data. 
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Mir et al. [11] presented an improved imputation 

method for enhancing the accuracy of predictions 

derived from radon time series data. Radon is a 

naturally occurring radioactive gas with health and 

safety implications. The authors recognized that 

accurate predictions based on radon data are critical 

for public health and safety. The research focused on 

improving the quality and reliability of radon-related 

time series datasets, enabling more precise and timely 

predictions to mitigate potential risks associated with 

radon exposure. 

 

El-Hasnony et al. [12] discussed an enhanced feature 

selection model for big data analytics. In the era of big 

data, selecting the most relevant features for analysis 

is crucial to avoid computational complexity and 

improve the accuracy of predictions. The authors' 

work aimed to enhance the efficiency and 

effectiveness of feature selection processes. Employing 

improved feature selection techniques contributed to 

better data analysis and pattern recognition in large 

datasets, allowing organizations to extract valuable 

insights from their data more effectively. 

 

Shafiq et al. [13] explored identifying malicious traffic 

within the Internet of Things (IoT) context using 

wrapper-based feature selection mechanisms. With 

the proliferation of IoT devices, the security of these 

networks is paramount. The authors addressed 

security aspects by enhancing the detection of 

malicious activities. Wrapper-based feature selection 

methods likely allowed them to select the most 

relevant features for identifying IoT network threats, 

thus improving the overall security of IoT ecosystems. 

Assagaf et al. [14] investigated the application of 

Support Vector Machines (SVM) for predictive 

machinery maintenance. Predictive maintenance is 

crucial for minimizing downtime and reducing 

maintenance costs. The authors focused on leveraging 

SVM, a machine learning algorithm, to enhance the 

accuracy and effectiveness of machinery maintenance. 

They likely provided a robust predictive maintenance 

solution using SVM, helping industries optimize 

machinery reliability and minimize operational 

disruptions. 

 

Kong et al. [15] introduced a simplified approach for 

data imputation in incomplete soft sets, emphasizing 

decision-making processes. Incomplete data can 

hinder effective decision-making. The authors 

addressed this challenge by simplifying the process of 

filling in missing data within soft sets, a mathematical 

framework used in decision support systems. Their 

research likely made it easier for decision-makers to 

work with incomplete data, leading to better-

informed and more reliable decisions. 

 

Chen et al. [16] designed a hybrid equipment-failure 

diagnosis mechanism to deal with mixed-type data 

and limited failure samples. Accurate equipment 

failure diagnosis is crucial for preventing operational 

disruptions. The authors aimed to enhance the 

accuracy and effectiveness of equipment failure 

diagnosis, particularly when data is scarce and consists 

of different data types. Their hybrid mechanism likely 

combined different approaches to provide more 

reliable and robust equipment failure diagnosis 

solutions, thereby improving equipment reliability 

and performance. 

 

The existing works in predictive maintenance 

predominantly focus on specific aspects of the 

problem, such as missing data imputation, feature 

selection, or machine learning algorithms. While 

these contributions have advanced the field, they 

often fail to provide a comprehensive solution to the 

multifaceted challenges faced by predictive 

maintenance practitioners. 

 

AER-HYBRITECH bridges this research gap by 

offering a holistic approach that addresses data 

preprocessing, missing data imputation, and feature 

selection in a unified framework. This algorithm 

leverages hybrid encoding to handle categorical data 
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effectively and employs AER-MDI for robust missing 

data imputation. Additionally, it implements 

enhanced hybrid feature selection (EHFS) to identify 

the most informative features. By doing so, AER-

HYBRITECH enhances predictive performance, 

making it a versatile and practical tool for predictive 

maintenance in various industrial contexts. 

 

III. METHODOLOGY OF AER-HYBRITECH 

 

AER-HYBRITECH is an innovative algorithm 

developed to address the multifaceted challenges of 

predictive maintenance in industrial operations. It is a 

comprehensive solution that unifies various aspects of 

data preprocessing, missing data imputation, and 

feature selection, ultimately enhancing the predictive 

performance of maintenance models. Figure 1 shows 

the system architecture of the AER-HYBRITECH 

algorithm. 

 
Figure 1 : System Architecture of AER-HYBRITECH 

algorithm 

 

AER-HYBRITECH initiates the predictive 

maintenance journey by loading the AI4I 2020 dataset. 

It starts with a meticulous data preparation and 

preprocessing phase. Unique identifiers (UID) and 

product ID features are eliminated to enhance data 

relevance. Duplicate records are systematically 

removed to ensure the dataset contains unique and 

pertinent information. This initial phase sets the stage 

for further analysis and optimization. 

 

One of the core strengths of AER-HYBRITECH is its 

innovative approach to handling categorical data. The 

algorithm employs a hybrid encoding technique that 

breathes new life into categorical features. This 

transformation comprises several critical aspects: label 

encoding to numeric labels, computation of category 

frequencies, calculation of average values for both 

encoded labels and frequencies, and replacement of 

label-encoded values with their respective averages. 

This procedure empowers predictive maintenance 

models with a more informative representation of 

categorical data, thus enhancing feature utilization. 

Furthermore, AER-HYBRITECH addresses the critical 

issue of missing data through the AER-MDI 

(Averaging Ensemble Regression-based Missing Data 

Imputation) technique. This method combines 

multiple regression models, including M5P, REPTree, 

and Linear Regression, to impute missing values 

robustly. AER-HYBRITECH ensures the completeness 

of the dataset, mitigating the impact of data gaps on 

predictive maintenance analyses. 

 

AER-HYBRITECH also implements Min-Max 

normalization to scale numeric features, ensuring 

consistency and compatibility for further analysis. A 

key innovation of AER-HYBRITECH is its enhanced 

hybrid feature selection (EHFS) approach, combining 

ReliefF, correlation analysis, and wrapper feature 

selection. This step systematically identifies the most 

informative features, improving model 

interpretability and enhancing predictive 

performance. The methodology culminates with 

performance evaluation using a Support Vector 

Machine (SVM) classifier, with accuracy as the 

primary performance metric. This comprehensive 

approach guarantees a robust foundation for 

predictive maintenance analysis and models that 

deliver accurate predictions while reducing 
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maintenance costs. The following is a detailed 

breakdown of the AER-HYBRITECH process, 

accompanied by Algorithm 1 for clarity: 

 

Algorithm 1: AER-HYBRITECH: Averaging Ensemble 

Regression with Hybrid Encoding and Enhanced 

Feature Selection Technique for Predictive 

Maintenance 

Input : Predictive Maintenance Dataset (AI4I 

2020) 

Output : - Processed and feature-selected dataset 

ready for predictive maintenance 

analysis 

- Performance evaluation results using 

SVM classifier (accuracy) 

Step 1 : Load Predictive Maintenance Dataset 

   - Load the AI4I 2020 dataset into 

memory. 

Step 2 : Data Cleaning and Preprocessing 

   - Remove unique identifiers (UID) and 

product ID features as they are 

irrelevant for analysis. 

   - Remove duplicate records, ensuring 

each record is unique. 

Step 3 : Categorical to Numerical Conversion 

(Hybrid Encoding) 

   - For each categorical feature: 

     a. Apply label encoding to convert 

categorical values to numeric labels. 

     b. Calculate the frequency of each 

category. 

     c. Calculate the average value of both 

label encoding value and frequency. 

     d. Replace the label-encoded values 

with the average values. 

Step 4 : Missing Data Imputation (AER-MDI)                                            

// Algorithm 2 

   - For each column in the dataset: 

     a. Check for missing values. 

     b. If missing values are found, utilize 

the Averaging Ensemble Regression-

based Missing Data Imputation 

technique, combining M5P, REPTree, 

and linear regression models for 

imputation. 

     c. Repeat this process for all columns 

with missing values. 

Step 5 : Normalization (Min-Max) 

   - Apply Min-Max normalization to all 

numeric features in the dataset to scale 

them within the range [0, 1]. 

Step 6 : Feature Selection (Enhanced Hybrid)                                            

// Algorithm 3 

   - Perform enhanced hybrid feature 

selection (EHFS) using the following 

techniques: 

     a. ReliefF: Select relevant features 

based on the ReliefF feature selection 

algorithm. 

     b. Correlation: Identify and keep 

features with the highest correlation to 

the target variable. 

     c. Wrapper Feature Selection: Use a 

wrapper-based approach to iteratively 

select the most informative features. 

Step 7 : Performance Evaluation using SVM 

Classifier 

   - Utilize a Support Vector Machine 

(SVM) classifier to evaluate the 
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predictive maintenance dataset based on 

accuracy. 

- Train the SVM classifier using the 

selected features from the previous step. 

   - Evaluate the performance of the 

SVM classifier on the dataset and record 

the accuracy as the performance metric. 

 

A. Data Cleaning and Preprocessing: 

Data cleaning and preprocessing serve as the 

foundational steps in the AER-HYBRITECH 

algorithm, aimed at enhancing the quality and 

relevance of the predictive maintenance dataset. This 

stage involves a series of critical operations to ensure 

that the data is optimal for subsequent analysis. 

AER-HYBRITECH identifies and removes unique 

identifiers (UID) and product ID features from the 

dataset. These features often contain unique codes or 

identifiers irrelevant to predictive maintenance 

analysis. Removing them helps streamline the dataset 

and eliminates unnecessary information hindering 

analysis or model performance. 

To further enhance data quality and accuracy, AER-

HYBRITECH undertakes the task of duplication. This 

process involves identifying and eliminating duplicate 

records within the dataset, ensuring each record is 

unique. Duplicate records can skew analysis results 

and lead to inaccurate predictions. By removing 

duplicates, the algorithm ensures that the dataset is 

free from redundancy and that each data point 

contributes distinct information. 

The data cleaning and preprocessing phase is critical 

as it sets the stage for subsequent operations in the 

AER-HYBRITECH algorithm. Removing irrelevant 

features and duplicate records streamlines the dataset, 

making it more manageable and conducive to accurate 

predictive maintenance analysis. The result is a 

dataset free from redundant information prepared for 

further transformation and enhancement in 

subsequent stages of the algorithm. 

B. Categorical to Numerical Conversion (Hybrid          

    Encoding): 

AER-HYBRITECH's approach to handling categorical 

data is a pivotal element of the algorithm, offering a 

unique method for converting categorical features 

into numerical representations that are more 

informative for predictive maintenance analysis. 

The process begins with the application of label 

encoding to categorical features. Label encoding 

assigns numeric labels to distinct categories within a 

feature. This initial transformation facilitates the 

numerical representation of categorical data, allowing 

mathematical operations and analysis that are 

inherently numeric. 

A key innovation within AER-HYBRITECH is the 

calculation of category frequencies. For each 

categorical feature, the algorithm determines the 

frequency or occurrence of each category within the 

dataset. This step provides valuable insight into 

specific categories' prevalence and importance in the 

dataset. 

To further enhance the informativeness of the 

converted categorical data, AER-HYBRITECH 

computes the average value for each category. This 

calculation considers the numeric label assigned 

through label encoding and the frequency of each 

category. The result comprehensively represents each 

category that encapsulates its significance and 

occurrence in the dataset. 

The final step of the hybrid encoding process involves 

the replacement of label-encoded values with their 

corresponding average values. This replacement 

ensures that the categorical data is represented by a 

more informative and representative numerical value. 

By replacing label-encoded values with averages, 

AER-HYBRITECH significantly improves the utility 

of categorical data in predictive maintenance analysis. 

The hybrid encoding technique employed by AER-

HYBRITECH provides a critical advantage in 

handling categorical data. It transforms categorical 

features into numerical representations that convey 
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not only the inherent structure of the data but also 

the importance of individual categories. This 

approach enhances the informativeness of the data 

and contributes to improved feature utilization in 

predictive maintenance models. The result is a dataset 

better equipped for subsequent stages of the algorithm, 

setting the stage for robust predictive maintenance 

analysis. 

C. Missing Data Imputation (AER-MDI): 

The AER-MDI (Averaging Ensemble Regression-

based Missing Data Imputation) technique is a 

fundamental component of the AER-HYBRITECH 

algorithm, designed to address the pervasive challenge 

of missing data in predictive maintenance datasets. 

AER-MDI systematically identifies missing values, 

imputes them using an ensemble of regression models, 

and ultimately contributes to the dataset's 

completeness and readiness for further analysis. The 

following is a detailed breakdown of the AER-MDI 

process, accompanied by Algorithm 2 for clarity: 

Algorithm 2:AER-MDI (Averaging Ensemble Regression-based Missing  

Data Imputation) 

Input : Dataset with missing values. 

Output : Imputed dataset with missing values replaced. 

Step 1 : Initialization: 

   - Load the dataset with missing values. 

   - Identify the columns that contain missing values. 

   - Initialize an empty dataset for imputation. 

Step 2 : For Each Column with Missing Values: 

   - Select the next column with missing values. 

Step 3 : Data Splitting: 

   - Split the data into two subsets: 

     a. Rows with missing values in the selected column. 

     b. Rows without missing values in the selected column. 

Step 4 : Regression Model Selection: 

   - Choose the regression models for imputation (M5P, REPTree, LinearRegression). 

Step 5 : Imputation for Missing Values: 

   - For each row with missing values in the selected column: 

     a. Prepare a training dataset using the rows without missing values. 

     b. Train the selected regression models using the training dataset. 

     c. Use the trained models to predict the missing value in the selected column. 

     d. Calculate the average of the predictions from all selected regression models. 

     e. Replace the missing value with the calculated average. 

Step 6 : Combine Imputed Data: 

   - Merge the imputed rows with missing values back with those without missing 

values in the selected column. 

Step 7 : Repeat for Each Column with Missing Values: 

   - Return to Step 2 and select the next column with missing values. 

Step 8 : Final Output: 

   - The algorithm outputs the dataset with all missing values imputed using the 

selected regression models. 

 

Algorithm 2, AER-MDI (Averaging Ensemble 

Regression-based Missing Data Imputation), is 

designed to handle missing values in a dataset for 

predictive maintenance. It begins by initializing and 

identifying columns with missing values and prepares 

an empty dataset for imputation. For each column 

with missing values, it splits the data into subsets with 

and without missing values. Then, the algorithm 

selects regression models (e.g., M5P, REPTree, Linear 

Regression) to impute missing data, calculating the 

average of their predictions for each missing value. 

The imputed rows are combined with the original 

data, and this process repeats for each column with 

missing values. The final output is a dataset with all 

missing values imputed using the selected regression 

models, ensuring data completeness and readiness for 

predictive maintenance analysis.  
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The selection of regression models like M5P, REPTree, 

and Linear Regression for the AER-MDI technique is 

justified based on their unique strengths and 

capabilities, which collectively enhance the 

imputation process: 

M5P: 

Adaptability to Nonlinear Data: M5P is a decision 

tree-based regression model known for its adaptability 

to nonlinear data patterns. In predictive maintenance 

datasets, especially those with complex and nonlinear 

relationships between variables, M5P can capture 

intricate patterns that other models may miss. This 

adaptability is crucial for accurately imputing missing 

values in diverse data scenarios. 

 

REPTree: 

Handling Complex Classification Tasks: REPTree is 

another decision tree-based model with particular 

strength in handling complex classification tasks. 

While imputation is a regression task, the complex 

nature of predictive maintenance data may involve 

classification aspects (e.g., classifying equipment 

conditions). REPTree's capacity to manage complex 

data structures makes it valuable in addressing missing 

data. 

 

LinearRegression: 

Robust Imputations for Linear Relationships: Linear 

regression is a well-established regression model that 

excels in capturing linear relationships between 

variables. In many datasets, linear relationships are 

prevalent, and linear regression provides robust 

imputations for such relationships. It complements 

M5P and REPTree by addressing the specific linear 

aspects of the data. 

This selection aims to create a versatile ensemble of 

models that collectively address diverse data patterns, 

from nonlinear to linear relationships and from 

complex classification to simpler regression tasks. By 

combining these models, AER-MDI ensures a 

comprehensive approach to missing data imputation 

resilient to the various challenges of predictive 

maintenance datasets. This choice of regression 

models aims to provide a well-rounded solution for 

imputing missing values and enhancing the 

completeness of the dataset for subsequent analysis. 

The AER-MDI technique systematically addresses 

missing data in predictive maintenance datasets, 

ensuring no gaps remain unaddressed. Applying 

ensemble regression models and averaging their 

predictions offers robust imputations, enhancing the 

dataset's utility and making it well-prepared for 

subsequent predictive maintenance analysis. 

D. Normalization (Min-Max) : 

Normalization is an essential data preprocessing step 

that scales numerical features to a standardized range, 

typically between 0 and 1, ensuring that variables 

with different scales contribute equally to the analysis. 

In AER-HYBRITECH, the Min-Max normalization 

technique is employed to rescale the numerical 

features, enhancing the dataset's suitability for 

predictive maintenance analysis. 

The Min-Max normalization process scales each 

feature within a specific range using the following 

formula: 

𝑃𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =  
𝑃 −  𝑃𝑚𝑖𝑛

𝑃𝑚𝑎𝑥 −  𝑃𝑚𝑖𝑛
 (1) 

Where: 

• 𝑃𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 is the normalized value of feature P. 

• P is the original feature value. 

• 𝑃𝑚𝑖𝑛 is the minimum value of feature P. 

• 𝑃𝑚𝑎𝑥 is the maximum value of feature P. 

The Min-Max normalization formula rescales each 

feature's values such that the minimum value 

becomes 0, the maximum value becomes 1, and all 

other values fall in between, maintaining the relative 

proportions of the data. It ensures that the data is 

appropriately transformed without altering the 

underlying relationships between features. 

In AER-HYBRITECH, the Min-Max normalization 

process is applied to all numerical features in the 

dataset, making them compatible for subsequent 
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analysis and modelling. By bringing all features 

within the same scale, Min-Max normalization 

prevents bias towards variables with larger ranges, 

thereby improving the predictive maintenance 

model's ability to make fair and meaningful 

predictions. This step enhances the dataset's readiness 

for feature selection and model training, contributing 

to the overall success of the predictive maintenance 

process. 

E. Feature Selection (Enhanced Hybrid) : 

Feature selection is a critical step in predictive 

maintenance, aimed at identifying and retaining the 

most informative features while eliminating 

irrelevant or redundant ones. AER-HYBRITECH 

employs an Enhanced Hybrid Feature Selection 

(EHFS) approach that combines multiple techniques 

to ensure the selection the most relevant features for 

predictive maintenance analysis. 

The EHFS approach in AER-HYBRITECH consists of 

three primary components: 

1. ReliefF Feature Selection: 

ReliefF is a widely used feature selection algorithm 

that assesses each feature's relevance by considering 

the nearest hits and misses in the dataset. It assigns 

feature scores based on how well features discriminate 

between different classes or outcomes. In AER-

HYBRITECH, ReliefF is utilized to identify features 

with high discrimination power, ensuring that 

relevant factors are retained. 

2. Correlation Analysis: 

Correlation analysis assesses the strength and 

direction of the linear relationship between features 

and the target variable (e.g., equipment failure). AER-

HYBRITECH identifies and retains features with the 

highest correlation to the target variable. This 

component ensures that the features with the most 

direct impact on predictive maintenance outcomes are 

retained for analysis. 

 

 

 

3. Wrapper Feature Selection: 

Wrapper-based feature selection uses a machine 

learning model (SVM) to evaluate feature subsets and 

select the most informative combination iteratively. 

AER-HYBRITECH applies a wrapper-based approach 

to select features that maximize predictive 

performance, ensuring the final feature set is 

optimized for modelling accuracy. 

Algorithm 3 discussed the proposed EHFS approach. 

Algorithm 3: Enhanced Hybrid Feature Selection 

(EHFS) 

Input : Dataset with features (X) and target 

variable (Y) 

Output : Subset of selected features (X_selected) 

for predictive maintenance analysis 

Step 1 : Initialize an empty set to store the 

selected features: X_selected = {}. 

Step 2 : ReliefF Feature Selection: 

Apply the ReliefF feature selection 

technique to the dataset (X, Y) and select 

the top k features with the highest 

ReliefF scores. Add these selected 

features to X_selected. 

Step 3 : Correlation Analysis: 

• Compute the correlation 

coefficients between each feature 

in X and the target variable Y. 

Select the top m features with 

the highest absolute correlation 

coefficients. Add these selected 

features to X_selected. 

Step 4 : Wrapper Feature Selection: 

• Choose a machine learning 

model (SVM) as the base model 

for the wrapper feature selection. 

• Initialize X_subset with 

X_selected (from Steps 2 and 3) 
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and an empty set of features 

X_remaining. 

• While the stopping criterion is 

not met: 

• Train the base model on the 

dataset (X_subset, Y). 

• Evaluate the model's 

performance using a cross-

validation method. 

• Identify the feature with the 

least contribution to the model's 

performance, remove it from 

X_subset, and add it to 

X_remaining. 

• Repeat the training and 

evaluation process, iteratively 

assessing the feature subsets' 

performance until the stopping 

criterion is met. 

• Add the remaining top n features 

from X_subset to X_selected. 

Step 5  Final Output: 

• X_selected contains the subset of 

selected features. 

Algorithm 3, Enhanced Hybrid Feature Selection 

(EHFS), is designed to optimize feature selection for 

predictive maintenance analysis. It begins by 

initializing an empty set for selected features. ReliefF 

Feature Selection is then applied to the dataset to 

identify the top k features with the highest ReliefF 

scores. Next, Correlation Analysis identifies the top m 

features with the highest absolute correlation 

coefficients to the target variable. The final step, 

Wrapper Feature Selection, employs a base model 

(SVM) and iteratively evaluates feature subsets to find 

the top n features. The result is a subset of selected 

features (X_selected) optimized for predictive 

maintenance analysis, enhancing model accuracy and 

interpretability. 

The EHFS approach in AER-HYBRITECH offers a 

holistic solution to feature selection by combining the 

strengths of multiple techniques. This comprehensive 

approach retains the most informative features, 

enhancing the model's interpretability and predictive 

power. ReliefF, correlation analysis, and wrapper-

based feature selection are used in AER-HYBRITECH 

for their unique and complementary strengths in 

addressing different aspects of feature selection. 

ReliefF excels at identifying features with high 

discrimination power, ensuring that relevant factors 

for predictive maintenance are retained. Correlation 

analysis assesses the direct linear relationships 

between features and the target variable, helping 

preserve those with the most substantial impact. 

Meanwhile, wrapper-based feature selection utilizes 

iterative model evaluation to optimize feature subsets, 

guaranteeing that the selected combination maximizes 

predictive performance. By employing this hybrid 

approach, AER-HYBRITECH harnesses the strengths 

of each technique, resulting in a well-rounded feature 

selection process that enhances model interpretability 

and accuracy, ultimately contributing to the overall 

success of predictive maintenance analysis. The EHFS 

component is a pivotal step in the AER-HYBRITECH 

process, contributing to its overall success in 

enhancing predictive maintenance outcomes. 

E. Performance Evaluation Using SVM Classifier: 

Performance evaluation is a pivotal phase in 

predictive maintenance, ensuring that the selected 

features and data preprocessing techniques lead to 

accurate and reliable predictive models. AER-

HYBRITECH employs a Support Vector Machine 

(SVM) classifier for performance evaluation because it 

can handle classification and regression tasks 

effectively. 

Steps for Performance Evaluation: 

1. Data Splitting: The preprocessed and feature-

selected dataset is divided into two subsets: a 

training set and a testing set. The training set is 

used to train the SVM classifier, while the testing 

set is employed to evaluate its predictive 

performance. 
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2. Training the SVM Classifier: The SVM classifier is 

trained using the selected features from the 

dataset. This training phase involves optimizing 

model parameters and learning the decision 

boundary that best separates predictive 

maintenance outcomes or classes. 

3. Cross-Validation: To ensure robust performance 

assessment, k-fold cross-validation is applied to the 

training set. The dataset is divided into k subsets 

(folds), and the SVM model is trained and tested k 

times, with each fold used as the test set once. 

Cross-validation provides a more accurate estimate 

of the model's performance by mitigating the risk 

of overfitting or underfitting. 

4. Model Evaluation: During each cross-validation 

iteration, performance metrics such as accuracy, 

precision, recall, and F1-score are computed. These 

metrics provide insights into the classifier's ability 

to predict predictive maintenance events, such as 

equipment failures, accurately. 

5. Performance Metrics Aggregation: The 

performance metrics obtained from all cross-

validation iterations are aggregated to compute the 

overall model performance. This aggregation helps 

to provide a more robust and reliable estimate of 

the SVM classifier's predictive capabilities. 

6. Final Performance Metric: The primary 

performance metric, often accuracy, is recorded 

and reported as the model's effectiveness in 

predicting predictive maintenance. Additionally, 

other metrics may be considered depending on the 

specific goals and requirements of the predictive 

maintenance task. 

Performance evaluation using the SVM classifier 

ensures that the AER-HYBRITECH algorithm results 

in a highly accurate and reliable predictive 

maintenance model. By testing the model on an 

independent testing set and aggregating performance 

metrics through cross-validation, AER-HYBRITECH 

guarantees that the predictive maintenance model is 

well-prepared for real-world applications, ultimately 

reducing maintenance costs and minimizing 

equipment downtime. 

 

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS 

 

This section presents the experimental results and 

discussions that showcase the effectiveness of the 

AER-HYBRITECH algorithm in predictive 

maintenance. The section begins by providing a 

detailed description of the dataset used in the 

experiments. 

 

A. Dataset Description: 

The predictive maintenance dataset used in this study, 

AI4I 2020, simulates a milling machine's operation 

and comprises 10,000 data points with 14 features [17]. 

These features include a unique identifier (UID), 

product ID, product type, air temperature, process 

temperature, rotational speed, torque, tool wear, and a 

'machine failure' label, representing five distinct 

failure modes. These failure modes encompass tool 

wear failure (TWF), heat dissipation failure (HDF), 

power failure (PWF), overstrain failure (OSF), and 

random failures (RNF). The 'machine failure' label is 

set to 1 if any of these modes occur, signifying a 

process failure. The dataset's diversity and complexity 

make it an ideal testbed for evaluating the AER-

HYBRITECH algorithm's effectiveness in predictive 

maintenance. 

 

B. Performance Metrics: 

To assess the predictive capabilities of AER-

HYBRITECH in the context of predictive 

maintenance, we employed a range of performance 

metrics, providing a comprehensive evaluation of its 

effectiveness. 

Accuracy is a fundamental metric that measures the 

proportion of correctly classified instances among the 

total instances. It is computed as: 

Accuracy = (True Positives + True Negatives) / 

(True Positives + True Negatives + False 
(2) 
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Positives + False Negatives) 

AER-HYBRITECH achieved an impressive accuracy 

of 89.3053 %, signifying its high precision in 

identifying equipment failures and maintaining 

operational reliability. 

Precision quantifies the ratio of correctly predicted 

positive observations to the total predicted positive 

observations. It is calculated as: 

Precision = True Positives / (True Positives + 

                    False Positives) 

(3) 

AER-HYBRITECH demonstrated a precision value of 

89.0441 %, indicating its ability to make accurate 

predictions regarding equipment failures, minimizing 

false alarms. 

Recall, often called sensitivity or true positive rate, 

measures the ratio of correctly predicted positive 

observations to all actual positive observations. It is 

expressed as: 

Recall = True Positives / (True Positives + False 

Negatives) 

(4) 

With a recall value of 89.0402 %, AER-HYBRITECH 

identifies a significant portion of actual equipment 

failures, emphasizing its reliability in fault detection. 

The F1-Score combines precision and recall to provide 

a balanced metric considering false positives and 

negatives. It is calculated as: 

F1-Score = 2 * (Precision * Recall) / (Precision +  

Recall) 
(5) 

AER-HYBRITECH achieved an F1-Score of 

89.0421 %, demonstrating its well-rounded 

performance in predictive maintenance. 

These metrics collectively illustrate the robust 

predictive capabilities of AER-HYBRITECH, 

reaffirming its effectiveness in identifying equipment 

failures and maintaining operational reliability in 

industrial settings. 

 

 

 

C. Accuracy Comparison: 

To assess the relative performance of AER-

HYBRITECH, a comparison with existing methods is 

presented in the following table: 

Table 1 : Accuracy comparison 

Author Year Method 
Accuracy 

(%) 

Kong et al. [15] 2023 

DFPAIS (Data-filling 

approach based on 

probability analysis in 

incomplete soft sets) 

83.74 

Kong et al. [15] 2023 

SDFIS (Simplified 

approach for data filling 

in incomplete soft sets) 

82.17 

Chen et al. [16] 2022 
CatBoost (Categorical 

Boosting) 
64.23 

Chen et al. [16] 2022 

SmoteNC + CatBoost 

(Synthetic Minority 

Over-Sampling 

Technique for Nominal 

and Continuous) 

88.09 

Chen et al. [16] 2022 

ctGAN + CatBoost 

(Conditional Tabular 

Generative Adversarial 

Network) 

87.08 

Chen et al. [16] 2022 
SmoteNC + ctGAN + 

CatBoost 
88.83 

Proposed 

Method (AER-

HYBRITECH) 

2023 AER-HYBRITECH 89.31 

Figure 2 shows the pictorial diagram of the proposed 

AER-HYBRITECH algorithm 

 
Figure 2: Accuracy Comparison 
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The comparison reveals that AER-HYBRITECH 

outperforms existing methods with the highest accuracy 

of 89.31%. It indicates that AER-HYBRITECH 

provides superior predictive maintenance capabilities, 

making it the most effective approach for ensuring 

equipment reliability and minimizing costly downtime. 

Combining data preprocessing, hybrid encoding, 

missing data imputation, normalization, and enhanced 

feature selection within AER-HYBRITECH contributes 

to its exceptional predictive performance. It justifies its 

status as the best approach in this context. 

 

V. CONCLUSIONS AND FUTURE WORK 

 

This study introduced the AER-HYBRITECH algorithm, 

a novel approach to predictive maintenance that 

overcomes challenges in data preprocessing, missing 

data imputation, and feature selection. AER-

HYBRITECH demonstrated its potential to enhance the 

predictive maintenance process significantly, providing 

comprehensive solutions to these fundamental issues. 

The extensive evaluation of AER-HYBRITECH yielded 

promising results. It achieved an accuracy of 89.31%, 

highlighting its exceptional performance in identifying 

equipment failures. The precision, recall, and F1-Score 

metrics further underscored the algorithm's effectiveness 

in predictive maintenance tasks, minimizing false 

alarms and optimizing fault detection. Overall, AER-

HYBRITECH stands out as a robust solution for 

predictive maintenance, offering an advanced approach 

to data preprocessing, missing data imputation, and 

feature selection. Its strong predictive capabilities make 

it a valuable asset in industrial operations, helping 

reduce unexpected equipment failures and minimizing 

downtime. As for future work, several avenues can be 

explored to enhance AER-HYBRITECH further. These 

include integrating more advanced machine learning 

models and incorporating additional data sources for 

improved predictive performance. Additionally, 

expanding the algorithm's applicability to various 

industrial domains and conducting real-time predictive 

maintenance are potential research areas, paving the 

way for even more efficient and reliable operations in 

the industry. 
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