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ABSTRACT- In the present paper, the effect of equilibrium temperature gradient and magnetic field on the 

rate of heat transfer, velocity and temperature has been studied. Numerical calculations for the rate of heat 

transfer, velocity and temperature are obtained and shown graphically. The highly porous medium which is 

bounded by an infinite vertical non-conducting plane surface has been considered and two dimensional free 

convective MHD flow of a stratified viscous fluid has discussed.  
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INTRODUCTION - The unsteady and steady transmission of a homogeneous viscous fluid by means of a porous 

medium and is surrounded by a vertical plate with varying constant temperature has studied by ‘Raptis et al.’ 

and ‘Raptis’. ‘Sharma’ suggested the flow for free convective effect with ordinary viscous fluid to infinite 

vertical porous plate having constant suction and heat flux. ‘Achary et al.’ investigated the impact of magnetic 

field effection on the mass transfer flow for free convection through porous medium having constant suction 

and heat. ‘Noushima et al.’ investigated unsteady free convective MHD flow for walter’s memory with constant 

suction and heat sink. ‘Magyari et al.’ studied the analytical study for unsteady free convection for porous 

media. ‘Soundalgekhar’ studied the various aspect for horizontal magnetic field and variable suction on the free 

convection flow with vertical porous plate and denoted the different parameters and flow of mercury and 

ionized air. ‘Turchuk and Shildovskil’ studied the equations of motion for the fluid having viscous micro layers,  

its relation with viscosity, thermal conductivity and diffusion, deviation of field variable from hydrostatic value 

and the effect of equilibrium stratification through equilibrium density gradient. The unsteady free convective 

flow of a thermally stratified viscous fluid through porous medium was studied by ‘Mondal and chaudhary’. 

 
The present paper is the study of unsteady free convective MHD flow in two dimensional stratified viscous 

conducting fluid through highly porous medium having infinite vertical non-conducting plane under the effect 

of a homogenous transverse magnetic field. It has seen that the temperature of the surface, which have 

oscillating behaviour with respect to the time varies vertically. The energy transport is effected by force 

distributed is due to density variation for convection for free flow. The flow in a especially porous medium is 

the main aspect for the study due to many application in industrial problem such as petroleum, nuclear and 

chemical industries. The magnetic effects are extremely used in the power generation.   

 

1. FORMULATION AND SOLUTION OF THE PROBLEM :  Unsteady two dimensional flow of viscous 

conducting and thermally stratified fluid by highly porous medium surrounded by an unlimited non-

conducting vertical plane, which is moving vertically having a constant velocity V has considered. We 
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have also consider the x′-axis, which is vertically upward along with the plane, y′-axis is normal to the 

plane B0 (= q0H0) shows uniform magnetic field strength, this value represent the normal action of the 

plane. The relationship between the temperature and pressure of a fluid have the following inter-

relationship θ′=θe + T′, σ′ = σe − ασ0T′ and p′ = pe + p̅. The temperature θe at equilibrium, density  σe 

and pressure pe have the  following relationship θe = θ0 + AF
′ x′,    σe =  σ0(1 − αθ0)  and 

dpe

dx′ = − σeg. 

Where T′  and p indicates the temperature  deviation and pressure deviation respectively, equilibrium 

temperature gradient for fluid is Aθ
′ , the density is represented by  σ0,  where  θ0  represents the 

temperature, coefficient of volume expansion is denoted by 𝛼, where g is acceleration due to gravity.  

 

 The plate temperature is considered as follows : 

 

               θω
′ = θe + θw(1+∈ eiω′t′), 

 

in the above equation θw > 0, the time is indicated by t′, which is constant, the frequency of oscillation is ω′, 

where as ∈ (< 1) is a constant value.  

 

 Concerning T′, p̅ and the components of velocity, these are independent of x′. Equation of momentum 

and energy neglecting viscous dissipation can be represented  as  

  

 
∂q′

∂t′ = αgT′ −
μ

K′ q′ + μ
∂2q′

∂y′2 −
ρ

σ
B0

2q′,               (2.1) 

 

 and      
∂T′

∂t′ = -Aθ
′ q′ +

K

 σ0 Cp

∂2T′

∂y′2 +
ρ

σ
B0

2q′2
,               (2.2) 

 

where q’ represents the velocity components along x’-axis, k denotes the thermal conductivity, Cp represents 

the specific heat at constant pressure, K’ represents the permeability of the medium and μ  denotes the 

kinematic coefficient of viscosity. 

 

Now we consider the non –dimensional variables as follows : 

 

y =
y′V

μ
,      q=

q′

V
,  T=

T′

 θw
,    ω =

μω′

V2   and t =
t′V2

μ
 . 

 

The above concern equations can be represented as  

 

 
∂2q

∂y2 −
∂q

∂t
− mq = −GT,                                          (2.3) 

 

 
∂2T

∂y2 − Pr
∂T

∂t
= AθPrq − EMPrq2,                                    (2.4) 

 

where Grashoff number =
αgθwμ

V3 , Prandtl number = 
μCpσ0

k
, Permeability parameter = 

V2K′

μ2 ,  Equilibrium 

temperature gradient parameter = 
μAθ

′

θwV
 , Hartmann number = 

μρB0
2

V2𝜎
 and Eckert number = 

V2

θω
≪ 1 are denoted by 

G, Pr, K, Aθ, M and E respectively. 
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The boundary conditions are considered as follows :  

 

q=1,     T=1+∈ eiωt             at  y=0 

 

                      q,T→ 0                                     as  y→ ∞                                 (2.5) 

 

In view of above boundary conditions (2.5) the solution of equations (2.3) and (2.4) takes the form  

 

q = ∑ ∈r qr(y) eirωt

∞

r=0

 

   

     T = ∑ ∈r Tr(y) eirωt∞
r=0                                                         (2.6) 

 

If we consider the non-harmonic terms and the first harmonic terms then substituting equations (2.6) in 

equations (2.3) and (2.4). We get the differential equations in (q0, T0) and (q1, T1): 

                                                               
d2q0

dy2 − mq0 = −G T0;        
d2T0

dy2 = AθPrq0                                          (2.7) 

and 

                                                                
d2q1

dy2 − (iω + m)  q1 = −GT1;  
d2T1

dy2 − iωPrT1 = AθPrq1                (2.8) 

 

In reduced boundary conditions, we can find another equation (2.9) 

 

         q0 = 1, q1 = 0, T0 = 1, T1 = 1,            at y = 0 

 

                                                q0, q1, T0, T1 → 0,                            as y → ∞                            (2.9) 

 

In view of above boundary conditions, the solution of equations can be obtained in the form of velocity, and 

temperature field as below : 

Case – Ist   

 if   Aθ <
m2

4PrG
, 

then           q = ∑ ∈r (Are−αry + Br e−βry) eirωt

∞

r=0

.                                                                           (2.10) 

 

T = −
1

G
[∑ ∈r

∞

r=0

{(α𝑟
2 − iωr − m)Are−αry + (β𝑟

2 − iωr − m)Br e−βry}eirωt)].                       (2.11) 

Case – IInd  

  Aθ >
m2

4PrG
, 

 

then  q = e−m1y(Cosm2y + C Sinm2y) + ∑ ∈r

∞

r=1

(Are−αry + Br e−βry)eirωt .                           (2.12) 
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T = −
e−m2y

G
[{m1

2 − m2
2 − m − 2m1m2C}Cosm2y + {C(m1

2 − m2
2 − m) + 2m1m2} sin m2y] − 

1

G
∑ ∈r

∞

r=1

[(α𝑟
2 − iωr − m)Are−αry + (β𝑟

2 − iωr − m)Br e−βry]eirωt                                             (2.13) 

 

Case – IIIrd  

 If  Aθ =
m2

4PrG
= A̅θ (Critical value), 

then    q = (1 + Fy) e
−√

m
2

y
+ ∑ ∈r

∞

r=1

[Ar+1e−αr+1y + Br+1e−βr+1y]eirωt.                                    (2.14) 

 

T =
1

G
[
(F√8K + y) + (1 + MK)

2K
] e

−√1
2

my
−

1

G
∑ ∈r−1

∞

r=2

 

 [{α𝑟
2 − i(r − 1)ω − m}Bre−βry]ei(r−1)ωt,                                                                              (2.15) 

where 

               (α0, β0) = [
1

2
{m ± √m2 − 4PrGAθ}]

1/2
, 

 

             (m1, m2) = [
(4PrGAθK2±1)(1+MK)

4K
]

1/2

, 

 

            (α1, β1) = [
1

2
{iω(1 + Pr) + m ± √m2 − 4PrGAθ − ω2(1 − Pr)2 + 2iωm(1 − Pr) }]

1/2
, 

 

            (α2, β2) = [
1

2
{iω(1 + Pr) + m ± √

2iω

M
(1 + MK)(1 − Pr) − ω2(1 − Pr)2 }]

1/2

, 

       

      A0 = −
β0

2+G−m

α0
2−β0

2 ,           B0 =
(α0

2+G−m)

α0
2−β0

2 , m =
1

K
+ M,    

 

    C =
1

2m1m2
[G + (m1m2)2 − m2

2 − m], A1 = −B1 =
G

β1
2−α1

2,  

 

     A2 = −B2 =
G

β2
2−α2

2  and F = (
2KG−1

8K
) (1 + MK)1/2. 

     

     The velocity field can be defined as  

 

q(y, t) = q0(y)+∈ qr(y)cosωt+∈ qi sin 𝜔t , here qr and qi, these are the real and imaginary parts of  q1 . If 

ωt = π/2, then the relation for transient velocity becomes  

 

 qθ = q0(y)+∈ qi(y). 

 

The indication for the transient velocity qθ for different values of K, G, M and Aθ with Pr = 0.71 and  ∈= 0.02 

are indicated in Fig. 1 and Fig. 2.     

 



International Journal of Scientific Research in Science, Engineering and Technology (www.ijsrset.com) 

 

 491 

 
Fig. 1. Variable in distribution of transient velocity at ε = 0.02, Pr = 0.71, G = 4, ω = 6, for M = 0 

and M = 2. The critical values  A̅θ for K = 1 and K = 2 are corresponded to curves 2 and 5. 

 

  Heat transfer rate at the plane for ωt = π/2 in terms of Nusselt number N = − (
dθ

dy
)

y=0
 are shown in table – I. 

 

Table –I 

Heat transfer rate in terms of variation in Nusselt number  N, for various numerical values of 

ω, G, K and Aθ(Pr = 0.71, ε = 0.02). 

Aθ 

 M K=1 

1 0 

2 

0.01 

0.12 

2 0 

2 

0.088 

0.792 

3 0 

2 

0.10 

0.80 

4 0 

2 

0.01 

0.25 

5 0 

2 

0.022 

0.550 

6 0 

2 

0.05 

0.60 

ω G K Aθ N (M=0) N (M=2) 

 

 

 

 

 

 

 

5 

 

 

 

4 

 

 

 

 

 

 

 

8 

 

 

 

1 

 

 

 

2 

 

 

 

1 

 

 

 

2 

 

0.01 

0.05 

0.10 

 

0.01 

0.05 

0.10 

 

0.01 

0.05 

0.10 

 

0.01 

0.05 

0.10 

- 0.146 

0.029 

0.129 

 

-0.106 

0.077 

-0.192 

 

-0.091 

0.104 

0.230 

 

-0.043 

0.163 

0.291 

- 0.152 

0.031 

0.134 

 

-0.112 

0.086 

-0.198 

 

-0.104 

0.117 

0.239 

 

-0.048 

0.172 

0.301 

 

 

 

 

 

 

 

1 

 

0.01 

0.05 

0.10 

- 0.226 

- 0.065 

0.045 

- 0.232 

- 0.073 

0.049 
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2. DISCUSSION : It is obious by the figures 1 and 2 that there is very high relationship between equilibrium 

temperature gradient parameter (Aθ) and transient velocity  (qθ). 

          
 

Fig.2. Distribution in transient velocity at ε = 0.02, Pr = 0.71, G = 8, ω = 6, for M = 0 and  M =2. Curves 2 

and 5 denoted the critical values  A̅θ for K = 1 and K = 2. 

 

If we increase the equilibrium temperature gradient parameter (Aθ), then the transient velocity (qθ) decreases 

all the time. The fluid velocity relative to the plate at the first increases with the increasing from the plane and 

gains the maximum value within the fluid and decreases exponentially for conditions 0 < Aθ ≤ A̅θ (A̅θ =

critical value). If conditions are like as Aθ > A̅θ, the relative velocity decreases. If we increase the distance of 

plane and the fluid flow relative to the plane condition and this is opposite to the direction of the motion of the 

plane, in these situations the magnetic field decreases in all. Which shows that the magnetic field application is 

unfavourable to the direction of flow.  

 

 

 

 

 

10 

4 

 

 

 

 

 

 

 

8 

 

 

 

 

2 

 

 

 

1 

 

 

 

2 

 

 

0.01 

0.05 

0.10 

 

0.01 

0.05 

0.10 

 

0.01 

0.05 

0.10 

 

-0.185 

0.008 

0.106 

 

-0.172 

0.031 

0.143 

 

-0.117 

0.082 

0.210 

 

-0.192 

-0.009 

0.011 

 

-0.179 

0.038 

0.151 

 

-0.119 

0.088 

0.217 

Aθ 

N M K=1 

1 0 

2 

0.01 

0.09 

2 0 

2 

0.044 

0.369 

3 0 

2 

0.05 

0.40 

4  

0 

2 

K=2 

0.01 

0.12 

5 0 

2 

0.011 

0.305 

6 0 

2 

0.012 

0.38 
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If the medium of flow is non porous letting K → ∞ as well as  A̅θ =
M2

4PrG
< Aθ. 

 

Then the velocity of fluid is always less than that of the plane.  

 

Grashoff number shows the free convection effect, for G > 0 respons the cooled surface formulation. When the 

G,K and ω increases the velocity will also increase. 

 

In table-I the Nusselt number N with reference to the heat transfer effect has explained, which shows that for 

small Aθ, heat is transferred from the fluid to the plane, but there is reverse condition for higher Aθ. 
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