

International Journal of Scientific Research in Science and Technology

Available online at : www.ijsrst.com

Print ISSN: 2395-6011 | Online ISSN: 2395-602X

doi : https://doi.org/10.32628/IJSRST52310654

Analysis of Potential Hazards Using the HIRADC Approach and Methods Job Safety Analysis on The Practical Process at The Department of Environmental Health Fitriana Ulfah^{*1}, Syarifah Miftahul El Jannah^{*1,2}

¹Poltekkes Kemenkes Jakarta II, Jakarta, Indonesia ²PUI-P2KAL-Poltekkes Kemenkes Jakarta II, Jakarta, Indonesia *Corresponding author: fitriana.ulfa@poltekkesjkt2.ac.id

ARTICLEINFO

Article History:

ABSTRACT

Accepted: 01 Dec 2023 Published: 10 Dec 2023

Publication Issue

Volume 10, Issue 6 November-December-2023 Page Number 360-367

The Physics, Industrial Sanitation, and Occupational Safety Laboratory, also known to be the Health Department's Workshop Environment at the Ministry of Health Jakarta II Health Polytechnic, is part of the laboratory standards established through the Decree of the Minister of Health Number: HK.03.05/IV/14354.I/2010 concerning Health Personnel Education Laboratory Standards. To keep up with service standards or Standard Operating Procedures (SOP) in a laboratory and follow the Occupational Health and Safety management system following PP No. 50 of 2012 concerning the Implementation of Occupational Safety and Health Management Systems, the supporting facilities and infrastructure therefore require more effective and efficient attention. The objective of this study is to implement the Job Safety Analysis (JSA) and the HIRADC method to evaluate potential health and safety hazards at the Jakarta II Health Polytechnic Workshop. The result based on analysis and discussion using the JSA approach of the risk level research at the Department of Environmental Health workshop showed that 11% had a high-risk level, 28% had a medium-risk level, and 61% had a low-risk level. The highest risk is in the practical work of making slabs and testing insecticides for open joints using fogging and insecticides. The control provided is based on a control hierarchy, and it entails providing enough complete PPE in accordance with the risk of hazard and supervising the use of PPE during preparation and until the practicum process is complete.

Keywords : JSA, HIRADC, Risk Management and Educational Workshop.

I. INTRODUCTION

In accordance with Law Number 20 of 2003, that relates to the National Education System, national education helps develop ability and mold the country's dignified, civilized character toto make life in the country more intelligent and to improve human resources. The objective of education is to help students reach their full potential as people who have

Copyright © 2023 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution **4.0 International License (CC BY-NC 4.0)** which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited.

a strong sense of faith in and devotion to God Almighty, a noble character, and other qualities such as being healthy, knowledgeable, capable, creative, independent, and becoming democratic and responsible citizens [1].

As in Andreas' research [2] in support of the law, the learning process of each campus is also required to make policies that lead to the implementation of Occupational Safety and Health in accordance with Law 1/1970 [3] explicitly as the implementation of Occupational Safety Health and in the the Implementation of Occupational Safety and Health Management Systems since 1996 through Permenaker No.05 / Men / 1996, and Government Regulations, so that the risk of work accidents can be narrowed or zero risk, both related to management, as well as fire hazards, earthquakes [4].

The Physics, Industrial Sanitation, and Occupational Safety Laboratories, or what are known as workshops in the Department of Environmental Health at the Health Polytechnic, are located at the Jakarta II Ministry of Health Polytechnic in accordance with laboratory standards by the Decree of the Minister of Health Number: HK.03.05/IV/14354.I/2010 concerning Health Personnel Education Laboratory standards. The purpose of this workshop is to assist the courses Soil Sanitation and Waste Management, Industrial Physics and K3 courses, Entomology or Vector, and Water and Liquid Waste Sanitation [5]. In order to comply with service standards or Standard Operating Procedures (SOP) in a laboratory and in accordance with the Occupational Safety and Health management system by Government Regulation No. 50 of 2012 concerning the Implementation of Occupational Safety and Health Management Systems, it is necessary to give supporting facilities and infrastructure more effective and efficient attention [6]. Because it is closely tied to efforts to prevent and control hazards, which are used to establish occupational safety and health objectives and plans, HIRADC is a crucial component of the occupational safety and health management system. Based on

Government Regulation No. 50 of 2012 concerning Implementation of Occupational Safety and Health Systems, the Indonesian government issued the Occupational Safety and Health Management System, which is mandated to be implemented by various industries[7].

To make sure that current Occupational Health and Safety plans run smoothly, on schedule, and yield benefits, there is a need to step up the implementation of occupational health and safety by enhancing occupational health and safety management and developing standard operating procedures (SOP) for a number of mining activities [8].

One method that can be used in every work process is Job Safety Analysis (JSA), namely a safety management technique that focuses on identifying hazards and preventing hazards related to the series of work or tasks to be carried out. In accordance with research by Andung et al. [9], accomplishing a zero accident rate is essential to managing occupational safety and health methods that can be used to reduce and eliminate occupational risks. One such approach is the use of job safety analysis (JSA), which is a safety management technique that identifies potential hazards with low classification and high classification.

This is consistent with Ilmansyah, et al.'s method of study [8].To prevent work accidents, namely by using Job Safety Analysis (JSA) as a problem-solving tool employed in direct observation, zero accidents is an essential aspect of occupational Health and Safety management. It occurs by identifying potential hazards and work accidents in activities and Unloading Fuel Oil. This is in line with the research method used by zero accident is a crucial component of occupational Health and Safety management, and it can be achieved by detecting potential risks and work accidents in activities and Unloading Fuel Oil, as well as by using Job Safety Analysis (JSA) as a tool for problem-solving during direct observation.

Following the research objective, which was to concentrate more on discussing the potential dangers so that occupational Health and Safety risks can be

identified, and can assess each level. risks, so they can provide action solutions to control these risks[10], researchers have observed that there is a high probability of potential and types of danger in each process, carried out at the Department of Environmental Health workshop [11]. Occupational safety and health is something that must be considered when in a workshop, therefore students must already understand what Occupational Safety and Health is and Standart Operational Procedure (SOP) when carrying out practice[12].

II. METHODS AND MATERIAL

The Department of Environmental Health workshop at the Health Polytechnic used a descriptive study strategy to describe a number of variables related to occupational health and safety issues. According to Ramli [13], risk control from potential technical and human risks, namely identification through questionnaires, is based on this. Researchers then examine potential technical hazards utilizing initial identification using the JSA approach. According to Sugiyono, researchers do it utilizing interview techniques to increase its effectiveness. An interview guide is used as a tool to react to a series of questions posed or written remarks made to respondents when gathering research data through interviews.

There were 364 people in all who were research subjects, including 347 students and 17 lecturers and instructors. The Slovin algorithm was used to calculate the results, which were 190 respondents made up of 17 lecturers and instructors and 173 students, with an error rate of 5% [14]. The results of the questionnaire are primary data from the Head of the Environmental Health Department, Instructors, and Lecturers, as well as students who have completed practical in Vector, Industrial Physics, Soil Sanitation and Waste Management , and Water and Waste Sanitation Courses Liquid, because the course is approximately

Table 1 Table of identified hazards

Potential Work Accidents Identified	Preventive Actions	
Sparks when cutting iron during slab	Wear PPE properly and correctly, such as googles and	
making/casting practices	masks	
Work accidents when cutting metal result in	Use nitrile gloves PPE regularly	
body parts being injured, scratched or cut,		
causing permanent disability		
Inhaling chemicals when making a solution of	Additional ventilation, using masks and respirators,	
H2S04N and AgNO3 as a catalyst	routine medical check up checks for lecturers and	
	instructors in the laboratory every 6 months or 1 year	
Work accidents when pouring solutions and	Adequate ventilation, using latex gloves, masks and	
heating which result in gas/chemical inhalation,	carrying chemicals in containers or baskets, cleaning up	
fainting, shortness of breath, nausea and	spilled chemical raw materials immediately, routine	
dizziness	medical check up checks for lecturers and instructors in	
	the laboratory every 6 months or 1 year	
When heating using a spirit lamp it can cause	When working according to SOP, wear PPE properly	
burns to the body	and correctly such as using latex gloves, cloth gloves	
Stabbed, fallen, and slipped while practicing	Wearing PPE properly and properly such as shoes, and	
surveying nuisance fly populations and mosquito	gloves, and working on the floor in a dry state	
vector populations using fly traps		

Potential Work Accidents Identified	Preventive Actions		
Get hit by broken glass preparations if you fall	Wear shoes and gloves		
Falls, burns, splashes with insecticide solutions, splashes in the	Wear PPE properly and correctly, use		
eyes, inhalation, insecticide poisons are swallowed and	nitrile gloves, goggles, masks and		
ingested during the practice of fumigation/fogging with	respirators, shoes, routine medical check		
machine fogging and insecticides	up checks for lecturers and instructors in		
	the laboratory every 6 months or 1 year.		
	Prepare milk to sterilize when dizzy,		
	nauseous, or shaking due to swallowing		
	insecticide poison		
Hands are cut which causes injury or permanent disability	Use nitrile gloves PPE regularly		
when cutting PVC pipes using a hacksaw/machine			
Parts of the hands/body parts are perforated which causes	Use nitrile gloves PPE regularly		
injury or permanent disability when drilling holes in pipes			
using a drill			
Some body parts were hit by drilling machines when making	Use safety shoes, boots, gloves, given		
septic tanks, and absorption holes, especially the feet and	training in using drill tools		
hands			
Some body parts are affected Machine augers when making	Use safety shoes, boots, gloves, given		
percolation holes, when cutting PVC pipes, causing body parts	training in their use Machine augers		
to be injured, cut or permanently disabled			
The heat from the oven causes damage to skin tissue if exposed	Use PPE, gloves		
to it when drying filter paper during airborne dust sampling			
practices			
Heat in the sample field environment and loud noise when	Use earplugs,hat		
carrying out practice in the outdoor Noise measurement field			
Glare, blur on the eyes when practicing with lighting	Wear PPE properly and correctly		
measurement practice testing withluxmeter			
Falling, being impaled on stakes made of bamboo, becoming	Use gloves, lotions like Autan, hats		
dehydrated from being in the sun, being bitten by insects			

Continued Table 1

III.RESULTS AND DISCUSSION

Based on the results of observations and interviews at workshops with students, lecturers, and instructors and then examined further using the JSA method, the focus of work and potential work accidents can be identified as seen in Table 1.Been detected using the Job Safety Analysis (JSA) method and examined by methodist It will be simpler to serve as the basis of information for top management's discussion of corrective action and minimizing the hazards of these risks by making prevention of them a priority by assessing and scoring risks in the hopes that the level of risk will be known. Table 2 displays the findings of

Continued Table 1			
Potential Work Accidents Identified	Preventive Actions		
Falling, being impaled on stakes made of bamboo, becoming Use gloves, lotions like Aut			
dehydrated from being in the sun, being bitten by insects			
Wounds are cut and cut during sanitary practices and	Use latex gloves, shoes		
processing waste and making compost			
During the burning process, the briquette material produces	Adding some ventilation, using masks and		
smoke which causes sore eyes, shortness of breath, bruising	respirators,googles, there are routine		
	medical check up checks for lecturers and		
	instructors in the laboratory every 6		
	months or 1 year		

	Types of hazards	Risk Assessment		
Potential Work Accidents Identified		Probability Level	Severity Level	Risk
		(Likelihood)	(Severity)	Score
Sparks when cutting iron during slab	MECHANICAL	3	4	12
making/casting practices	HAZARD			
Work accidents when cutting metal	MECHANICAL	4	2	8
result in body parts being injured,	HAZARD			
scratched or cut, causing permanent				
disability				
Inhaling chemicals when making a	CHEMICAL	4	1	4
solution of H2S04N and AgNO3 as a	HAZARD			
catalyst				
Work accidents when pouring solutions	CHEMICAL	4	1	4
and heating which result in	HAZARD			
gas/chemical inhalation, fainting,				
shortness of breath, nausea and				
dizziness				
When heating using a spirit lamp it can	MECHANICAL	4	1	4
cause burns to the body	HAZARD			
Get hit by broken glass preparations if	FALL	3	3	9
you fall	HAZARD			
Stabbed, fallen and slipped while	MECHANICAL	3	3	9
practicing surveying nuisance fly	HAZARD			
populations and mosquito vector				
populations using fly traps				

Table 2. Risk Assessment

Continued '	Table 2
-------------	---------

		Risk Assessment		
Identified I parards	1 ypes of hazards	Probability Level	Severity Level	Risk
racintineu	muburub	(Likelihood)	(Severity)	Score
Stabbed, fallen and slipped while	MECHANICAL	3	3	9
practicing surveying nuisance fly	HAZARD			
populations and mosquito vector				
populations using fly traps				
Falls, burns, splashes with	FALL	4	3	12
insecticide solutions, splashes in	HAZARD DAN			
the eyes, inhalation, insecticide	CHEMICAL			
poisons are swallowed and	HAZARD			
ingested during the practice of				
fumigation/fogging with machines				
fogging and insecticides				
Hands are cut which causes injury	MECHANICAL	4	1	4
or permanent disability when	HAZARD			
cutting PVC pipes using a				
hacksaw/machine				
Parts of the hands/body parts are	MECHANICAL	4	1	4
perforated which causes injury or	HAZARD			
permanent disability when				
drilling holes in pipes using a drill				
Some body parts were hit by	MECHANICAL	4	1	4
drilling machines when making	HAZARD			
septic tanks, and absorption holes,				
especially the feet and hands				
Some body parts are hit by	MECHANICAL	4	1	4
machine augers when making	HAZARD			
percolation holes, when cutting				
PVC pipes, causing body parts to				
be injured, cut or permanently				
disabled.				
The heat from the oven causes	PHYSICAL	1	1	1
damage to skin tissue if exposed to	HAZARD			
it when drying filter paper during				
airborne dust sampling practices				
The heat in the sample field	PHYSICAL	3	3	9
environment and the noise when	HAZARD			
carrying out outdoor noise				
measurement practice in the field				
Glare, blur on the eyes when	PHYSICAL	3	3	9
practicing with lighting	HAZARD			
measurement practice testing				
withluxmeter				

		Risk Assessment		
Potential Work Accidents Identified	Types of hazards	Probability Level (Likelihood)	Severity Level (Severity)	Risk Score
Falling, being impaled on stakes	FALL	4	1	4
made of bamboo, becoming	HARZARD,			
dehydrated from being in the sun,	BIOLOGICAL			
being bitten by insects	HAZARD			
Wounds are cut and cut during	PHYSICAL	4	1	4
sanitary practices and processing	HAZARD			
waste and making compost				
During the burning process, the	CHEMICAL	4	1	4
briquette material produces smoke	HAZARD			
which causes sore eyes, shortness of				
breath, bruising				

Continued Table 2

the risk analysis. Because it falls under the high-risk level category (Red), immediate and intensive preventative action must be taken as a matter of priority. Once the high-risk level can be managed and periodic evaluations are conducted to see if there are any changes for improvement, the risk is classified as medium risk level (Yellow). taken preventative action.

IV.CONCLUSION

Based on the analysis and discussion of research findings using the JSA approach, risk assessment at the Environmental Health Department workshop revealed that 2 (11%) had a high-risk level, 5 (28%) had a medium-risk level, and 11 (61%) had a low-risk level. The highest was discovered during the practical task of creating slabs and putting pesticides through their paces for open grazing utilizing fogging and insecticides. The control suggestions made are based on the control hierarchy, specifically the provision of adequate, complete PPE in accordance with the risk of hazard and the supervision of PPE use during training until the practicum process is over. If students, lecturers, and instructors are aware of the need to take action to prevent work accidents in order to lower the number of accidents and the level of high risk, then Occupational Safety and Health in the Environmental

Health Department workshop will be realized. As a training facility, Jakarta II Ministry of Health Health Polytechnic plays a crucial role in the implementation of its Tridharma activities focused on the Occupational Safety and Health component by training and producing future health worker graduates. In order to improve efforts by conducting Occupational Safety and Health training for Human Resources directly related to workshop activities, which provide knowledge about the dangers and risks to prevent work-related accidents, support from facilities and infrastructure is required from the institution's leadership as the policy holder.

Acknowledgments

This work was funded by DIPA Poltekkes Kemenkes Jakarta II in 2023.

V. REFERENCES

- P. RI, Undang-Undang Republik Indonesia Nomor 20 Tahun 2003 Tentang Sistem Pendidikan Nasional. Republik Indonesia, 2003.
- [2] Andreas. M. Saragih and M. Debataraja, Semangat Marudut Tua, Universitas DarmaAgung, "Keselamatan Dan Kesehatan Kerja Sebagai Bagian Dari Kampus Dan Pemberdayaannya," Jurnal Darma agung, vol. 28, no. No. 2, pp. 307–312, 2020.

- UU RI No.1, "Undang-Undang Republik Indonesia Nomor 1 Tahun 1970 Tentang Keselamatan Kerja," Presiden Republik Indonesia, no. 14. pp. 1–20, 1970.
- [4] Setyoko, "Sistem manajemen keselamatan dan kesehatan kerja pada perusahaan," Orbith, 2018.
- [5] B. P. dan P. S. D. M. Kesehatan, "Standar Laboratorium Diploma III Kesehatan Lingkugan Pendidikan Tenaga Kesehatan." Kemeterian Kesehatan RI, Jakarta, 2016.
- [6] K. S. N. R. Indonesia, PP No. 50 tahun 2012 tentang Penerapan SMK3. Indonesia.
- [7] E. Gifari Raihan Al Rasya, Munaya Fauziah, Andriyani, "Penerapan HIRADC di Pekerjaan Pembesian pada Pembuatan Saluran Pelimpah (Spillway) Proyek Bendungan 'X' Bogor Tahun 2021," Environmental Occupational Health and Safety Journal, vol. 3, no. No. 2, pp. 191–198, 2023.
- [8] D. W. Yahdi Ilmansyah, Nina Aini Mahbubah, "Penerapan Job Safety Analysis Sebagai Upaya Pencegahan Kecelakaan Kerja Dan Perbaikan Keselamatan Kerja Di Pt Shell Indonesia," Jurnal Program Studi Teknik Indutri, vol. 8 No.1, 2020, doi: https://doi.org/10.33373/profis.v8i1.2521.
- [9] A. Andung Jati NugrohoPermana, "JOB Safety Analysis (JSA) Pada Area Workshop Pt Widya Inovasi Indonesia," Jurnal Ilmiah Teknik Mesin, Elektro dan Komputer, vol. 2, 2022, doi: https://doi.org/10.55606/juritek.v2i1.456.
- [10] I. D. K. O. I Wayan Joniarta, Anak Agung Alit Triadi, Arif Mulyanto and P. D. Setyawan, "Upaya Peningkatan Budaya K3 (Keselamatan Dan Kesehatan Kerja) Pada Ukm Bengkel Las Pintu Harmonika 'Jaya Mandiri' Dengan Penggunaan Alat Pelindung Diri," Jurnal Abdi Insani, vol. 9, pp. 735–746, 2022.
- [11] T. Amalia and A. B. Wicaksana, "Identifikasi Potensi Bahaya Di Laboratorium Formulasi PT X," Jurnal Inkofar, vol. 1, no. 1, pp. 2581–2920, Aug. 2020, doi: 10.46846/JURNALINKOFAR.V111.139.
- [12] B. Priadi, F. Rizal, O. Oktaviani, and F. Rifwan, "Penerapan Keselamatan Dan Kesehatan Kerja Mahasiswa Di Workshop Kayu Jurusan Teknik Sipil Fakultas Teknik Universitas Negeri Padang," CIVED, vol. 5, no. 1, Mar. 2018, doi: 10.24036/CIVED.V511.9895.

- [13] Soehatman Ramli, Pedoman Praktis Manajemen Risiko dalam Perspektif K3 OHS Risk Management, 1st ed. Jakarta: PT. Dian Rakyat, 2010.
- [14] Sugiyono, Metode Penelitian Manajemen, 6th ed. Bandung: CV. Alfabeta, 2018.

Cite this article as :

Fitriana Ulfah, Syarifah Miftahul El Jannah, "Analysis of Potential Hazards Using the HIRADC Approach and Methods Job Safety Analysis on The Practical Process at The Department of Environmental Health", International Journal of Scientific Research in Science and Technology (IJSRST), Online ISSN : 2395-602X, Print ISSN : 2395-6011, Volume 10 Issue 6, pp. 360-367, November-December 2023. Available at doi : https://doi.org/10.32628/IJSRST52310654 Journal URL : https://ijsrst.com/IJSRST52310654