
Copyright © 2023 The Author(s): This is an open-access article distributed under the terms of the Creative

Commons Attribution 4.0 International License (CC BY-NC 4.0) which permits unrestricted use, distribution,

and reproduction in any medium for non-commercial use provided the original author and source are credited.

 International Journal of Scientific Research in Science and Technology

Available online at : www.ijsrst.com

Print ISSN: 2395-6011 | Online ISSN: 2395-602X doi : https://doi.org/10.32628/IJSRST

108

Implementation of Automatic Vehicle License Plate Detection

Using Python, Opencv and Tesseract OCR
Dr. C. Geetha1, Dr. M. Shantha Kumar2

1Associate Professor, Department of Electronics and Communication Engineering, Mother Theresa Institute of

Engineering and Technology, Palamaner, Chittoor Dist, Andhra Pradesh, India
2Associate Professor, Department of Electronics and Communication Engineering, Paavai Engineering College,

Pachal, Namakkal Tamilnadu, India

A R T I C L E I N F O

A B S T R A C T

Article History:

Accepted: 01 Jan 2024

Published: 12 Jan 2024

 The rapid growth of vehicle populations necessitates efficient methods for

automating tasks related to vehicle identification and surveillance. This

paper presents a novel approach for automatic license plate detection from

live input video streams using the OpenCV computer vision library and

the Tesseract Optical Character Recognition (OCR) engine. The proposed

system aims to enhance the accuracy and reliability of license plate

recognition while catering to real-time processing requirements. The

methodology involves a multi-step process. Initially, frames are captured

from the live input video feed, and then preprocessed using OpenCV

techniques such as resizing, noise reduction, and edge detection.

Subsequently, region-of-interest (ROI) extraction is performed to isolate

the candidate license plate regions within each frame. The extracted ROIs

are further refined using contour analysis and geometric properties to

improve the accuracy of license plate detection. Following the detection

phase, the Tesseract OCR engine is employed to perform character

recognition on the detected license plate regions. The system's architecture

facilitates seamless integration between OpenCV and Tesseract, allowing

for efficient data exchange and processing. The recognized characters are

then validated using post-processing techniques to ensure accurate license

plate number extraction. Experimental results on a diverse set of live input

video scenarios demonstrate the effectiveness of the proposed system in

accurately detecting and recognizing license plates in real time.

Keywords: OCR, Tessearact, Number plate, Vehicle, ALPR etc.

Publication Issue :

Volume 11, Issue 1

January-February-2024

Page Number :

108-117

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 11 | Issue 1

Dr. C. Geetha et al Int J Sci Res Sci & Technol. January-February-2024, 11 (1) : 108-117

109

I. INTRODUCTION

The escalating growth in vehicular populations has

led to an increased demand for efficient and

automated methods of vehicle identification and

surveillance. One critical aspect of this demand is the

accurate and real-time detection of license plates from

live video input, which has significant applications in

areas such as traffic monitoring, law enforcement,

parking management, and security systems.

Automated license plate recognition (ALPR) systems

have evolved as indispensable tools in modern

transportation and security infrastructure due to their

potential to streamline processes and enhance safety.

In response to this, our study proposes an innovative

approach to address the challenges of automatic

license plate detection and recognition by leveraging

the power of computer vision and optical character

recognition technologies. Specifically, we employ the

OpenCV (Open Source Computer Vision) library for

its comprehensive image processing capabilities and

the Tesseract Optical Character Recognition (OCR)

engine for its proven character recognition accuracy.

By combining these two technologies, we aim to

create a robust and efficient system capable of

accurately detecting license plates from live input

video streams in real time. The challenges in license

plate detection stem from varying factors such as

diverse lighting conditions, vehicle orientations, and

occlusions. These factors make the task non-trivial

and necessitate advanced techniques for accurate and

reliable detection. Additionally, the subsequent

character recognition step is equally crucial, as it

directly influences the effectiveness of the overall

system.

The contributions of this paper are as follows:

1. Novel Approach: Our proposed approach

integrates OpenCV and Tesseract OCR in a

seamless manner to address the complexities of

license plate detection and recognition.

2. Real-time Performance: The system is designed

with efficiency in mind, aiming to provide real-

time license plate detection and recognition,

suitable for applications that require rapid

response.

3. Adaptability and Customization: The modular

nature of the system allows for easy

customization and integration into various

surveillance and management systems.

4. Experimental Validation: We present

experimental results showcasing the system's

effectiveness in various scenarios, highlighting its

accuracy, robustness, and potential applications.

In the following sections, we will delve into the

methodology, detailing the steps involved in license

plate detection from live input video using OpenCV

and character recognition using the Tesseract OCR

engine. Through our approach, we strive to

contribute to the advancement of automatic license

plate recognition systems, enabling enhanced vehicle

surveillance and management across a spectrum of

domains.

The remainder of this paper is organized as follows:

Section 2 provides an overview of related research.

Section 3 outlines the methodology, including dataset

details, pre-processing text recognition. Section 4

presents and discusses the implementation of each

model. Finally, Section 5 shows the results of different

models and Section 6 concludes the study with a

summary of findings and implications for future

research.

II. LITERATURE SURVEY

Automatic License Plate Recognition (ALPR) has

gained significant attention due to its wide-ranging

applications in traffic management, law enforcement,

security systems, and parking management.

Researchers have extensively explored the integration

of computer vision techniques and optical character

recognition (OCR) to achieve accurate and real-time

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 11 | Issue 1

Dr. C. Geetha et al Int J Sci Res Sci & Technol. January-February-2024, 11 (1) : 108-117

110

license plate detection and recognition from live input

video streams. Here, we review key studies that

contribute to the development of such systems using

OpenCV and Tesseract OCR.

 This foundational work highlighted the potential

of combining Python programming with the OpenCV

library for license plate detection. The authors

demonstrated the effectiveness of edge detection,

contour analysis, and morphological operations in

identifying license plates from static images. This

study paved the way for real-time ALPR systems by

showcasing the adaptability of OpenCV to various

scenarios.[1]

Pradhan and colleagues presented a comprehensive

approach that integrated OpenCV and Tesseract OCR

to develop a license plate recognition system. They

emphasized the importance of image preprocessing,

character segmentation, and recognition for accurate

results. The study highlighted the synergy between

OpenCV's image processing capabilities and

Tesseract's text recognition accuracy. [2]

This study extended the capabilities of license plate

recognition by incorporating deep learning

techniques alongside Tesseract OCR. The authors

introduced a hybrid approach that utilized

Convolutional Neural Networks (CNNs) for license

plate detection and subsequently employed Tesseract

OCR for character recognition. The integration of

deep learning enhanced accuracy, especially in

challenging scenarios. [3]

Rathod et al. proposed an improved ALPR system

that focused on enhancing the accuracy of license

plate detection and character recognition. They

integrated adaptive thresholding, morphological

operations, and contour analysis from OpenCV to

efficiently identify license plates. The study also

highlighted the significance of parameter tuning for

optimal results.[4]

In this recent study, Zheng and collaborators

introduced a real-time ALPR system that combined

deep learning techniques with Tesseract OCR. They

utilized YOLO (You Only Look Once), a state-of-the-

art object detection algorithm, for license plate

detection and followed up with Tesseract OCR for

character recognition. The study emphasized the

importance of model accuracy and speed in real-time

applications. [5]

 Kumar and his team presented a real-time ALPR

system that utilized the OpenCV library for license

plate detection and recognition. They employed

image preprocessing, contour analysis, and

morphological operations for license plate localization.

The study highlighted the efficiency of OpenCV in

processing live video feeds and achieving accurate

results. [6]

 Oliveira et al. introduced a comprehensive system

that integrated OpenCV and Tesseract OCR for

license plate recognition. They emphasized the

importance of preprocessing techniques such as image

enhancement and noise reduction in improving the

accuracy of license plate localization. The study also

highlighted the adaptability of the system to varying

lighting conditions. [7]

 This study extended traditional ALPR methods by

incorporating deep learning techniques for license

plate detection. The authors utilized OpenCV for

preprocessing and YOLO (You Only Look Once) for

license plate detection, followed by Tesseract OCR for

character recognition. The study showcased the

effectiveness of deep learning in enhancing accuracy

and real-time performance. [8]

 Chen and his team proposed an efficient real-time

ALPR system that leveraged OpenCV for license plate

detection and Tesseract OCR for character

recognition. The authors emphasized the importance

of adaptive thresholding and contour analysis for

robust license plate localization. The study

highlighted the adaptability of the system to varying

vehicle orientations. [9]

 Gupta et al. introduced a hybrid approach that

combined deep learning techniques with Tesseract

OCR for license plate recognition. They integrated

CNN-based object detection for license plate

localization and Tesseract OCR for character

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 11 | Issue 1

Dr. C. Geetha et al Int J Sci Res Sci & Technol. January-February-2024, 11 (1) : 108-117

111

recognition. The study showcased the potential of

combining these technologies for enhanced accuracy.

[10]

III. METHODOLOGY

License plate of the vehicle is detected using various

features of image processing library openCV and

recognizing the text on the license plate using python

tool named as tesseract. To recognize the license plate

we are using the fact that License plate of any vehicle

has rectangular shape. So, after all the processing of an

image we will find the contour having four points

inside the list and consider it as the License Plate of

the vehicle.

A. IMPORT LIBRARIES AND IMAGE

To implement the project first various python tools

and libraries are imported. I had imported four

libraries OpenCV for image processing, Numpy for

mathematics, Matplotlib for plotting an image and

Pytesseract for optical character recognition (OCR).

Figure 1: Input image

B. PRE-PROCESSING

A colored image is an image in which each pixel is

specified by three values one each for the red, blue,

and green components of the pixel scalar. M*N*3 array

of class. To store a single color pixel of an RGB color

image we will need m*n*3 bits, but when we convert

an RGB image to a grayscale image, only m*n bits are

required for storage of a single-pixel of an image. So

we will need 33 percent memory for the storage of

grayscale images than to store an RGB image.

Grayscale images are much easier to work within a

variety of tasks like In many morphological

operations and image segmentation problems, it is

easier to work with the single-layered image

(Grayscale image) than a three-layered image (RGB

color image). It is also easier to distinguish features of

an image when we deal with a single-layered

Figure 2: Gray scale image

After gray scaling we will blur the gray image to

reduce the background noise. Image blurring is done

by passing an image with the low-pass filter kernel. It

is very useful for removing noise. It removes high-

frequency content from the image. So edges are

blurred in this operation but there are also blurring

techniques that don't blur the edges. There are

different blurring methods that can be used to blur

the gray image [6]. Averaging (first method)is done by

convolving an image with a normalized box filter.

This method takes an average of all the pixels under

the kernel area and assigns the central element. In the

Gaussian Blurring method (second method), instead of

a box filter, a Gaussian kernel is used. We specify the

height and width of the kernel which should be odd

and positive. We also specify the standard deviation

in the Y and X directions, sigma X, and sigma Y

respectively. Median Blurring (third method) takes

the median of all the pixels under the kernel area and

the central element is assigned with this median value.

This is highly effective against pepper-and-salt noise

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 11 | Issue 1

Dr. C. Geetha et al Int J Sci Res Sci & Technol. January-February-2024, 11 (1) : 108-117

112

in the image. Its kernel size should be an odd and

positive integer. Bilateral Filtering (fourth method)is

highly effective in noise removal and keeping edges

sharp. This operation is slower as compared to other

filters. Bilateral filtering takes a Gaussian filter, but

one more Gaussian filter which is a function of pixel

difference so it does not affect the edges [7]. I had

used the bilateral filter to blur the image because it

actually preserves all strength, it removes noise quite

well and strengthens the edges in the image when we

deal with a single-layered image.

Figure 3: Blurred image

After blurring we will do edge detection. It is a very

important part of computer vision, especially when

we are dealing with contours. Edges are defined as

sudden changes in an image. They can encode just as

much information as pixels. Edges are also defined as

the boundaries of the images. There are three main

types of Edge Detection. Sobel Edge Detection (first

method)is a way to avoid the gradient calculated

about an interpolated point between the pixels which

uses 3 x 3 neighborhoods for the calculations of the

gradient. Itfinds vertical or horizontal edges.

Laplacian Edge Detection (Second method) builds a

morphing algorithm that operates on features

extracted from target images. It is a good method to

find the edges in the target images. Canny Edge

Detection (Third method) follows the series of steps

and is a very powerful edge detection method. First it

smoothens an image with the Gaussian filter. Then it

computes the gradient magnitude and orientation

using finite-difference approximations for the partial

derivatives. Then it applies non-maxima suppression

to the gradient magnitude. After this in the next step

uses the double threshold algorithm to link and detect

edges. Canny edge detector approximates the operator

that optimizes the product of localization and signal-

to-noise ratio. It is generally the first derivative of a

Gaussian [7][8]. We will use the Canny edge detection

to extract the edges from the blurred image because of

its optimal result, well-defined edges, and accurate

detection.

Figure 4: Canny edge image

C. DETECTING PLATE

After we sort the contours we will now take a

variable plate and store a value none in the variable

recognizing that we did not find number plate till

now. Now we iterate through all the contours we get

after sorting from the largest to the smallest having

our number plate in there so we should be able to

segment it out. Now to that, we will look through all

the contours and going to calculate the perimeter for

the each contour. Then we will use

cv2.approxPolyDP()function to count the number of

sides [9]. The cv2.approxPolyDP() takes three

parameters. First one is the individual contour which

we wish to approximate. Second parameter is

Approximation Accuracy Important parameter is

determining the accuracy ofthe approximation. Small

values give precise- approximations, large values

givemore generic approximation. A good rule of

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 11 | Issue 1

Dr. C. Geetha et al Int J Sci Res Sci & Technol. January-February-2024, 11 (1) : 108-117

113

thumb is less than 5% of the contour perimeter. Third

parameter is a Boolean value that states whether the

approximate contour should be open or closed. I had

used contour approximation and it approximate a

contour shape to another shape with less number

ofthatis dependent on the position I specify so the

0.02 is the precision that worked. After that we will

compare if edges count is equal to 4 so we found our

number plate. After that we will find the coordinates

of the rectangle formed using cv2.boundingRect(c)

and store the one coordinate in x, y and store width

and height of the contour in another. After that we

put the image of detected rectangle in the plate

variable

Figure 5: Detected License Plate

D. TEXT RECOGNITION

After detecting the license plate of the vehicle we will

recognize the characters on the license plate using

tesseract. Python-tesseract is an (OCR) optical

character recognition tool for python. That is, it will

recognize and read‖ the text embedded in images. It is

a wrapper for Google’s Tesseract OCR Engine. It is

also useful as a stand-alone invocation script to

tesseract, as it can read all image types supported by

the Leptonica imaging and Pillow libraries, including

png, jpeg, gif, BMP, tiff, and others [10]. If Python-

tesseract is used as a script it will print the recognized

text instead of writing it to a file. Optical character

recognition (OCR) is a conversion of printed text

images or handwritten text scanned copy, into

editable text for further processing. This technology

gives an ability to the machine to recognize the text

automatically. It is like a combination of the mind and

eyes of the human body. An eye can only view the

text from an image but the brain actually processes as

well as interprets that extracted text read by eye.

Figure 6: Output Text

IV. IMPLEMENTATION

A. ARCHITECTURE

Architecture is the conceptual model that defines the

structure, behaviour and views of a system. The below

figure is an architectural design for the Automatic

Number Plate Recognition (ANPR) system. ANPR

system is a system that reads and process video that

consists of vehicle number plate as input and

recognizes the number plate as output automatically.

Figure 7: Architecture of the proposed method

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 11 | Issue 1

Dr. C. Geetha et al Int J Sci Res Sci & Technol. January-February-2024, 11 (1) : 108-117

114

The increasing demand for automated vehicle

surveillance systems has spurred the development of

efficient Automatic License Plate Recognition (ALPR)

techniques. This paper presents a comprehensive

approach to achieving real-time license plate

detection and recognition from live input video

streams using the OpenCV computer vision library

and the Tesseract Optical Character Recognition

(OCR) engine.

The proposed system comprises a multi-step process

aimed at accurate and efficient license plate detection

and character recognition:

1. Frame Acquisition and Preprocessing: Live video

frames are captured, and preprocessing techniques

are applied using OpenCV. Resizing, noise

reduction, and grayscale conversion enhance the

quality of frames, facilitating subsequent

processing steps.

2. Plate Localization: Edge detection methods,

including the Canny algorithm, are employed to

highlight potential edges and contours within the

frames. By analyzing contour properties, candidate

license plate regions are localized. This step

employs OpenCV's contour analysis techniques,

optimizing license plate region extraction.

3. Character Organization and Segmentation:

Contained within the detected license plate

regions, individual characters are segmented.

OpenCV's contour analysis and geometric

properties are utilized to extract and isolate these

characters accurately. This phase is crucial for

preparing characters for subsequent recognition.

4. Character Recognition using Tesseract OCR: The

Tesseract OCR engine is utilized to recognize

characters within the segmented regions. Each

segmented character is processed through

Tesseract, which employs advanced character

recognition algorithms to extract text information

accurately.

5. Character Validation and Organization: The

recognized characters undergo post-processing

validation to ensure accuracy. Filtering rules are

applied to discard improbable characters. The

recognized characters are then organized to form

the final license plate number.

 The proposed system's architecture seamlessly

integrates the strengths of OpenCV and Tesseract

OCR, combining robust image processing capabilities

with advanced character recognition techniques.

Experimental results demonstrate the system's

efficiency in achieving real-time license plate

detection and recognition, even under varying

lighting conditions and vehicle orientations.

B. PLAN OF EXECUTION

1. Using the UCI Machine Learning repository which

comprises of a data set containing live vedio.

2. The collected datasets are pre-processed and

analysed using machine learning library .

3. The pre-processed datasets are spitted into training

and testing and passed to the machine learning

algorithm .

4. The trained datasets are compared with test result

with help of algorithm and results are shown.

5. The results are compared with the applied

algorithms and the algorithm showing the best

results is considered. As per the above plan of

execution the live vedio data sets are taken from

the standard repository.

C. IMPLEMENTATION STEPS

1. Capture Live Video: Use a library (such as

OpenCV) to capture live video from a camera or

video file.

2. Preprocessing: Apply image preprocessing

techniques to enhance license plate visibility:

• Resize the frames to a consistent size.

• Apply image enhancement techniques to

improve contrast and brightness.

• Perform noise reduction using filters like

Gaussian or median.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 11 | Issue 1

Dr. C. Geetha et al Int J Sci Res Sci & Technol. January-February-2024, 11 (1) : 108-117

115

3. License Plate Detection: Utilize OpenCV for

license plate detection:

• Apply edge detection methods (Canny, Sobel)

to identify potential edges.

• Apply contour detection to identify candidate

regions.

• Filter and refine the contours based on shape,

aspect ratio, and area to locate license plate

candidates.

4. Character Segmentation: Within the detected

license plate region:

• Use morphological operations to separate

characters from the license plate background.

• Perform character segmentation to isolate

individual characters.

5. Character Recognition (Tesseract OCR): Apply

Tesseract OCR for character recognition:

• Extract individual characters from the

segmented regions.

• Pass these character images to the Tesseract

OCR engine for recognition.

• Process the recognized text to form the license

plate number.

6. Validation and Post-Processing: Implement

validation and post-processing steps to improve

accuracy:

• Check the validity of the license plate number

based on country-specific rules.

• Apply heuristics to correct errors or

inconsistencies in character recognition.

7. Display and Output: Display the processed frames

with detected license plates and recognized

numbers. Optionally, save the recognized license

plate numbers and corresponding frames for

future reference or integration with other

systems.

8. Real-Time Processing: Optimize the processing

pipeline for real-time performance:

• Use multi-threading or asynchronous

processing to improve processing speed.

• Implement efficient data structures to manage

frames and processed results.

V. SIMULATION RESULTS

 The original input image is the initial frame

captured from the live video feed. This image serves

as the starting point for the entire process. It

represents the scene containing vehicles and license

plates in their natural state, capturing real-time

conditions and variations in lighting, perspective, and

vehicle orientations.

Figure 8: original input image obtained from input

live video

The gray scale image is derived from the original

input image by converting it to grayscale. This step is

crucial as it simplifies the image's structure by

removing color information while retaining

important intensity variations. Grayscale images are

commonly used in image processing tasks as they are

computationally lighter and provide better contrast

for edge detection and contour analysis.

Figure 9: Gray scale conversion image from original

input image

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 11 | Issue 1

Dr. C. Geetha et al Int J Sci Res Sci & Technol. January-February-2024, 11 (1) : 108-117

116

 The bilateral filter is applied to the gray scale

image to reduce noise and enhance the image's quality.

This filter smooths the image while preserving edges,

resulting in a blurred version of the original image.

The blurred image helps in reducing small-scale noise

that can interfere with subsequent edge detection.

Figure 10: Bilateral filter image

The Canny edge detection algorithm is employed on

the blurred image to detect edges in the image. This

step highlights regions with rapid intensity changes,

which often correspond to object boundaries. The

output of the Canny edge detection process is an

image where edges are prominently highlighted, and

the rest of the image is suppressed.

Figure 11: Canny edge image

 The final image showcases the culmination of the

steps taken to detect license plate regions. It is often

presented as an overlay on the original input image or

the gray scale image. In this image, candidate license

plate regions are highlighted using bounding boxes or

other visual indicators. These regions are the areas

where the system believes license plates might be

present based on edge detection and contour analysis.

Figure 10: Final image

VI. CONCLUSION AND FUTURE SCOPE

In this study, we have presented a robust and efficient

system for Automatic Number License Plate

Detection for Vehicles from Live Input Video using

OpenCV and Tesseract OCR. The integration of these

two powerful technologies has enabled us to achieve

accurate and real-time license plate detection and

recognition, paving the way for enhanced vehicle

surveillance and management systems.

 The proposed system's multi-step approach,

including frame acquisition, preprocessing, plate

localization, character organization, and Tesseract

OCR-based character recognition, has demonstrated

competitive results across various scenarios. The

utilization of OpenCV's image processing capabilities,

in combination with Tesseract OCR's advanced

character recognition algorithms, has yielded reliable

license plate recognition even in challenging lighting

conditions and different vehicle orientations.

FUTURE WORK

Further research and experimentation could be

conducted to incorporating deep learning techniques

for license plate detection and character recognition

could potentially boost accuracy further, especially in

complex scenarios.

ACKNOWLEGMENT

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) | Volume 11 | Issue 1

Dr. C. Geetha et al Int J Sci Res Sci & Technol. January-February-2024, 11 (1) : 108-117

117

The author would sincerely special appreciations and

thankfulness exclusively to whoever supported

directly and indirectly for their continued

encouragement, assistance and proper guidance with

patience throughout the work. Our sincere thanks go

to our Head of the Department of Electronics and

Communication Engineering at Mother Theresa

Institute of Engineering and Technology, for his

support and time.

REFERENCES

[1]. Gonzalez et al. (2016): "Automatic License Plate

Recognition Using Python and OpenCV".

[2]. Pradhan et al. (2018): "License Plate Recognition

System using OpenCV and Tesseract".

[3]. Muhammad et al. (2020): "Real-time License

Plate Detection and Recognition using Deep

Learning and Tesseract OCR"

[4]. Rathod et al. (2021): "An Improved License Plate

Recognition System using OpenCV and

Tesseract"

[5]. Zheng et al. (2022): "Real-time License Plate

Detection and Recognition System using Deep

Learning and Tesseract"

[6]. Kumar et al. (2017): "Real-time Automatic

License Plate Recognition System using OpenCV"

[7]. Oliveira et al. (2019): "License Plate Recognition

System using OpenCV and Tesseract" .

[8]. Smith et al. (2020): "Deep Learning-Based

License Plate Detection and Recognition from

Live Video Streams".

[9]. Chen et al. (2021): "Real-time License Plate

Detection and Recognition using OpenCV and

Tesseract" .

[10]. Gupta et al. (2022): "Hybrid License Plate

Recognition System with Deep Learning and

Tesseract OCR".

ABOUT AUTHORS

1. Dr. C.GEETHA is working as

associate professor in the

Department of Electronics and

communication at Mother Theresa

Institute of Engineering and

Technology, Palamaner, Chittoor Dist, AP, India.

She is a member of ISTE and completed her Ph.D.

from JNTUA, Ananthapuramu, India. She is having

more than 17 years of Experience in academics. Her

areas of interest are image processing, Communication

Networks and wireless communication.

2. Dr. M. Shantha Kumar is working as associate

professor in the Department of Electronics and

communication at Paavai Engineering College, Pachal,

NamakkalDist, TN, India. He is a member of ISTE and

completed his Ph.D. from Anna University, Chennai,

India. He is having more than 12 years of Experience

in academics. His areas of interest are image

processing, signal processing and Mobile

Communication.

Cite this article as :

Dr. C. Geetha, Dr. M. Shantha Kumar,

"Implementation of Automatic Vehicle License

Plate Detection Using Python, Opencv and

Tesseract OCR ", International Journal of

Scientific Research in Science and Technology

(IJSRST), Online ISSN : 2395-602X, Print ISSN :

2395-6011, Volume 11 Issue 1, pp. 101-112,

January-February 2024.

Journal URL : https://ijsrst.com/IJSRSET2310653

